Eray Aydil

Alstadt Lord Mark Professor

Connect
Eray Aydil

Research Interests: My group and I are interested in electronic, optoelectronic, magnetic, and catalytic materials synthesis and characterization with emphasis on understanding synthesis-structure-property-performance relations. We are motivated by fundamental questions as well as applications such as sustainable solar-to-electric energy conversion using solar cells. We use both vapor phase deposition and synthesis techniques (e.g., physical vapor deposition, plasma synthesis etc.) as well as colloidal synthesis to produce nanostructured materials, coatings, and thin films. Recent and Current projects are on
(1) Hybrid organic-inorganic perovskite inspired materials for solar cells, light emitting devices, and quantum computing;
(2) Superparamagnetic nickel and permalloy nanoparticles; and
(3) Pyrite iron disulfide (FeS2) for solar cells.

University of Houston, 1991
Ph.D., Chemical Engineering

University of California, Berkeley 1986
B.S., Chemical Engineering, B.S., Materials Science and Engineering


  1. D. Ray, C. Clark, H. Q. Pham, J. Borycz, R. J. Holmes, E. S. Aydil, and L. Gagliardi, “Computational Study of Structural and Electronic Properties of Lead-Free CsMI3 Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba),” J. Phys. Chem. C 122, 7838-7848 (2018). https://pubs.acs.org/doi/10.1021/acs.jpcc.8b00226
  2. A. H. Pinto, S. W. Shin, A. Sharma, R. L. Penn and  E. S. Aydil, “Synthesis of Cu2(Zn1-xCox)SnS4 Nanocrystals and Formation of Polycrystalline Thin Films from Their Aqueous Dispersions,” J. Mater. Chem. A 6, 999-1008 (2018). https://dx.doi.org/10.1039/C7TA06295H
  3. J. Walter, X. Zhang, B. Voigt, R. Hool, M. Manno, F. Mork, E. S. Aydil and C. Leighton, “Surface Conduction in n-type Pyrite FeS2 Single Crystals,” Phys. Rev. Materials 1, 065403 (2017). https://doi.org/10.1103/PhysRevMaterials.1.065403
  4. A. H. Pinto, S. W. Shin, E. Isaac, T. R. Knutson, E. S. Aydil and R. Lee Penn, “Controlling Cu2ZnSnS4 (CZTS) Phase in Microwave Solvothermal Synthesis,” J. Mater. Chem. A 5, 23179-23189 (2017). https://dx.doi.org/10.1039/C7TA06086F
  5. W. N. Wenger, F. S. Bates, and E. S. Aydil, “Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability,” Langmuir 33, 8239-8245 (2017). https://dx.doi.org/10.1021/acs.langmuir.7b01924
  6. B. L. Greenberg, Z. L. Robinson, K. V. Reich, C. Gorynski, B. N. Voigt, L. F. Francis, B. I. Shklovskii, E. S. Aydil, and U. R. Kortshagen, “ZnO Nanocrystal Networks Near the Insulator–Metal Transition: Tuning Contact Radius and Electron Density with Intense Pulsed Light,” Nano Lett. 17, 4634-4642 (2017). https://dx.doi.org/10.1021/acs.nanolett.7b01078
  7. X. Zhang, M. Li, J. Walter, L. O’Brien, M. Manno, B. Voigt, F. Mork, S. Baryshev, J. Kakalios, E. S. Aydil and C. Leighton, “Potential Resolution to the “Doping Puzzle” in Iron Pyrite: Carrier Type Determination by Hall Effect and Thermopower,” Phys. Rev. Materials 1, 015402  (2017). https://doi.org/10.1103/PhysRevMaterials.1.015402
  8. B. A. Williams, N. D. Trejo, A. Wu, C. S. Holgate, L. F. Francis, and E. S. Aydil, “Copper Zinc Tin Sulfide Thin Films viaAnnealing of Ultrasonic Spray Deposited Nanocrystal Coatings” ACS Applied Materials & Interfaces 9, 1886-18871 (2017). https://pubs.acs.org/doi/10.1021/acsami.7b04414
  9. B. A. Williams, M. A. Smeaton, N. D. Trejo, L. F. Francis, and E. S. Aydil, "Effect of Nanocrystal Size and Carbon on Grain Growth During Annealing of Copper Zinc Tin Sulfide Nanocrystal Coatings,” Chem. Mater. 29, 1676-1683 (2017). https://doi.org/10.1021/acs.chemmater.6b05058
  10. B. A. Williams, M. A. Smeaton, C. S. Holgate, N. D. Trejo, L. F. Francis, and E. S. Aydil, “Intense Pulsed Light Annealing of Copper Zinc Tin Sulfide Nanocrystal Coatings,” J. Vac. Sci. Technol. A 34, 151204 (2016). https://dx.doi.org/10.1116/1.4961661
  11. U. R. Kortshagen, R. M. Sankaran, R. N. Pereira, S. L. Girshick, J. J. Wu and E. S. Aydil, “Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications,” Chem. Rev. 116, 11061-11127 (2016). https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.6b00039
  12. A. H. Pinto, S. W. Shin, E. S. Aydil and R. L. Penn, “Selective Removal of Cu2−x (S,Se) Phases from Cu2 ZnSn(S,Se)4 Thin Films,” Green Chemistry 18, 5814-5821 (2016). https://dx.doi.org/10.1039/C6GC01287F
  13. N. Bilik, B. L. Greenberg, J. Yang, E. S. Aydil, and U. R. Kortshagen, “Atmospheric-Pressure Glow Plasma Synthesis of Plasmonic and Photoluminescent Zinc Oxide Nanocrystals,” J. Appl. Phys. 119, 243302 (2016). https://aip.scitation.org/doi/10.1063/1.4954323
  14. B. D. Chernomordik, P. M. Ketkar, A. K. Hunter, A. E. Béland, D. D. Deng, and E. S. Aydil, “Microstructure Evolution During Selenization of Cu2ZnSnS4 Colloidal Nanocrystal Coatings,” Chem. Mater. 28, 1266-1276 (2016). https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b02462
  15. Y. Qin, N. Bilik, U. R. Kortshagen and E. S. Aydil, “Laser light scattering from silicon particles generated in an argon diluted silane plasma,” J. Phys. D 49, 085203 (2016). https://dx.doi.org/10.1088/0022-3727/49/8/085203
  16. B. L. Greenberg, S. Ganguly, J. T. Held, N. J. Kramer, K. A. Mkhoyan, E. S. Aydil and U. R. Kortshagen, “Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement,” Nano Lett. 15, 8162-8169 (2015). https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b03600
  17. X. Zhang, T. Scott, T. Socha, D. Nielsen, M. Manno, M. Johnson, Y. Yan, Y. Losovyj, P. Dowben, E. S. Aydil, and C. Leighton, “Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties,” ACS Appl. Mater. Interfaces 7, 14130–14139 (2015). https://pubs.acs.org/doi/10.1021/acsami.5b03422
  18. E. Thimsen, U. R. Kortshagen and E. S. Aydil, “Nonthermal Plasma Synthesis of Metal Sulfide Nanocrystals from Metalorganic Vapor and Elemental Sulfur,”J. Phys. D 48, 31404 (2015). https://doi.org/10.1088/0022-3727/48/31/314004
  19. B. A. Williams, A. Mahajan, M. A. Smeaton, C. S. Holgate, E. S. Aydil, L. F. Francis, “Formation of Copper Zinc Tin Sulfide Thin Films from Colloidal Nanocrystal Dispersions via Aerosol-Jet Printing and Compaction,” ACS Appl. Mater. Interfaces7, 11526–11535 (2015). https://pubs.acs.org/doi/abs/10.1021/acsami.5b02484
  20. M. Johnson, C. Wrasman, X. Zhang, M. Manno, C. Leighton and E. S. Aydil, “Self-Regulation of Cu/Sn Ratio in the Synthesis of Cu2ZnSnS4Films,” Chem. Mater. 27, 2507-2514(2015). https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b00108
