Streaming Live This Fall: Terahertz – the Next Frontier for Communications and Electronics

NYU WIRELESS and the NYU Tandon School of Engineering Organize Series to Spur Research in the Emerging Field


BROOKLYN, New York, Thursday, August 23, 2018 – The next frontier for ultra-fast computing and wireless communications – the terahertz electromagnetic spectrum – will be examined in a series of seminars by foremost scientists and engineers in the field. Organized by the NYU WIRELESS research center and NYU Tandon School of Engineering’s Electrical and Computer Engineering Department, the series at the school’s Brooklyn, New York, campus will be streamed for NYU WIRELESS industrial affiliate sponsors and the public and archived for later viewing.

“Circuits: Terahertz (THZ) and Beyond” will explore the vast unknown that lies between the optical spectrum and the millimeter wave (mmWave) frequencies that will soon carry massive amounts of data in 5G, or fifth generation, of cellphone devices. Physicists, mathematicians, and engineers have been working for decades trying to solve fundamental challenges of the THz spectrum and pushing the boundaries of quantum nanoelectronics in the hope of unlocking even more gains for communications, computing, sensing, and materials.

“Recent breakthroughs in THz research, quantum computing, and nanotechnology have opened exciting new vistas for the future of electrical and computer engineering, and NYU has made major investments in these promising areas already,” said Professor Theodore (Ted) S. Rappaport, director and founder of NYU WIRELESS. “While we have pioneered the use and understanding of mmWave frequencies for 5G, it is clear that new knowledge will be needed to bridge the gap between the fundamentals of these new areas with the design and fabrication of devices. In keeping with the NYU WIRELESS tradition, we also seek to amplify the global conversation in these exciting areas by organizing this series and making it free and open to all.”

“The spectrum also holds great promise for communications and networks – both strongholds of NYU Tandon research – as well as sensing and optics,” said Professor Ivan Selesnick, chair of the department. The THz seminar series reflects our commitment to both educate students and foster the pursuit of new important research areas in electronics and wireless communication.”

“This new series will bring leaders in this emerging field of study to Brooklyn, to the benefit of our students, faculty, and all of New York, as well as scholars worldwide,” said new NYU Tandon Dean Jelena Kovačević, whose academic background is electrical and biomedical engineering. “Our faculty and NYU WIRELESS established Brooklyn as a world-renowned center for mmWave technology, and the excitement is palpable here as they explore technologies that will drive communication and computing decades hence.”

The inaugural seminar, on Wednesday, September 5, 2018, will feature Aydin Babakhani speaking on “Silicon-based Integrated Sensors with On-chip Antennas: From THz Pulse Sources to Miniaturized Spectrometers.” An associate professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science and director of the Integrated Sensors Laboratory at UCLA, Babakhani’s research could have major implications for biomedical devices. For example, Babakhani designed a wireless, battery-free pacemaker that receives energy through radio frequency radiation and eliminates the need for risky surgeries to replace batteries.

All seminars begin at 11 a.m. Eastern and can be watched at engineering.nyu.edu/circuits-terahertz-thz. For more information, including the full schedule of speakers, locations, and the department’s acclaimed series on artificial intelligence, visit ECE Seminar Series.

“Circuits: THz and Beyond” is organized by NYU Tandon faculty members Shaloo Rakheja, Davood Shahrjerdi, Ramesh Karri, and Ted Rappaport.

NYU Tandon’s Department of Electrical and Computer Engineering has a long tradition of excellence in teaching and research, dating to 1885. The department rose to prominence in the mid-twentieth century for work in microwaves, communications, electrical machinery, and automatic control. Currently, its faculty and NYU WIRELESS are prominent in mmWave technology, massive MIMO, hardware security, networking, signal processing, and the smart grid. Its research activities are organized into five major areas: Communications, Networking and Signal Processing/Machine Learning; Systems, Control and Robotics; Energy Systems, Smart Grids and Power Electronics; Electromagnetics and Analog/RF/Biomedical Circuits; and Computer Engineering and VLSI.


About NYU WIRELESS

NYU WIRELESS is a multi-disciplinary academic research center that offers an unprecedented and unique set of skills. Centered at the NYU Tandon School of Engineering, and involving more than 100 faculty and students throughout the entire NYU community, NYU WIRELESS offers its faculty, students and affiliated sponsors from industry a world-class research environment that is creating the fundamental theories and techniques for next-generation mass-deployable wireless devices across a wide range of applications and markets. This center combines NYU Tandon, NYU School of Medicine and NYU Courant Institute of Mathematical Sciences, and offers a depth of expertise with unparalleled capabilities for the creation of new wireless circuits and systems as well as new health care solutions for the wireless industry. For more information, visit www.nyuwireless.com.

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country’s foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit engineering.nyu.edu.