
Watch: André Taylor discusses his research on Perovskite Solar Cells with Hari Sreenivasan on scitech now
Research Interests:
-Design and assembly of nanomaterials for energy conversion and storage
-Applications: Fuel Cells, Solar Cells, Batteries, and Biomass Conversion
-Layer-by-layer assembly, Inkjet printing technology, thin film deposition
-MEMs, Microsystems, Micro Energy Conversion Devices, and Advanced Sensors
-Catalysis, Materials, Semiconductor Processing
Journal Articles
F. Antonio, M. Beromi, T. Goh, N. Hazari, J. Kong, M. Mariano, and A.D. Taylor (2017). Colorful polymer solar cells employing an energy transfer dye molecule, Nano Energy, 38, 36-42.
T. Goh, D. Huang, T. Goh, J. Kong, A.D. Taylor, Z. Xu, S. Zhou, and Y. Zheng (2017). Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability, Nanoscale, 9, 4236-4243.
G. Doubek, R.C. Sekol, J. Li, E. Moy, S. Nejati, W-H. Ryu, C. Reid, M. Carmo, M. Linardi, E. Kinser, Y. Liu, C.O. Osuji, J. Schroers, S. Mukherjee, and A.D. Taylor (2016), Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing Three-Dimensional Bicontinuous Electrocatalytic Surfaces, Advanced Materials, accepted
F.S. Gittleson, D. Hwang, W-H Ryu, S. Hashmi, J. Hwang, T. Goh, and A.D. Taylor (2015), Ultrathin Nanotube/Nanowire Electrodes by Spin-Spray Layer-by-Layer Assembly: A Concept for Transparent Energy Storage, ACS Nano, 9 (10), 10005-10017.
F.S. Gittleson, K.P.C. Yao, D.G. Kwabi, S.Y. Sayed, W-H. Ryu, Y. Shao-Horn, and A.D. Taylor (2015), Raman Spectroscopy in Lithium-Oxygen Battery Systems, ChemElectroChem (Invited Mini Review for Special Issue; Very Important Paper), 2 (10), 1426-1426.
W.H. Ryu, F.S. Gittleson, M. Schwab, T. Goh, A.D. Taylor (2015), A Mesoporous Catalytic Membrane Architecture for Lithium-Oxygen Battery Systems, Nano Letters, 15, 434-441.
T. Goh, J-S. Huang, E. Bielinski, B. Thompson, S. Tomasulo, M. Lee, M. Sfeir, N. Hazari, and A.D. Taylor (2015), Co-evaporated Bi-squaraine Inverted Solar Cells: Enhancement Due to Energy Transfer and Open Circuit Voltage Control, ACS Photonics, 2 (1), 86-95.
X. Li, L.M. Guard, J. Jiang, K. Sakimoto, J.-S. Huang, J. Wu, J. Li, L. Yu, R. Pokhrel, G.W. Brudvig, S. Ismail-Beigi, N. Hazari and A.D. Taylor (2014), Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si solar cells, Nano Letters, 14 (6), 3388–3394.
J-S. Huang, T. Goh, X. Li, M. Sfeir, E. Bielinski, S. Tomasulo, M. Lee, N. Hazari, and A.D. Taylor (2013), Polymer bulk heterojunction solar cells employing Föerster resonance energy transfer, Nature Photonics, 7, 479–485.
X. Li, Y. Jung, K. Sakimoto, T. Goh, M.A. Reed, and A.D. Taylor (2013), A Systematic Study for High Efficiency Single Walled Carbon Nanotube/Silicon Hybrid Solar Cells, Energy and Environmental Science, 6, 879-887.
R.C. Sekol, G. Kumar, M. Carmo, F.S. Gittleson, N. Hardesty-Dyck, S. Mukherjee, J. Schroers, and A.D. Taylor (2013), Bulk Metallic Glass Micro Fuel Cell, SMALL, 9 (12), 2081-2085.
M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, and A.D. Taylor (2011), Bulk Metallic Glass Nanowires Architecture for Electrochemical Applications, ACS Nano, Vol. 5, No. 4, 2979-2983.
- Dr. Martin Luther King, Jr. Visiting Associate Professor, MIT, Cambridge, MA. (2014-2015)
- PECASE - Presidential Early Career Award for Scientists and Engineers (2011)
- Yale Greer Memorial Prize (2011)
- NSF CAREER Award (2010-2015)
Research Briefs
Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding
Jason Lipton, a Ph.D. candidate under the guidance of Taylor, was lead author. Elisa Riedo (chemical and biomolecular engineering) and researchers from Drexel University and the Brookhaven National Laboratory also participated.
The proliferation and miniaturization of electronics in devices, wearables medical implants and other applications has made technologies for blocking electromagnetic interference (EMI) especially important, while making their implementation more challenging. While EMI can cause disruptions in communication in critical applications, resulting in potentially disastrous consequences, traditional EMI shields require large thicknesses to be effective, hampering design flexibility.
One solution resides in MXenes, a family of 2D transition metal carbides, nitrides, and carbonitrides with potential for blocking EMI demonstrate high conductivity and excellent EMI shielding properties. The key to the commercialization of these materials is industry-scale manufacturing.
A multi-institution research team led by Andre ́ D. Taylor, professor of chemical and biomolecular engineering at the NYU Tandon School of Engineering demonstrated a novel approach to MXene fabrication that could lead to methods for at-scale production of MXene freestanding films: drop-casting onto pre-patterned hydrophobic substrates. Their method led to a 38% enhancement of EMI shielding efficiency over conventional methods. The work suggests that micropatterned MXene films, prepared using a method that is scalable and allows for high throughput, can be readily used in EMI shielding, energy storage, and optoelectronics applications.
The team cast aqueous dispersions of MXene nanosheets (with the formula Ti3C2Tx) on hydrophobic polystyrene substrates and dried them. After drying, the resulting free-standing films could be easily peeled off, a method demonstrating a variety of advantages over the conventional vacuum-assisted filtration method with regards to time efficiency, operation simplicity, and surface smoothness.
The drop-casting method allows for modulation of micrometer-scale 3D patterns on the film surface by utilizing pre-patterned substrates (such as a vinyl record, retroreflective packaging, and retroreflective tape).
The research, “Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding,” is published in the first-anniversary issue of the Cell Press publication Matter.
Authors
- André Taylor,
- Elisa Riedo
Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing
Perovskite solar cells have seen massive improvements over the last few years. But despite big increases in power conversion efficiency, fill factors – one of the important characteristics in need of optimization – have still hovered around 80 percent, limiting the capacity for solar energy.
Thanks to a team led by Associate Professor André D. Taylor, that fill factor has been pushed up to 85 percent. Using a polymer-capped solvent-annealing process, they enhanced open-circuit voltage without sacrificing short-circuit current, creating better perovskite cells with improved output and a longer lifespan than current models.
The research team included NYU Tandon Postdoctoral Research Associates Jaemin Kong and Jason A. Röhr, along with colleagues from Yale University, Brown University, Brookhaven National Laboratory and the Korea Research Institute of Chemical Technology, and received funding from several groups including the National Science Foundation and the Office for Naval Research.
They found that during the solvent-annealing, the perovskite surface flattens and the perovskite grains agglomerate into micrometer-sized clusters having enlarged α-phase crystallites, while the δ-phase simultaneously disappears. The optimized structure enhances efficiency from 18.2 percent to 19.8 percent reliably, creating more stable and better solar cells.
Authors
- André Taylor