Ryan Hartman

Associate Professor

Connect
Ryan Hartman

Ryan L. Hartman is Associate Professor in the Department of Chemical and Biomolecular Engineering.  He completed his postdoctoral research in the Department of Chemical Engineering at the Massachusetts Institute of Technology, Cambridge.  He earned his Ph.D. and M.S.E. in Chemical Engineering from the University of Michigan, Ann Arbor and his B.S. in Chemical Engineering from Michigan Technological University, Houghton.

Hartman’s laboratory investigates flow chemistry with microsystems using chemical reaction engineering principles for sustainable chemicals, energy, and healthcare.  His laboratory’s research has been featured in Chemical & Engineering Technology, Industrial & Engineering Chemistry Research, the Journal of Flow Chemistry, Organic Process Research & Development, Lab on a Chip, Reaction Chemistry & Engineering, and at conferences and seminars worldwide.  He is the Catalysis and Reaction Engineering Programming Chair of the American Institute of Chemical Engineers.  He is also co-inventor of fourteen U.S. Patents, sixteen U.S. Patent Applications, and his contributions have helped to enable natural gas production and the continuous manufacture of fine chemicals and pharmaceuticals.

Previously, Hartman was Assistant Professor and Reichhold-Shumaker Fellow in the Department of Chemical and Biological Engineering at The University of Alabama, Tuscaloosa.  He was recently honored as Visiting Assistant Professor of the Institut de Chimie de la Matiere Condensee de Bordeaux CNRS, Universite de Bordeaux.  He is also a winner of the NSF CAREER Award and member of the National Academy of Inventors.  Undergraduate researchers in his laboratory have won prestigious honors, such as the NSF Graduate Research Fellowship Program Award and the Barry M. Goldwater Scholarship and Excellence in Education.  Students K-12 have also gained local, state, national, and international recognition for their senior thesis research in his laboratory.  Hartman returned to academia following his private sector career with Schlumberger Limited.

Research Interests: Catalysis and reaction engineering
Continuous-flow manufacturing
Flow chemistry
Microchemical systems
Molecular management

Massachusetts Institute of Technology, Cambridge, 2010
Postdoctoral, Chemical Engineering

University of Michigan, Ann Arbor, 2006
Doctor of Philosophy, Chemical Engineering

University of Michigan, Ann Arbor, 2003
Master of Science in Engineering, Chemical Engineering

Michigan Technological University, Houghton, 2001
Bachelor of Science, Chemical Engineering


Associate Professor (2019- )
New York University, Department of Chemical and Biomolecular Engineering
 
Assistant Professor (2015-2019)
New York University, Department of Chemical and Biomolecular Engineering
 
Invited Visiting Assistant Professor (2015)
Institute of Condensed Matter Chemistry (CNRS), University of Bordeaux
 
Assistant Professor and Reichhold-Shumaker Fellow (2010-2015)
University of Alabama, Department of Chemical and Biological Engineering
 
Postdoctoral Associate, Novartis-MIT Center for Continuous Manufacturing (2008-2010)
Massachusetts Institute of Technology, Department of Chemical Engineering
 
Chemical Engineer III (2005-2007)
Schlumberger, Pressure, Pumping, and Chemistry, Sugar Land, Texas
 
Other Appointments
 
Catalysis and Reaction Engineering Programming Chair (2017- )
CRE Executive Board, American Institute of Chemical Engineers
 
Faculty Engineer in Residence (2016-2018)
New York University, Department of Chemical and Biomolecular Engineering
 
Reaction Engineering Programming Chair (2014-2016)
American Institute of Chemical Engineers
 
Adjunct Professor, Tri-Campus Materials Science Program (2011-2015)
University of Alabama, Department of Chemical and Biological Engineering
 
Department Quality Steering Committee Chair (2006-2007)
Schlumberger, Pressure, Pumping, and Chemistry, Sugar Land, Texas
 
Engineering Intern (2002, 2003-2004)
Schlumberger, Pressure, Pumping, and Chemistry, Sugar Land, Texas
 
Graduate Research Assistant/Fellow (2001-2005)
University of Michigan, Ann Arbor, Department of Chemical Engineering
 
Summer Chemical Engineering Intern (2000)
BASF Corporation, Vitamins Manufacturing, Wyandotte, Michigan

Journal Articles

(selected recent)

Rizkin, B.A., Popovic, F., and Hartman, R.L. "Spectroscopic microreactors for heterogeneous catalysis", J. Vac. Sci. Technol. A, (2019) accepted.

Liu, Y., and Hartman, R.L. "Reaction kinetics of a water-soluble palladium-beta-cyclodextrin catalyst for a Suzuki-Miyaura cross-coupling in continuous-flow", React. Chem. Eng. (2019) DOI: 10.1039/C9RE00159J.