  21. N. Bilik, R. Anthony, B. Merritt, E. S. Aydil and U. Kortshagen, "Langmuir Probe Measurements of Electron Energy Probability Functions in Dusty Plasmas,"J. Phys. D 48, 105204 (2015). https://doi.org/10.1088/0022-3727/48/10/105204
  22. N. J. Kramer, E. S. Aydil and U. R. Kortshagen, “Requirements for Plasma Synthesis of Nanocrystals at Atmospheric Pressures,” J. Phys. D 48, 035205 (2015). https://doi.org/10.1088/0022-3727/48/3/035205
  23. S. H. Song, E. S. Aydil and S. Campbell, "Metal Oxide Broken Gap Tunnel Junction for Copper Indium Gallium Diselenide Tandem Solar Cells," Sol. Energy Mater. Sol. Cells 133, 133-142 (2015). https://doi.org/10.1016/j.solmat.2014.10.046
  24. F. Johnson, S. H. Song, J. Abrahamson, R. Liptak, E. S. Aydil and S. Campbell, "Sputtered Metal Oxide Broken Gap Junctions for Solar Cells," Sol. Energy Mater. Sol. Cells 132, 515-522 (2015). https://doi.org/10.1016/j.solmat.2014.09.042
  25. E. Thimsen, M. Johnson, X. Zhang, A. J. Wagner, K. A. Mkhoyan, U. Kortshagen and E. S. Aydil, "High Electron Mobility Thin Films Formed Via Supersonic Impact Deposition of Nanocrystals Synthesized in Nonthermal Plasmas," Nat. Comm. 5, 5822 (2014). https://dx.doi.org/10.1038/ncomms6822
  26. M. Johnson, M. Manno, X. Zhang, C. Leighton, and E. S. Aydil, “Substrate and Temperature Dependence of the formation of the Earth Abundant Solar Absorber Cu2ZnSnS4by ex situSulfidation of Co-sputtered Cu-Zn-Sn Films,” J. Vac. Sci. Technol. A 32, 061203 (2014). https://avs.scitation.org/doi/10.1116/1.4901091
  27. S. Karthikeyan, M. Sibakotil, R. Liptakl, S. H. Song, J. Abrahamson,E. S. Aydil and S. A. Campbell, “Challenges in Deposition of Wide Band Gap Copper Indium Aluminum Gallium Selenide (CIAGS) Thin Films for Tandem Solar Cells,” 40thIEEE Photovoltaics Specialist Conference (PVSC) 2014, 1632-11634 (2014). https://ieeexplore.ieee.org/document/6925232
  28. E. Thimsen, U. R. Kortshagen and E. S. Aydil, “Plasma Synthesis of Stoichiometric Cu2S nanocrystals Stabilized by Oleylamine,” Chem. Comm. 50, 8346-8349 (2014). https://dx.doi.org/10.1039/C4CC00998C
  29. B. D. Chernomordik, A. E. Béland, N. Trejo, A. Gunawan, D. D. Deng, K. A. Mkhoyan and E. S. Aydil “Rapid Facile Synthesis of Cu2ZnSnS4 Nanocrystals,” J. Mater. Chem. A 2, 10389−10395 (2014). https://dx.doi.org/10.1039/C4TA01658K
  30. B. D. Chernomordik, A. E. Béland, D. D. Deng, L. F. Francis, and E. S. Aydil, “Microstructure Evolution and Crystal Growth In Cu2ZnSnS4 Thin Films Formed By Annealing Colloidal Nanocrystal Coatings,” Chem. Mater. 26, 3191−3201 (2014). https://pubs.acs.org/doi/abs/10.1021/cm500791a
  31. A. A. Gunawan, B. D. Chernomordik, D. S. Plemmons, D. D. Deng, E. S. Aydil, and K. A. Mkhoyan, “Plasmonic Interactions through Chemical Bonds of Surface Ligands on PbSe Nanocrystals,” Chem. Mater. 26, 3328-3333 (2014). https://pubs.acs.org/doi/10.1021/cm501254m
  32. T. R. Knutson,P. J. Hanson, E. S. Aydiland R. L. Penn, “Synthesis of Cu2ZnSnS4 Thin Films Directly onto Conductive Substrates via Selective Thermolysis using Microwave Energy” Chem. Comm. 50, 5902-5904 (2014). https://dx.doi.org/10.1039/C3CC49207A
  33. M.Johnson, S. V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I. V. Veryovkin, C. Leighton and E. S. Aydil, “Alkali-metal-enhanced grain growth in Cu2ZnSnS4thin films,” Energy Environ. Sci. 7, 1931-1938 (2014). https://dx.doi.org/10.1039/C3EE44130J
  34. B. Liu, L. Liu, X-F. Lang, H.-Y. Wang, X. W. Lou and E. S. Aydil, “Doping High-Surface-Area Mesoporous TiO2 Microspheres with Carbonate for Visible Light Hydrogen Production,” Energy Environ. Sci. 7, 2592-2597 (2014). https://dx.doi.org/10.1039/C4EE00472H
  35. N. J. Kramer, R. J. Anthony, M. Mamunuru, E. S. Aydil and U. R. Kortshagen, “Plasma Induced Crystallization of Silicon Nanoparticles,” J. Phys. D 47, 075202 (2014). https://doi.org/10.1088/0022-3727/47/7/075202
  36. B. S. Tosun, J. T. Abrahamson, C. Cheng, S. A. Campbell and E. S. Aydil, “Efficient Continuous Flow Chemical Bath Deposition of CdS Films as Buffer Layers for Chalcogenide-Based Solar Cells,” 39th IEEE Photovoltaics Specialist Conference (PVSC) 2013, 1192-1194 (2013). https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6744353
  37. T. J. Pundsack, B. D. Chernomordik, A. E. Béland, E. S. Aydil, and D. A. Blank, “Excited State Dynamics in CZTS Nanocrystals,” J. Phys. Chem. Lett. 4, 2711-2714 (2013). https://pubs.acs.org/doi/10.1021/jz4013245
  38. B. S. Tosun, B. D. Chernomordik, A. A. Gunawan, B. Williams, K. A. Mkhoyan,L. F. Francis and E. S. Aydil, “Cu2ZnSnS4 Nanocrystal Dispersions in Polar Liquids,” Chem. Comm. 49, 3549-3551 (2013). 10.1039/C3CC40388B
  39. X. Zhang, M. Manno, A. Baruth, M. Johnson, E. S. Aydil, and C. Leighton, “Crossover From NanoscopicIntergranular Hopping to Conventional Charge Transport in Pyrite Thin Films,” ACS Nano 7, 2781-2789 (2013). https://pubs.acs.org/doi/10.1021/nn4003264
  40. N. Rastgar, D. J. Rowe, R. J. Anthony, B. A. Merritt, U. R. Kortshagen and E. S. Aydil, “Effects of Water Adsorption and Surface Oxidation on the Electrical Conductivity of Silicon Nanocrystal Films,” J. Phys. Chem. C117, 4211-4218 (2013). pubs.acs.org/doi/abs/10.1021/jp308279m
  41. D. J. Norris and E. S. Aydil, “Getting Moore from Solar Cells,” Science 338, 625-626 (2012). https://dx.doi.org/10.1126/science.1230283
  42. A. Baruth, M. Manno, D. Narasimhan, A. Shankar, X. Zhang, M. Johnson, E. S. Aydil, and C. Leighton, “Reactive Sputter Deposition of Pyrite Structure Transition Metal Disulfide Thin Films: Microstructure, Transport and Magnetism,” J. Appl. Phys.112, 054328 (2012). https://doi.org/10.1063/1.4751358
  43. B. Liu, A. Khare and E. S. Aydil, “Synthesis of Single-Crystalline Anatase Nanorods and Nanoflakes on Transparent Conducting Substrates,” Chem. Commun. 45, 8565-8567 (2012). https://dx.doi.org/10.1039/c2cc33750a\
  44. B. S. Tosun, C. Pettit, S. A. Campbell and E. S. Aydil, “Structure and Composition of ZnxCd1-xS Films Synthesized through Chemical Bath Deposition,” ACS Appl. Mater. Interfaces 4, 3676-3684 (2012). pubs.acs.org/doi/abs/10.1021/am300771k
  45. A. Khare, B. Himmetoglu, M. Cococcioni and E. S. Aydil, “First Principles Calculation of the Electronic Properties and Lattice Dynamics of Cu2ZnSn(S1−xSex)4,” J. Appl. Phys.111, 123704 (2012). https://aip.scitation.org/doi/10.1063/1.4728232
