Events

Learning Representations Using Causal Invariance

Academic,
Lecture / Panel
 
Open to the Public

Geometric abstract image of brain

RSVP

Part of the Special ECE Seminar Series 

Modern Artificial Intelligence

Title:

Learning Representations Using Causal Invariance

Speaker:

Leon Bottou, Facebook AI Research

Abstract:

Learning algorithms often capture spurious correlations present in the training data distribution instead of addressing the task of interest. Such spurious correlations occur because the data collection process is subject to uncontrolled confounding biases. Suppose however that we have access to multiple datasets exemplifying the same concept but whose distributions exhibit different biases. Can we learn something that is common across all these distributions, while ignoring the spurious ways in which they differ? This can be achieved by projecting the data into a representation space that satisfy a causal invariance criterion. This idea differs in important ways from previous work on statistical robustness or adversarial objectives. Similar to recent work on invariant feature selection, this is about discovering the actual mechanism underlying the data instead of modeling its superficial statistics.

Bio:

Leon BottouLéon Bottou received the Diplôme d’Ingénieur de l’École Polytechnique (X84) in 1987, the Magistère de Mathématiques Fondamentales et Appliquées et d’Informatique from École Normale Supérieure in 1988, and a Ph.D. in Computer Science from Université de Paris-Sud in 1991. His research career took him to AT&T Bell Laboratories, AT&T Labs Research, NEC Labs America and Microsoft. He joined Facebook AI Research in 2015. The long-term goal of Léon Bottou’s research is to understand and replicate human-level intelligence. Because this goal requires conceptual advances that cannot be anticipated, Leon’s research has followed many practical and theoretical turns: neural networks applications in the late 1980s, stochastic gradient learning algorithms and statistical properties of learning systems in the early 1990s, computer vision applications with structured outputs in the late 1990s, theory of large scale learning in the 2000s. During the last few years, Léon Bottou’s research aims to clarify the relation between learning and reasoning, with more and more focus on the many aspects of causation (inference, invariance, reasoning, affordance, and intuition.)

 

RSVP