Hua, T., Gowayed, O., Grey-Stewart, D., Garetz, B.A., and Hartman, R.L. "Microfluidic Laser-Induced Nucleation of Supersaturated Aqueous KCl Solutions", Cryst. Growth Des., 19(6), 3491-3497 (2019).

Hua, T., and Hartman, R.L. "Computational Fluid Dynamics of DNA Origami Folding in Microfluidics". React. Chem. Eng. (2019) DOI: 10.1039/C8RE00168E. [Cover]

Rizkin, B.A., Popovich, K., and Hartman, R.L. "Artificial Neural Network Control of Thermoelectrically-Cooled Microfluidics using Computer Vision based on IR Thermography". Comput. Chem. Eng. (2019); DOI: 10.1016/j.compchemeng.2018.11.016.

Chen, W., Vashistha, P., Yen, A., Joshi, N., Kapoor, Y., and Hartman, R.L. "Asphaltenes dissolution mechanism study by in-situ Raman characterization of a packed-bed microreactor with HZSM-5 aluminosilicates". Energy Fuel (2018); DOI: 10.1021/acs.energyfuels.8b02854. [Cover]

Chen, W., and Hartman, R.L. "Methane hydrate intrinsic dissociation kinetics measured in a microfluidic system by means of in-situ Raman spectroscopy". Energy Fuel, 32 (11), 11761-11771 (2018). [Cover]

Rizkin, B.A., and Hartman, R.L. "Catalytic activity of Pd/hydrophilic phosphine ligand in the interface of an aqueous-phase Cu-free Sonogashira coupling", React. Chem. Eng., 3, 251 (2018). [Cover]

Pinho, B., Liu, Y., Rizkin, B., and Hartman, R.L. "Confined methane-water interfacial layers and thickness measurements using in situ Raman spectroscopy", Lab Chip, 17, 3883-3890 (2017).

Pinho, B., Minsariya, K., Yen, A., Joshi, N., and Hartman, R.L. "Role of HZSM-5 Aluminosilicates on Asphaltenes Deposition by High-throughput in Situ Characterizations of a Microreservoir", Energy Fuel, 31(11), 11640-11650 (2017).

Chen, W., Pinho, B., and Hartman, R.L. "Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor", Lab Chip, 17, 3051-3060 (2017). [Cover]

Pinho, B. and Hartman, R.L. "Microfluidics with in situ Raman spectroscopy for the characterization of non-polar/aqueous interfaces", React. Chem. Eng., 2, 189-200 (2017). [Featured issue]

Hu, C., Yen, A., Joshi, N., and Hartman, R.L. "Packed-bed Microreactors for Understanding of the Dissolution Kinetics and Mechanisms of Asphaltenes in Xylenes", Chem. Eng. Sci., 140, 144-152 (2016).

Hu, C., Shaughnessy, K.H., and Hartman, R.L. “Influence of water on the deprotonation and the ionic mechanisms of a Heck alkynylation and its resultant E-factors”, React. Chem. Eng., 1, 65-72 (2016). [Cover]

Hu, C., Garcia, N., Xu, R., Cao, T., Yen, A., Garner, S., Macias, J., Joshi, N., and Hartman, R.L. "Interfacial Properties of Asphaltenes at the Heptol-Brine Interface", Energy Fuel, 30 (1), 80-87 (2016).

Sabio, J.C., Domier, R.C., Moore, J.N., Shaughnessy, K., and Hartman, R.L. “Palladium theory of aqueous-phase Heck alkynylations for intensification of discovery and manufacture”, Chem. Eng. Technol., 38, 1717-1725 (2015). [Featured issue]

Chen, Y., Sabio, J.C., and Hartman, R.L. “When solids stop flow chemistry in commercial tubing”, J. Flow Chem., 5 (3), 166-171 (2015). [Featured issue]

Hu, C., Sabio, J., and Hartman, R.L. “Role of water on the precipitation and deposition of asphaltenes in packed-bed microreactors”, Ind. Eng. Chem. Res., 54 (16), 4103-4112 (2014). [Featured issue]

Hu, C. and Hartman, R.L. “High-throughput packed-bed microreactors with inline analytics for the discovery of asphaltene deposition mechanisms”, AIChE J., 60, 3534-3546 (2014).

Hu, C., Morris, J.E., and Hartman, R.L. “Microfluidic investigation of the deposition of asphaltenes in porous media”, Lab Chip, 14, 2014-2022 (2014). [Cover]

Domier, R.C. and Hartman, R.L. “Chemical reaction engineering perspectives on the role of water in fine chemicals and pharmaceuticals manufacture”, Chim. Oggi.-Chem. Today, 32 (4), 17-21 (2014).