  46. A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni and E. S. Aydil, “Calculation of the Lattice Dynamics and Raman Spectra of Copper Zinc Tin Chalcogenides and Comparison to Experiments,” J. Appl. Phys.111, 083707 (2012). https://doi.org/10.1063/1.4704191
  47. B. S. Tosun, R. K. Feist, S. A. Campbell and E. S. Aydil, “Tin Dioxide as an Alternative Window Layer for Improving the Damp-Heat Stability of Copper indium Gallium Diselenide Solar Cells,” J. Vac. Sci. Technol. A30, 04D101 (2012). https://doi.org/10.1116/1.3692225
  48. B. S. Tosun, R. K. Feist, A. Gunawan, K. A. Mkhoyan, S. A. Campbell and E. S. Aydil, “Improving the Damp-Heat Stability of Copper Indium Gallium Diselenide Solar Cells with a Semicrystalline Tin Dioxide Overlayer,” Solar Energy Materials and Solar Cells 101, 270-276 (2012). https://doi.org/10.1016/j.solmat.2012.02.017
  49. B. S. Tosun, R. K. Feist, A. Gunawan, K. A. Mkhoyan, S. A. Campbell and E. S. Aydil, “Sputter Deposition of Semicrystalline Tin Dioxide Films,” Thin Solid Films 520, 2554–2561 (2012). https://doi.org/10.1016/j.tsf.2011.10.169
  50. B. Liu, A. Khare and E. S. Aydil, “TiO2-B/Anatase Core-Shell Heterojunction Nanowires for Photocatalysis,” ACS Appl. Mater. Interfaces 3, 4444-4450 (2011). https://pubs.acs.org/doi/abs/10.1021/am201123u
  51. A. Khare, A. W. Wills, L. M. Ammerman, D. J. Norris and E. S. Aydil, “Size Control and Quantum Confinement in Cu2ZnSnS4Nanocrystals,” Chem. Commun. 47, 11721-11723 (2011). https://dx.doi.org/10.1039/C1CC14687D
  52. B. Liu and E. S. Aydil, “Anatase TiO2 Films with Reactive {001} Facets on Transparent Conductive Substrate,” Chem. Commun. 47, 9507-9509 (2011). https://dx.doi.org/10.1039/C1CC12365C
  53. B. Liu and E. S. Aydil, “Layered Mesoporous Nanostructures for Enhanced Light Harvesting in Dye-Sensitized Solar Cells,” Journal of Renewable and Sustainable Energy 3, 043106 (2011). https://aip.scitation.org/doi/10.1063/1.3615641
  54. A.-J Cheng, M. Manno, A. Khare, C. Leighton, S. Campbell and E. S. Aydil, “Imaging and Phase Identification of Cu2ZnSnS4 Thin Films Using Confocal Raman Spectroscopy,” J. Vac. Sci. Technol. A 29, 051203 (2011).https://doi.org/10.1116/1.3625249
  55. M. J. Behr, K. A. Mkhoyan, and E. S. Aydil, “Carbon Diffusion from Methane into Walls of Carbon Nanotube through Structurally and Compositionally Modified Iron Catalyst,” Microscopy and Microanalysis 17, 582-586 (2011). https://doi.org/10.1017/S1431927611000286
  56. S. H. Jeong, S. H. Song, K. Nagaich, S. A. Campbell, E. S. Aydil, “An Analysis of Temperature Dependent Current–Voltage Characteristics of Cu2O–ZnO Heterojunction Solar Cells,” Thin Solid Films 519, 6613-6619 (2011). https://doi.org/10.1016/j.tsf.2011.04.241
  57. C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis and E. S. Aydil, “Photovoltaic Manufacturing: Present Status, Future Prospects and Research Needs,” J. Vac. Sci. Technol. A 29, 030801 (2011). https://doi.org/10.1116/1.3569757
  58. S. H. Song, K. Nagaich, E. S. Aydil, R. Feist, R. Haley and S. A. Campbell, “Structure Optimization for a High Efficiency CIGS Solar Cell,” Proceedings of the 35th Photovoltaics Specialist Conference (PVSC) 2010 35th IEEE, 002488 (2010). https://ieeexplore.ieee.org/document/5614724
  59. A.-J. Cheng, M. Manno, R. Frakie, R. Hoffman, C. Leighton, E. S. Aydil, S. A. Campbell, “Sulfurization studies of the potential thin film solar absorber Cu2ZnSnS4,”Photovoltaics Specialist Conference (PVSC) 2010 35th IEEE, 001906 (2010). https://ieeexplore.ieee.org/document/5616339/
  60. N. Araki, E. S. Aydil and K. Dorfman, “Collision of a Long DNA molecule with anIsolated Nanowire,” Electrophoresis 31, 3675-3680 (2010). https://doi.org/10.1002/elps.201000331
  61. M. J. Behr, E. A. Gaulding, A. K. Mkhoyan and E. S. Aydil, “Hydrogen Etching and Cutting of Multiwall Carbon Nanotubes,” J. Vac. Sci. Technol. B 28 1187-1194 (2010). https://avs.scitation.org/doi/10.1116/1.3498737
  62. S. Jeong and E. S. Aydil, “Structural and Electrical Properties of Cu2O Thin Films Deposited on ZnO by Metal Organic Chemical Vapor Deposition,” J. Vac. Sci. Technol. A 28, 1338-1343 (2010). https://doi.org/10.1116/1.3491036
  63. M. J. Behr, A. K. Mkhoyan and E. S. Aydil, “Orientation and Morphological Evolution of Catalyst Nanoparticles During Carbon Nanotube Growth,” ACS Nano 4, 5087-5094 (2010). https://dx.doi.org/10.1021/nn100944n
  64. M. J. Behr, E. A. Gaulding, A. K. Mkhoyan and E. S. Aydil, “Effect of Hydrogen on Catalyst Nanoparticles in Carbon Nanotube Growth,” J. Appl. Phys. 108, 053303 (2010). https://aip.scitation.org/doi/10.1063/1.3467971
  65. M. J. Behr, A. K. Mkhoyan and E. S. Aydil, “Catalyst Rotation, Twisting, and Bending During Multiwall Carbon Nanotube Growth,” Carbon 48, 3840-3845 (2010). https://doi.org/10.1016/j.carbon.2010.06.049
  66. B. Liu, D. Deng, J. Y. Lee and E. S. Aydil, “Oriented Single-Crystalline TiO2 Nanowires on Titanium Foil for Lithium Ion Batteries,” J. Mater. Res. 25, 1588-1594 (2010).  https://doi.org/10.1557/JMR.2010.0204
  67. W. A. Tisdale, K. J. Williams, B. C. Timp, D. J. Norris, E. S. Aydil and X.-Y. Zhu, “Hot Electron Transfer from Semiconductor Nanocrystals,” Science 328, 1543-1547 (2010). https://dx.doi.org/10.1126/science.1185509
  68. K. S. Leschkies, M. S. Kang, E. S. Aydil and D. J. Norris, “Influence of Atmospheric Gases on the Electrical Properties of PbSe Quantum-Dot Films,” J. Phys. Chem. C 114, 9988-9996 (2010). https://pubs.acs.org/doi/10.1021/jp101695s
  69. K. S. Leschkies, A. G. Jacobs, D. J. Norris, and E. S. Aydil, “Nanowire Quantum-Dot Solar Cells and the Influence of Nanowire Length on the Charge Collection Efficiency,” Appl. Phys. Lett. 95, 193103 (2009). https://doi.org/10.1063/1.3258490
  70. K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris, and E. S. Aydil, “Solar Cells Based on Junctions Between Colloidal PbSe Nanocrystals and Thin ZnO Films,” ACS Nano 11, 3638-3648 (2009). https://pubs.acs.org/doi/10.1021/nn901139d
  71. A. R. Muniz, T. Singh, E. S. Aydil, and D. Maroudas, “Analysis of Diamond Nanocrystal Formation from Multi-walled Carbon Nanotubes,” Phys. Rev. B 80, 144105 (2009). https://dx.doi.org/10.1103/PhysRevB.80.144105
  72. E. Enache-Pommer, B. Liu and E. S. Aydil, “Electron Transport and Recombination in Dye-Sensitized Solar Cells Made from Single Crystal Rutile TiO2 Nanowires,” Phys. Chem. Chem. Phys.11, 9648-9652 (2009). https://dx.doi.org/10.1039/B915345D
