A Small Hardware Assumption Can Go a Long Way Towards Privacy
Speaker: Aniket Kate, Saarland University
Trusted hardware modules are becoming prevalent in computing devices of all kinds. A broad trusted hardware assumption purports to solve almost all security problems in a trivial and uninteresting manner. However, relying entirely on hardware assumptions to achieve security goals of a system can be impractical given the limited memory, bandwidth and CPU capabilities of available hardware modules, and makes the designed system vulnerable to even a tiny overlooked or undiscovered flaw/side-channel in the employed module. Thus, the key challenge to me while designing a trusted hardware-based system is to determine a minimal hardware assumption required to achieve the system's goals, and justify the assumption for an available hardware module.
In this talk, I will present my recent work on developing privacy-preserving systems based on the above insight. In particular, I will introduce a privacy-preserving transaction protocol for credit networks (PrivPay), an architecture for privacy-preserving online behavioral advertising (ObliviAd), and an asynchronous multiparty computation protocol with only an honest majority (NeqAMPC).
Bio:
Aniket Kate is a junior faculty member and an independent research group leader at Saarland University in Germany, where he is heading the Cryptographic Systems research group within the Cluster of Excellence. His primary research interests lie at the intersection of cryptography, and systems security (and privacy) research. Along with producing theoretically elegant cryptographic results, he endeavors to make them useful in real-world scenarios. Before joining Saarland University in 2012, Aniket was a postdoctoral researcher at Max Planck Institute for Software Systems (MPI-SWS), Germany. He received his PhD from the University of Waterloo, Canada in 2010, and his masters from Indian Institute of Technology (IIT) - Bombay, India in 2006.
For more information, contact Nasir Memon.