Hu, C, Herz, C., and Hartman, R.L. “Microfluidic dispersion of mineral oil-seawater multiphase flows in the presence of dialkyl sulfonates, polysorbates, and glycols”, Green Process Synth., 2, 611-623 (2013).

Domier, R.C., Moore, J.N., Shaughnessy, K., and Hartman, R.L. “Kinetic analysis of aqueous- phase Pd-catalyzed, Cu-free direct arylation of terminal alkynes using a hydrophilic ligand”, Org. Process Res. Dev., 17 (10), 1262–1271 (2013). [Featured issue]

Flowers, B.S. and Hartman, R.L. “Particle handling techniques in microchemical systems”, Challenges, 3, 194-211 (2012).

Hartman, R.L. “Managing solids in the upstream continuous processing of fine chemicals”, Org. Process Res. Dev., 16, 870–887 (2012). [Featured issue]

Hartman, R.L., McMullen, J.P. and Jensen, K.F. “Deciding whether to go with the flow – evaluating the merits of flow reactors for synthesis”, Angew. Chem. Int. Ed., 40, 2-20 (2011).

Noel, T., Naber, J.R., Hartman, R.L., McMullen, J.P., Jensen, K.F. and Buchwald, S.L. “Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation” Chem. Sci., 2, 287-290 (2011).

Kuhn, S., Hartman, R.L., Sultana, M., Nagy, K.D., Marre, S. and Jensen, K.F. “Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows”, Langmuir, 27, 6519-6527 (2011).

Hartman, R.L., Naber, J.R., Zaborenko, N. Buchwald, S.L. and Jensen, K.F. “Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C-N bond formation in microreactors”, Org. Process Res. Dev., 14, 1347-1357 (2010).

Hartman, R.L., Naber, J.R., Buchwald, S.L. and Jensen, K.F. “Multi-step microchemical synthesis enabled by microfluidic distillation”, Angew. Chem. Int. Ed., 49, 899-903 (2010).

Hartman, R.L. and Jensen, K.F. “Microchemical systems for continuous-flow synthesis”, Lab Chip, 9, 2495-2507 (2009). [Cover]

Hartman, R.L., Sahoo, H.R., Yen, B.C. and Jensen, K.F. “Distillation in microchemical systems using capillary forces and segmented flow”, Lab Chip, 9, 1843-1849 (2009). [Cover]

 

Authored/Edited Books

Wolf, N. and Hartman, R.L. (editors), "Formation, Removal, and Inhibition of Inorganic Scale in the Oilfield Environment" by W. Frenier and M. Ziauddin, Society of Petroleum Engineers, 2008, 230 pp.


General/Collaborative Research

 

Anadarko Petroleum Company

 

Brooklyn Technical High School, Brooklyn

Columbia University

Iowa State University

Nalco Champion, An Ecolab Company

Supercritical Fluids Group, Institut de Chimie de la Matiere Condensee de Bordeaux CNRS, Universite de Bordeaux

Virginia Commonwealth University

 

Affiliations

 

American Association for the Advancement of Science (AAAS)

 

American Chemical Society (ACS)

American Institute of Chemical Engineers (AIChE)

American Society for Engineering Education (ASEE)

Flow Chemistry Society

International Society of Pharmaceutical Engineers

International Symposium on Chemical Reaction Engineering (ISCRE)

Materials Research Society (MRS)

Sigma Xi, The Scientific Research Society

Society for Petroleum Engineers (SPE)

Tau Beta Pi Engineering Honors Society

 


NSF CAREER Award

Invited Visiting Assistant Professor, Institut de Chimie de la Matiere Condensee de Bordeaux CNRS, Universite de Bordeaux

National Academy of Inventors

Schlumberger Inventor Award

 


U.S. Patent 10,011,763

 

U.S. Patent 9,238,772

 

U.S. Patent 7,784,541

 

U.S. Patent 7,789,146

 

U.S. Patent 8,008,234

 

U.S. Patent 8,210,249

 

U.S. Patent 8,435,387

 

U.S. Patent 8,490,698

 

U.S. Patent 8,496,056

 

U.S. Patent 8,752,627

 

U.S. Patent 8,763,623

 

U.S. Patent 8,765,646

 

U.S. Patent 8,802,601

 

U.S. Patent 8,119,574

 


National Science Foundation (MRSEC), (Senior Personnel)
National Science Foundation (EEC), (Senior Personnel)
French National Research Agency (ANR), (U.S. Collaborator)
National Science Foundation (CBET), (Principle Investigator)
National Science Foundation (CAREER), (Principle Investigator)

 


Current Projects, Research Labs, and Groups