  73. S. Jeong and E. S. Aydil, “Heteroepitaxial Growth of Cu2O Thin Film on ZnO by Metal Organic Chemical Vapor Deposition,” J. Cryst. Growth 311, 4188-4192 (2009). https://doi.org/10.1016/j.jcrysgro.2009.07.020
  74. K. J. Williams, W. A. Tisdale, K. S. Leschkies, G. Haugstad, D. J. Norris, E. S. Aydil and X.-Y. Zhu, “Strong Electronic Coupling in Two-Dimensional Assemblies of Colloidal PbSe Quantum Dots,” ACS Nano 3, 1532-1538 (2009). https://pubs.acs.org/doi/10.1021/nn9001819
  75. T. Singh, M. J. Behr, E. S. Aydil and D. Maroudas, “First-Principles Theoretical Analysis of Pure and Hydrogenated Crystalline Carbon Phases and Nanostructures,” Chem. Phys. Lett. 474, 168-174 (2009). https://doi.org/10.1016/j.cplett.2009.04.048
  76. J. E. Boercker, J. B. Schmidt and E. S. Aydil, “Transport Limited Growth of Zinc Oxide Nanowires,” Cryst. Growth Des. 9, 2783-2789 (2009). https://pubs.acs.org/doi/10.1021/cg900021u
  77. B. Liu and E. S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells," J. Amer. Chem. Soc. 131, 3985-3990 (2009). https://pubs.acs.org/doi/10.1021/ja8078972
  78. J. B. Baxter and E. S. Aydil, “Metalorganic Chemical Vapor Deposition of ZnO Nanowires from Zinc Acetylacetonate and Oxygen,” J. Electrochem. Soc.156, H52-H58 (2009). https://dx.doi.org/10.1149/1.3006390
  79. B. Liu, J. E. Boercker, and E. S. Aydil, “Oriented Single-Crystalline Anatase TiO2 Nanowires,” Nanotechnology 19, 505604 (2008). https://dx.doi.org/10.1039/C1EE02766B
  80. W. A. Tisdale, M. Muntwiler, D. J. Norris, E. S. Aydil and X.-Y Zhu, “Electron Dynamics at the  ZnO Surface,” J. Phys. Chem. C 112, 14682-14692 (2008). https://pubs.acs.org/doi/abs/10.1021/jp802455p
  81. B. Carlson, K. S. Leschkies, E. S. Aydil and X.-Y Zhu, “Valence Band Alignment at CdSe Quantum Dot and ZnO  Interfaces,” J. Phys. Chem. C 112, 8419-8423 (2008). https://pubs.acs.org/doi/10.1021/jp7113434
  82. J. E. Boercker, E. Enache-Pommer, and E. S. Aydil, “Growth Mechanism of TiO2 Nanowires for Dye-Sensitized Solar Cells,” Nanotechnology 19, 095604 (2008). https://doi.org/10.1088/0957-4484/19/9/095604
  83. E. S. Aydil, “Nanomaterials for Solar Cells,” Nanotechnology Law & Business 4, 275-291 (2007). https://heinonline.org/HOL/Page?handle=hein.journals/nantechlb4&div=41&g_sent=1&casa_token=&collection=journals
  84. R. C. Mani, I. Pavel, and E. S. Aydil, "Deposition of Nanocrystalline Silicon Films at Room Temperature," J. Appl. Phys. 102, 043305 (2007). https://aip.scitation.org/doi/pdf/10.1063/1.2770824
  85. E. Enache-Pommer, J. E. Boercker and E. S. Aydil, “Electron Transport and Recombination in Polycrystalline TiO2 Nanowire Dye-Sensitized Solar Cells,” Appl. Phys. Lett. 91, 123116 (2007). https://aip.scitation.org/doi/10.1063/1.2783477
  86. K. S. LeschkiesR. Divakar,J. Basu,E. Enache-Pommer,J. E. Boercker,C. B. Carter,U. R. Kortshagen, D.  J. Norris,and E. S. Aydil, “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices,” Nano Lett. 7, 1793-1798 (2007). https://pubs.acs.org/doi/10.1021/nl070430o
  87. J. R. Belen, S. Gomez, M. Kiehlbauch and E. S. Aydil, “In Situ Measurement of the Ion Incidence Angle Dependence of the Ion-Enhanced Etching Yield in Plasma Reactors,” J. Vac. Sci. Technol. A 24, 2176-2186 (2006). https://avs.scitation.org/doi/pdf/10.1116/1.2362725
  88. M. S. Valipa, S. Sriraman, E. S. Aydil, and D. Maroudas, “Hydrogen-Induced Crystallization of Amorphous Silicon Thin Films. II. Mechanisms and Energetics of Hydrogen Insertion into Si-Si Bonds,” J. Appl. Phys. 100, 053515 (2006). https://dx.doi.org/10.1063/1.2229426
  89. S. Sriraman, M. S. Valipa, E. S. Aydil, and D. Maroudas, “Hydrogen-Induced Crystallization of Amorphous Silicon Thin Films. I. Simulation and Analysis of Film Post Growth Treatment with H2 Plasmas,” J. Appl. Phys. 100, 053514 (2006). https://aip.scitation.org/doi/10.1063/1.2229426
  90. J. B. Baxter, A. M. Walker, K. van Ommering, and E. S. Aydil, “Synthesis and Characterization of ZnO Nanowires and their Integration into Dye Sensitized Solar Cells,” Nanotechnology 17, S304 (2006). https://doi.org/10.1088/0957-4484/17/11/S13
  91. J. R. Belen, S. Gomez, M. Kiehlbauch and E. S. Aydil, “Feature-scale Model of Si etching in SF6/O2/HBr Plasma and Comparison with Experiments,” J. Vac. Sci. Technol. A 24, 350 (2006). https://avs.scitation.org/doi/10.1116/1.2173268
  92. J. B. Baxter and E. S. Aydil, “Dye Sensitized Solar Cells Based on Semiconductor Morphologies with ZnO Nanowires,” Sol. Energ. Mat. Sol. C. 90, 607 (2006). https://doi.org/10.1016/j.solmat.2005.05.010
  93. M. Valipa, T. Bakos, E. S. Aydil and D. Maroudas, “The Role of SiH3 Diffusion in Determining the Surface Smoothness of Plasma-Deposited Amorphous Silicon Thin Films: An atomic scale analysis,” Materials Research Society Symposium Proceedings 862, A3.2 (2005). https://doi.org/10.1557/PROC-862-A3.2
  94. M. S. Valipa, S. Sriraman, E. S. Aydil, and D. Maroudas, “Atomic-Scale Analysis of Fundamental Mechanisms of Surface Valley Filling During Plasma Deposition of Amorphous Silicon Thin Films,” Surf. Sci. 574, 123-143 (2005). https://dx.doi.org/10.1016/j.susc.2004.10.039
  95. S. Agarwal, M. S. Valipa, B. Hoex, M. C. M. van de Sanden, D. Maroudas and E. S. Aydil, “Interaction of SiH3 Radicals with an Amorphous Deuterated (Hydrogenated) Silicon Surface,” Surf. Sci. 598, 35-44 (2005). https://doi.org/10.1016/j.susc.2005.09.026
  96. M. S. Valipa, T. Bakos, E. S. Aydil, and D. Maroudas, “Surface Smoothening Mechanism of Amorphous Silicon Thin Films,” Phys. Rev. Lett. 95, 216102 (2005). https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.95.216102
  97. S. Gomez, J. R. Belen, M. Kiehlbauch, and E. S. Aydil, “Etching of High Aspect Ratio Features in Si using SF6/O2/HBr and SF6/O2/Cl2 Plasma,” J. Vac. Sci. Technol. A 23, 1592 (2005). https://avs.scitation.org/doi/10.1116/1.2049303
  98. T. Bakos, M. Valipa, E. S. Aydil, and D. Maroudas, “Temperature Dependence of Precursor-Surface Interactions in Plasma Deposition of Silicon Thin Films,” Chem. Phys. Lett. 414, 61-65 (2005). https://doi.org/10.1016/j.cplett.2005.07.107
  99. J. R. Belen, S. Gomez, D. Cooperberg, M. Kiehlbauch and E. S. Aydil, “Feature-Scale Model of Si Etching in SF6/O2 Plasma and Comparison with Experiments,” J. Vac. Sci. Technol. A 23, 1430-1439 (2005). https://dx.doi.org/10.1116/1.2013317
  100. M. Valipa, E. S. Aydil, and D. Maroudas, “Visualizing the Evolution of Surface Morphology and Surface Bond Strain During Plasma Deposition of Amorphous Silicon Thin Films,” IEEE T. Plasma Sci. 33, 228-229 (2005). https://ieeexplore.ieee.org/document/1420410
  101. J. B. Baxter and E. S. Aydil, "Nanowire-based dye-sensitized solar cells," Appl. Phys. Lett. 86, 053114 (2005). https://aip.scitation.org/doi/10.1063/1.1861510
  102. C. A. Wolden, T. M. Barnes, J. B. Baxter, and E. S. Aydil, “Infrared detection of Hydrogen-Generated Free Carriers in Polycrystalline ZnO Thin Films,” J. Appl. Phys. 97, 043522 (2005). https://aip.scitation.org/doi/10.1063/1.1851599
  103. J. B. Baxter and E. S. Aydil, “Epitaxial Growth of ZnO Nanowires on a- and c-plane Sapphire,” Journal of Crystal Growth 274, 407 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.014
  104. M. S. Valipa, E. S. Aydil, and D. Maroudas, “Atomistic Calculation of the SiH3Surface Reactivity During Plasma Deposition of Amorphous Silicon Thin Films,” Surf. Sci. Lett. 572, L339-L347(2005). https://doi.org/10.1016/j.susc.2004.08.029
  105. R. J. Belen, S. Gomez, M. Kiehlbauch, D. Cooperberg and E.  S. Aydil, “Feature-Scale Model of Si Etching in SF6 Plasma and Comparison with Experiments,” J. Vac. Sci. Technol. A 23, 99 (2005). https://avs.scitation.org/doi/10.1116/1.1830495
  106. E. S. Aydil, S. Agarwal, M. Valipa, S. Sriraman, and D. Maroudas, “Surface Processes during Growth of Hydrogenated Amorphous Silicon,” Materials Research Society Symposium Proceedings 808, A 5.5 (2004).  https://doi.org/10.1557/PROC-808-A5.5
  107. S. Gomez, J. R. Belen, M. Kiehlbauch, and E. S. Aydil, “Etching of High Aspect Ratio Structures in Si Using SF6/O2 Plasma,” J. Vac. Sci. Technol. A 22, 606(2004). https://avs.scitation.org/doi/10.1116/1.1710493
  108. S. Agarwal, G. W. W. Quax, M. C. M. van de Sanden, D. Maroudas and E. S.  Aydil, “Measurement of Absolute Radical Densities in a Plasma Using Modulated Beam Line-of-Sight Threshold Ionization Mass Spectrometry,” J. Vac. Sci. Technol. A 22, 71-81 (2004). https://doi.org/10.1116/1.1627767
  109. S. Sriraman, E. S. Aydil, and D. Maroudas, “Growth and Characterization of a-Si:H Thin Films from SiH2 Radical Precursor: An Atomic Scale Analysis,” J. Appl. Phys. 95, 1792-1805 (2004). https://doi.org/10.1063/1.1636512
  110. S. Agarwal, B. Hoex, M. C. M. van de Sanden, D. Maroudas, and E. S. Aydil, “Hydrogen in Si-Si Bond-Center and Platelet-Like Configurations in Amorphous Hydrogenated Silicon,” J. Vac. Sci. Technol. 22,  2719-2726 (2004). https://doi.org/10.1116/1.1824191
  111. A. Takano, T. Wada, S. Fujikake, T. Yoshida, T. Ohto, and E. S. Aydil, “Reaction Control in Amorphous Silicon Film Deposition by Hydrogen Chloride,” Materials Research Society Symposium Proceedings, A.15.2, 521-526 (2003).  https://doi.org/10.1557/PROC-762-A15.2
  112. J. B. Baxter, F. Wu, and E. S.  Aydil, “Growth Mechanism and Characterization of Zinc Oxide Hexagonal Columns,” Appl. Phys. Lett. 83, 3797 (2003). https://aip.scitation.org/doi/10.1063/1.1624467
  113. S. Agarwal. B. Hoex, M. C. M. van de Sanden, D. Maroudas and E. S. Aydil “Absolute densities of N and Excited N2 in an N2 Plasma,” Appl. Phys. Lett. 83, 4918-4920 (2003). https://aip.scitation.org/doi/10.1063/1.1630843
  114. J. B. Baxter, R. E. M. W. Bessems, and E. S. Aydil, “Growth and Characterization of ZnO Nanowires,” Materials Research Society Symposium Proceedings 776, Q7.9, 101-106 (2003).  https://doi.org/10.1557/PROC-776-Q7.9
  115. S. Sriraman, P. Mahalingam, E. S. Aydil, D. Maroudas, “Mechanism and Energetics of Dimerization of SiH2 Radicals on H-Terminated Si (001)-(2x1) Surfaces,” Surf. Sci. Lett. 540, L623-L630 (2003). https://doi.org/10.1016/S0039-6028(03)00869-0
  116. T. W. Kim and E. S. Aydil, “Experimental and Theoretical Study of Two-Dimensional Ion Flux Uniformity at the Wafer Plane in Inductively Coupled Plasmas,” IEEE T. Plasma Sci. 31, 614 (2003). https://ieeexplore.ieee.org/document/1221840
  117. T. W. Kim and E. S. Aydil, “Spatial and Temporal Variation of Ion Flux in Presence of an Instability in Inductively Coupled SF6 Plasmas,” Plasma Sources Sci. T. 12, 148 (2003). https://doi.org/10.1088/0963-0252/12/2/304
  118. T. W. Kim and E. S. Aydil, “Effects of Chamber Wall Conditions on Cl Concentration and Si Etch rate Uniformity in Plasma Etching Reactors,” J. Electrochem. Soc.150, 418 (2003). https://dx.doi.org/10.1149/1.1578481
  119. D. C. Marra, W. M. M. Kessels, M. C. M. Van de Sanden, K. Kashefizadeh, and E. S. Aydil, “In Situ Infrared Study of the Role of Ion Flux and Substrate Temperature on a-Si:H Surface Composition,” Surf. Sci. 530, 1-16 (2003). https://dx.doi.org/10.1016/S0039-6028(03)00396-0
  120. S. J. Ullal. T. W. Kim, V. Vahedi, and E. S. Aydil, “Relation Between the Ion Flux, Gas Phase Composition, and Wall Conditions in Chlorine Plasma Etching of Silicon,” J. Vac. Sci. Technol. A 21589 (2003). https://avs.scitation.org/doi/10.1116/1.1562176
  121. A. Takano and E. S. Aydil, “Incorporation of Cl into Hydrogenated Amorphous Silicon without Optical Band Gap Widening,” Jpn. J. Appl. Phys. 41, L1357 (2002). https://doi.org/10.1143/JJAP.41.L1357
  122. T. W. Kim and E. S. Aydil, “Two Dimensional Ion Flux Distributions in Inductively coupled Plasmas: Effect of Adding Electronegative Gases to Ar,” J. Appl. Phys. 92, 6444 (2002). https://aip.scitation.org/doi/10.1063/1.1517733
  123. S. Agarwal, A. Takano, M. C. M. Van de Sanden, D. Maroudas, and E. S. Aydil, “Abstraction of Atomic Hydrogen by Atomic Deuterium from an Amorphous Hydrogenated Silicon Surface,” J. Chem. Phys. 117, 10805-10816 (2002). https://aip.scitation.org/doi/10.1063/1.1522400
  124. S. J. Ullal, H. Singh, J. Daugherty, V. Vahedi, E. S.  Aydil, “Formation and Removal of Composite Halogenated Silicon Oxide and Fluorocarbon Films Deposited on Chamber Walls During Plasma Etching of Multiple Film Stacks,” J. Vac. Sci. Technol. B 20, 1939 (2002). https://doi.org/10.1116/1.1502698
  125. S. Sriraman, E. S. Aydil, and D. Maroudas, “Atomic-Scale Analysis of Deposition and Characterization of a-Si:H Thin Films Grown from SiH Radical Precursor,” J. Appl. Phys. 92, 842-852 (2002). https://aip.scitation.org/doi/10.1063/1.1483920
  126. T. W. Kim, S. J. Ullal, V. Vahedi, and E. S. Aydil, “An On-Wafer Probe Array for Measuring Two-Dimensional Ion Flux Distributions in Plasma Reactors,” Rev. Sci. Instrum. 73, 3494 (2002). https://aip.scitation.org/doi/10.1063/1.1502445
  127. S. Sriraman, S.  Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of Hydrogen Induced Crystallization of Amorphous Silicon,” Nature 418, 62-65 (2002). https://www.nature.com/articles/nature00866
  128. S.  Agarwal, S. Sriraman, E. S. Aydil, and D. Maroudas, “Mechanism and Activation Energy Barrier for H Abstraction by H(D) from a-Si:H Surfaces,” Surface Science 515, L469-L474 (2002). https://doi.org/10.1016/S0039-6028(02)01879-4
  129. S. J. Ullal, H. Singh, V. Vahedi, and E. S.  Aydil, “Deposition of Silicon Oxychloride Films on Chamber Walls During Cl2/O2 Plasma Etching of Si,” J. Vac. Sci. Technol. A 20, 499 (2002). https://avs.scitation.org/doi/10.1116/1.1450578
  130. S. J. Ullal, H. Singh, J. Daugherty, V. Vahedi, and E. S. Aydil, “Maintaining Reproducible Plasma Reactor Wall Conditions: SF6Plasma Cleaning of Films Deposited on Chamber Walls During Cl2/O2 Plasma Etching of Si,” J. Vac. Sci. Technol. A 20, 1195 (2002). https://avs.scitation.org/doi/10.1116/1.1479733
  131. T. W. Kim and E. S. Aydil, “Spatial and Temporal Variation of the Ion Flux Impinging on the Wafer Surface in Presence of a Plasma Instability,” IEEE Transactions on Plasma Science 30, 120 (2002). https://ieeexplore.ieee.org/document/1003953
  132. S. Sriraman, E. S. Aydil and D. Maroudas, “Visualizing the Evolution of Surface Bond Straining During Radical-Surface Interactions in Plasma Deposition Processes,” IEEE Transactions on Plasma Science 30, 112-113 (2002). https://ieeexplore.ieee.org/document/1003949
  133. S. J. Ullal, A. R. Godfrey, E. A. Edelberg, L. B. Braly, V. Vahedi, and E. S. Aydil, “Effect of Chamber Wall Conditions on Cl and Cl2 Concentrations in an Inductively Coupled Plasma reactor,” J. Vac. Sci. Technol. A 20, 43  (2002). https://avs.scitation.org/doi/10.1116/1.1421602
  134. W. M. M. Kessels, D. C. Marra, M. C. M. Van de Sanden, and E. S. Aydil, “In Situ Probing of Surface Hydrides on Hydrogenated Amorphous Silicon Using Attenuated Total Reflection Infrared Spectroscopy,” J. Vac. Sci. Technol.20, 781-789 (2002). https://avs.scitation.org/doi/10.1116/1.1469012
  135. S. Ramalingam, E. S. Aydil, and D. Maroudas, “Molecular Dynamics Study of the Interactions of Small Thermal and Energetic Clusters with Crystalline and Amorphous Silicon Surfaces,” J. Vac. Sci.  Technol. 19, 634-644  (2001). https://avs.scitation.org/doi/abs/10.1116/1.1362682
  136. E. S. Aydil, D. Maroudas, D. C. Marra, W. M.M. Kessels, S. Agarwal, S. Ramalingam, S. Sriraman, M. C. M. Van de Sanden, and A. Takano, “In Situ Probing and Atomistic Simulation of a-Si:H Plasma Deposition,” Materials Research Society Symposium Proceedings 664, A1.1.1 (2001).  https://doi.org/10.1557/PROC-664-A1.1
  137. D. Y. Takamoto, E. S. Aydil, J. A. Zasadzinski, A. T. Ivanova, D. K. Schwartz, T. Yang, and P. S. Cremer, “Stable Ordering in Langmuir Blodgett Films,” Science 293, 1292  (2001). https://dx.doi.org/10.1126/science.1060018
  138. S. P. Walch, S. Ramalingam, S. Sriraman, E. S. Aydil, and D. Maroudas, “Mechanism and Energetics of SiH3 Adsorption on the Pristine Si(001)- (2´1) Surface,” Chem. Phys. Lett. 344, 249-255 (2001). https://dx.doi.org/10.1016/S0009-2614(01)00777-1
  139. A. R. Godfrey, S. J. Ullal, L. B. Braly, E. A. Edelberg, V. Vahedi, and E. S. Aydil, “A New Diagnostic Method for Monitoring Plasma Reactor Walls: Multiple Total Internal Reflection Fourier Transform Infrared Surface Probe,” Rev. Sci. Instrum. 72, 3260 (2001). https://aip.scitation.org/doi/pdf/10.1063/1.1382638
  140. S. Ramalingam, S. Sriraman, E. S. Aydil, and D. Maroudas, “Evolution, Structure, Morphology and Reactivity of Hydrogenated Amorphous Silicon Surfaces Grown by Molecular-Dynamics Simulation,” Appl. Phys. Lett .78, 2685-2687 (2001). https://aip.scitation.org/doi/10.1063/1.1367298
  141. W. M. M. Kessels, A. H. M. Smets, D. C. Marra, E. S. Aydil, D. C. Schram, and, M. C. M. van de Sanden, “On the Growth Mechanism of a-Si:H,” Thin Solid Films 383, 154-160 (2001). https://dsx.doi.org/10.1016/S0040-6090(00)01594-7
  142. S. P. Walch, S. Ramalingam, E. S. Aydil, and D. Maroudas, “Mechanism and Energetics of Dissociative Adsorption of SiH3 on the Hydrogen Terminated Si (001)-(2x1) Surface,” Chemical Physics Letters 329, 304-310 (2000). https://doi.org/10.1016/S0009-2614(00)01007-1
  143. D. C. Marra, E. S. Aydil, S. J. Joo, E. Yoon, and V. I. Srdanov, “Angle-Dependent Photoluminescence Spectra of Hydrogenated Amorphous Silicon Thin Films,” Appl. Phys. Lett. 77, 3346 (2000). https://aip.scitation.org/doi/10.1063/1.1326837
  144. S. Sriraman, S. Ramalingam, E. S. Aydil, and D. Maroudas, “Abstraction of Hydrogen by SiH Radicals from Hydrogenated Amorphous Silicon Surfaces,” Surf. Sci. Lett. 459, L475-L481 (2000). https://doi.org/10.1016/S0039-6028(00)00553-7
  145. N. A. Alcantar, E. S. Aydil, J. N. Israelachvili, “Polyethylene Glycol Coated Biocompatible Surfaces,” J. Biomed. Mater. Res. 51, 343 (2000). https://doi.org/10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D
  146. S. Ramalingam, P. Mahalingam, E. S. Aydil, and D. Maroudas, “Theoretical Study of the Interactions of SiH2 Radicals with Silicon Surfaces,” J. Appl. Phys. 86, 5497-5508 (1999). https://aip.scitation.org/doi/abs/10.1063/1.371552
  147. E. A. Edelberg and E. S. Aydil, “Modeling of the Sheath and the Energy Distribution of Ions Bombarding rf-Biased Substrates in High Density Plasma Reactors and Comparison to Experimental Measurements,” J. Appl. Phys. 86, 4799-4812(1999). https://aip.scitation.org/doi/10.1063/1.371446
  148. D. Maroudas, S. Ramalingam, and E. S. Aydil, “ Atomic-Scale Modeling of Plasma-Surface Interactions in the PECVD of Silicon,” Proceedings of the Electrochemical Society, ECS Softbound series, PV 98-23, Pennington, New Jersey, p. 179-190 (1999).
  149. E. A. Edelberg, A. J. Perry, N. Benjamin, and E. S. Aydil, “Compact Floating Ion Energy Analyzer for Measuring Distributions of Ions Bombarding Radio-Frequency Biased Electrode Surfaces,” Rev. Sci. Instrum. 70, 2689(1999). https://aip.scitation.org/doi/10.1063/1.1149829
  150. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Atomistic Simulation Study of the Interactions of SiH3Radicals with Silicon Surfaces,” J. Appl. Phys. 86, 2872-2888 (1999). https://aip.scitation.org/doi/10.1063/1.371136
  151. N. A. Alcantar, E. S. Aydil, and J. Israelachvili. “Effect of Water Plasma on Silica Surfaces: Synthesis, Characterization and Applications,” in Fundamental and Applied Aspects of Chemically Modified Surfaces, edited by J. Blitz and C. Little, The Royal Society of Chemistry (1999).
  152. B. F. Hanyaloglu, A. Aydinli, M. Oye, and E. S. Aydil, “Plasma Enhanced Chemical Vapor Deposition of Low Dielectric Constant Parylene-F Intermetal Dielectric Films,” Appl. Phys. Lett.74, 606 (1999). https://dx.doi.org/10.1063/1.123160
  153. E. A. Edelberg, A. Perry, N. Benjamin, and E. S. Aydil, “Energy Distribution of Ions Bombarding Biased Electrodes in High Density Plasma Reactors,” J. Vac. Sci. Technol.17, 506-516 (1999). https://avs.scitation.org/doi/10.1116/1.581612
  154. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Visualizing Radical-Surface Interactions in Plasma Deposition Processes: Reactivity of SiH3 Radicals with Si Surfaces,” IEEE Transactions on Plasma Science 27, 104-105 (1999). https://dx.doi.org/10.1109/27.763067
  155. S. J. Joo, S. H. Lim, E. Yoon, W. C. Choi, E. E. Kim, D. C. Marra, and E. S. Aydil, “Visible Photoluminescence at Room Temperature from a-Si:H Films grown by Ultrahigh Vacuum Electron Cyclotron Resonance  Chemical Vapor Deposition,” Journal of the Korean Physical Society 35, S1025 (1998). https://dx.doi.org/10.3938/jkps.30.580
  156. S. Ramalingam, D. Maroudas, E. S. Aydil, and S. P. Walch, “Abstraction of Hydrogen by SiH3 from Hydrogen Terminated Si(001)-(2x1) Surfaces,” Surface Science Letters 418, L8-L13 (1998). https://dx.doi.org/10.1103/PhysRevB.52.8283
  157. D. C. Marra, E. A. Edelberg, R. L. Naone, and E. S. Aydil, “Silicon Hydride Composition of Plasma-Deposited Hydrogenated Amorphous and Nanocrystalline Silicon Films and Surfaces,” J. Vac. Sci. Technol. A 16, 3199-3210 (1998). https://avs.scitation.org/doi/pdf/10.1116/1.581520
  158. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Interaction of SiH Radicals with Silicon Surfaces: An Atomic Scale Simulation Study,” J. Appl. Phys. 84, 3895-3911 (1998). https://aip.scitation.org/doi/10.1063/1.368569
  159. B. F. Hanyaloglu and E. S. Aydil, “Low temperature Plasma Deposition of Silicon Nitride from Silane and Nitrogen Plasmas,” J. Vac. Sci. Technol. A 16, 2794 (1998). https://avs.scitation.org/doi/10.1116/1.581424
  160. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Atomic-Scale Analysis of Plasma Enhanced Chemical Vapor Deposition From SiH4/H2 Plasmas on Si Substrates,” Materials Research Society Symposium Proceedings 507, 673-678 (1998).
  161. D. C. Marra, E. A. Edelberg, R. L. Naone, and E. S. Aydil, “Effect of H2 Dilution on the Surface Composition of Plasma-Deposited Silicon Films from SiH4,” Appl. Surf. Sci. 133, 148-151 (1998). https://doi.org/10.1016/S0169-4332(98)00214-1
  162. E. S. Aydil, B. O. M. Quiniou, J. T. C. Lee, J. A. Gregus, and R. A. Gottscho, “Incidence Angle Distributions of Ions Bombarding Grounded Surfaces in High Density Plasma Reactors,” Materials Science in Semiconductor Processing 1, 75 (1998).https://dx.doi.org/10.1016/S1369-8001(98)00003-1
  163. S. M. Han and E. S. Aydil, “Reasons for Lower Dielectric Constant of Fluorinated Silicon Dioxide Films,” J. Appl. Phys. 83, 2172 (1998). https://aip.scitation.org/doi/10.1063/1.366955
  164. S. Ramalingam, D. Maroudas, and E. S. Aydil, “Atomistic Simulation of SiH Interactions with Silicon Surfaces During Deposition from Silane Containing Plasmas,” Appl. Phys. Lett. 72, 578-580 (1998). https://aip.scitation.org/doi/10.1063/1.120764
  165. E. Meeks, R. S. Larson, P. Ho, C. Apblett, S. M. Han, E. Edelberg, and E. S. Aydil, “Modeling of SiO2 Deposition in High Density Plasma Reactors and Comparisons of Model Predictions with Experimental Measurements,” J. Vac. Sci. Technol. A16, 544 (1998). https://avs.scitation.org/doi/10.1116/1.581096
  166. S. Ramalingam, D. Maroudas and E. S. Aydil, “Atomic Scale Analysis of the Reactivity of Radicals from Silane/Hydrogen Plasmas with Silicon Surfaces,” Materials Research Society Symposium Proceedings485, 107-112 (1998).  https://doi.org/10.1557/PROC-485-107
  167. D. C. Marra and E. S. Aydil, “Effect of H2 Addition on Surface Reactions during CF4/H2 Plasma Etching of Silicon and Silicon Dioxide Films,” Proceedings of the Electrochemical Society, ECS Softbound series, Pennington, New Jersey, PV 97-30, 12 (1998).
  168. S. Ramalingam, A. Lopez, D. Maroudas and E. S. Aydil, “Computational Atomic Scale Study of the Reactivity of Molecular Fragments from SiH4/H2 Plasma with Amorphous Silicon Surfaces,” Proceedings of the Electrochemical Society, ECS Softbound seriesPV 97-30, Pennington, New Jersey, 35 (1998).
  169. S. M. Han and E. S. Aydil, “Structure and Chemical Composition of Fluorinated SiO2 Films Deposited Using SiF4/O2 Plasmas,” J. Vac. Sci. Technol. A 15, 2893 (1997). https://avs.scitation.org/doi/10.1116/1.580845
  170. S. M. Han and E. S. Aydil, “Detection of Combinative Infrared Absorption Bands in Thin Silicon Dioxide Films,” Appl. Phys. Lett.70, 3269 (1997). https://aip.scitation.org/doi/pdf/10.1063/1.118424
  171. D. C. Marra and E. S. Aydil, “Effect of H2 Addition on Surface Reactions During CF4/H2 Plasma Etching of Silicon and Silicon Dioxide Films,” J. Vac. Sci. Technol. A 15, 2508 (1997). https://avs.scitation.org/doi/10.1116/1.580762
  172. S. M. Han and E. S. Aydil, “Silanol Concentration Depth Profiling During Plasma Deposition of SiO2 using Multiple Internal Reflection Infrared Spectroscopy,” J. Electrochem. Soc. 144, 3963 (1997). https://dx.doi.org/10.1149/1.1838119
  173. E. S. Aydil and R. A. Gottscho, “Probing Plasma/Surface Interactions,” Solid State Technology 40 (10), 181 (October, 1997).
  174. E. Edelberg, S. Bergh, R. Naone, M. Hall, and E. S. Aydil, “Luminescence from Plasma Deposited Silicon Films,” J. Appl. Phys.  81, 2410 (1997). https://aip.scitation.org/doi/abs/10.1063/1.364247
  175. S. M. Han and E. S. Aydil, “Plasma and Surface Diagnostics During Plasma Enhanced Chemical Vapor Deposition of SiO2 from SiH4/O2/Ar Discharges,” Thin Solid Films 291, 427 (1996). https://doi.org/10.1016/S0040-6090(96)09024-4
  176. D. Tretheway, and E. S. Aydil, “Modeling of Heat Transport and Wafer Heating Effects during Plasma Etching” J. Electrochem. Soc. 143, 3674 (1996). https://dx.doi.org/10.1149/1.1837270
  177. E. Edelberg, S. Bergh, R. Naone, M. Hall, and E. S. Aydil, “Visible Luminescence from Nanocrystalline Silicon Films Produced by Plasma Enhanced Chemical Vapor Deposition,” Appl. Phys. Lett. 68, 1415 (1996). https://aip.scitation.org/doi/abs/10.1063/1.116098
  178. S. M. Han and E. S. Aydil, “Study of Surface Reactions During Plasma Enhanced Chemical Vapor Deposition of SiO2 from SiH4, O2 and Ar Plasma,” J. Vac. Sci Technol. A14, 2062 (1996). https://avs.scitation.org/doi/pdf/10.1116/1.580082
  179. S. C. Deshmukh and E. S. Aydil, "An Investigation of Low Temperature SiO2 Plasma Enhanced Chemical Vapor Deposition," J. Vac. Sci. Technol. B 14, 738 (1996). https://avs.scitation.org/doi/10.1116/1.588707
  180. E. S. Aydil, "In Situ Real Time Diagnostics of Surfaces: A Review "Proceedings of the Symposium on Process Control Diagnostics and Modeling in Semiconductor Manufacturing, Electrochemical Society Softbound Series PV 95-2, p. 76 (1995).
  181. S. C. Deshmukh and E. S. Aydil, "Investigation of SiO2 Plasma Enhanced Chemical Vapor Deposition through Tetraethoxysilane Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy," J. Vac. Sci. Technol.  A13, 2355-2367 (1995). https://avs.scitation.org/doi/abs/10.1116/1.579521
  182. E. S. Aydil, Z. H. Zhou, R. A. Gottscho, and Y. J. Chabal, "Real Time In Situ monitoring of Surfaces During Glow Discharge Processing: NH3 and H2 Plasma Passivation of GaAs," J. Vac. Sci. Technol. B 13, 258 (1995). https://avs.scitation.org/doi/10.1116/1.588361
  183. E. S. Aydil, "Plasma Etching," Encyclopedia of Applied Physics, American Institute of Physics and VCH Publishers, New York, Vol. 14, 171 (1995).
  184. S. C. Deshmukh and E. S. Aydil, "Low Temperature Plasma Enhanced Chemical Vapor Deposition of SiO2," Appl. Phys. Lett.  65, 3185 (1994). https://aip.scitation.org/doi/10.1063/1.112475
  185. E. S. Aydil, R. A. Gottscho, and Y. J. Chabal, "Real Time Monitoring of Surface Chemistry During Plasma Processing," Pure and Applied Chemistry 66, 1381 (1994). https://dx.doi.org/10.1002/chin.199452320
  186. E. S. Aydil and R. A. Gottscho, "Plasma Passivation of III-V Semiconductor Surfaces," in Hydrogen in Compound Semiconductors, edited by S. Pearton, Trans Tech Publications Materials Science Forum Series, Vol. 148-149, 159 (1994).
  187. J. A. Mucha, D. W. Hess, and E. S. Aydil, "Chapter 5: Plasma Etching" in Introduction to Microlithography, edited by L. F. Thompson, C. G. Willson, and M. J. Bowden, American Chemical Society, Washington D.C., pp. 377-507 (1994).
  188. Z. H. Zhou, E. S. Aydil, R. A. Gottscho, Y. J. Chabal, and R. Reif, "Real Time Monitoring of Silicon Surface Cleaning Using H2 and NH3 Plasmas," Proceedings of the Symposium on Highly Selective Dry Etching and Damage Control, Electrochemical Society Softbound Series Vol. 93-21, Pennington, New Jersey, p. 35, (1993).
  189. E. S. Aydil, J. A. Gregus, M. A. Jarnyk, and R. A. Gottscho, "Multiple Steady States and Abrupt Transitions in an ECR Plasma Reactor," Proceedings of the Symposium on Highly Selective Dry Etching and Damage Control, Electrochemical Society Softbound Series Vol. 93-21, Pennington, New Jersey, p. 76, (1993).
  190. E. S. Aydil, Z. H. Zhou, R. A. Gottscho, and Y. J. Chabal, "Real Time In Situ Monitoring of Surface Reactions During Plasma Passivation of GaAs," Proceedings of the Eighteenth State-of-the-art Program on Compound Semiconductors (SOTAPOCS XVIII), Electrochemical Society Softbound Series Vol. 93-27, Pennington, New Jersey, p. 150 (1993).
  191. E. S. Aydil, J. A. Gregus, and R. A. Gottscho, "Electron Cyclotron Resonance Plasma Reactor for Cryogenic Etching," Rev. Sci. Instrum .64, 3572-3584(1993). https://aip.scitation.org/doi/abs/10.1063/1.1144284
  192. M. A. Jarnyk, J. A. Gregus, E. S. Aydil, and R. A. Gottscho, "Control of an Unstable Electron Cyclotron Resonance Plasma," Appl. Phys. Lett.  62, 2039 (1993). https://aip.scitation.org/doi/10.1063/1.109472
  193. E. S. Aydil, J. A. Gregus, and R. A. Gottscho, "Multiple Steady States in Electron Cyclotron Resonance Plasma Reactors," J. Vac. Sci. Technol. A 11, 2883 (1993). https://avs.scitation.org/doi/10.1116/1.578663
  194. Z. Zhou, E. S. Aydil, R. A. Gottscho, Y. J. Chabal, and R. Reif, "Real Time, In Situ Monitoring of Room Temperature Silicon Surface Cleaning Using Hydrogen and Ammonia Plasmas," J. Electrochem. Soc. 140, 3316 (1993). https://dx.doi.org/10.1149/1.2221029
  195. E. S. Aydil, Z. Zhou, K. P. Giapis, Y. J. Chabal, J. A. Gregus, and R. A. Gottscho, "Real Time, In Situ Monitoring of Surface Reactions During Plasma Passivation of GaAs," Appl. Phys. Lett. 62, 3156 (1993). https://aip.scitation.org/doi/10.1063/1.109113
  196. E. S. Aydil, K. P. Giapis, R. A. Gottscho, V. M. Donnelly, and E. Yoon, "Ammonia Plasma Passivation of GaAs in Downstream Microwave and RF Parallel Plate Plasma Reactors," J. Vac. Sci. Technol. B 11, 195 (1993). https://avs.scitation.org/doi/10.1116/1.586703
  197. E. S. Aydil and D. J. Economou, "Modeling of Plasma Etching Reactors Including Wafer Heating Effects," J. Electrochem. Soc.140, 1471 (1993). https://dx.doi.org/10.1149/1.2221582
  198. E. S. Aydil and D. J. Economou, "Modeling of Plasma Etching Reactors Including Wafer Heating Effects," in The Proceedings of the Ninth Symposium on Plasma Processing, PV 93-14, G. S. Mathad and D. W. Hess, editors, p. 22, The Electrochemical Society Softbound Proceedings Series, Pennington, New Jersey, (1993).
  199. E. S. Aydil and D. J. Economou, "Theoretical and Experimental Investigations of Chlorine RF Glow Discharges: II. Experimental," J. Electrochem. Soc. 139, 1406 (1992). https:"//dx.doi.org/10.1149/1.2069420
  200. E. S. Aydil and D. J. Economou, "Theoretical and Experimental Investigations of Chlorine RF Glow Discharges: I. Theoretical," J. Electrochem. Soc. 139, 1396 (1992). https:/dx.doi.org/10.1149/1.2069419
  201. D. Economou, E. S. Aydil and G. Barna, "In Situ Monitoring of Etching Uniformity in Plasma Reactors," Solid State Technology 34 (4), 107 (April, 1991).
  202. E. S. Aydil and D. J. Economou, "Multiple Steady States in a Radio Frequency Chlorine Glow Discharge," J. Appl. Phys.69, 109 (1991). https://aip.scitation.org/doi/abs/10.1063/1.347746
  203. E. S. Aydil and D. J. Economou, "Experimental and Modeling Studies of Chlorine RF Glow Discharges," in The Proceedings of the Eighth Symposium on Plasma ProcessingPV 90-14, G. S. Mathad and D. W. Hess, editors, p. 77, The Electrochemical Society Softbound Proceedings Series, Pennington, NJ, (1990)

Dr. Eray S. Aydil is the Alstadt Lord Mark Professor of Chemical and Biomolecular Engineering at New York University Tandon School of Engineering. Previously he was the Ronald L. and Janet A. Christenson Chair in Renewable Energy and Executive Officer of the Department of Chemical Engineering and Materials Science at the University of Minnesota. He is a Fellow of the American Vacuum Society and Editor-in-Chief of the Journal of Vacuum Science and Technology. He received his B.S. degrees in chemical engineering and in materials science and engineering, both from U. C. Berkeley in 1986. He received his Ph.D. degree in chemical engineering in 1991 from the University of Houston. He was a postdoc at Bell Labs until 1993 when he joined the faculty of the chemical engineering department at U.C. Santa Barbara as an assistant professor. By the time he left U.C. Santa Barbara in 2005 for University of Minnesota, he was a full professor and vice chairperson. In 2005, Dr. Aydil joined the Department of Chemical Engineering and Materials Science (CEMS) at the University of Minnesota where he remained until 2018; between 2009 and 2014 he served as the Executive Officer of CEMS. In 2018 he moved to New York University Tandon School of Engineering. He has published over 200 articles and holds seven patents. In recognition of his research, he has received the Peter Mark Award and the Plasma Prize from the American Vacuum Society, the Norman Hackerman Young Author Award of the Electrochemical Society, the National Young Investigator Award of the National Science Foundation, and the Camille-Dreyfus Teacher-Scholar Award.