Here for the curriculum that follows applies to students who began classes BEFORE the Fall of 2016.

Here for the curriculum that follows applies to students who began classes in the Fall of 2016 or later.

- 4 Credits Calculus I for Engineers MA-UY 1024
- This course covers: Library of Functions, functions of one variable. Limits, derivatives of functions defined by graphs, tables and formulas, differentiation rules for power, polynomial, exponential and logarithmic functions, derivatives of trigonometric functions, the product and quotient rules, the chain rule, applications of the chain rule, maxima and minima, optimization. The definite integral, the Fundamental Theorem of Calculus and interpretations, theorems about definite integrals, anti-derivatives. MA-UY 1324 is for students who wish to take MA-UY 1024 but need more review of precalculus. MA-UY 1324 covers the same material as MA-UY 1024 but with more contact hours per week, incorporating a full discussion of the required precalculus topics.

Prerequisite: Placement Exam or MA-UY 912 or MA-UY 914 (with a grade of B or better). Corequisite: EX-UY 1 - 4 Credits Introduction to Programming & Problem Solving CS-UY 1114 5
- This course introduces problem solving and computer programming and is for undergraduate Computer Science and Computer Engineering majors who have limited prior experience in programming in any language. The course covers fundamentals of computer programming and its underlying principles using the Python programming language. Concepts and methods introduced in the
course are illustrated by examples from various disciplines. ABET competencies: a,b,c, e, f, g, k

Corequisite: EX-UY 1 - 3 Credits Introduction to Engineering and Design EG-UY 1003
- This course introduces selected aspects of the history, philosophy, methodology, tools and contemporary topics in engineering. Also included are basic engineering experimentation and data analysis, a team design project and analysis and presentation of engineering data and designs.
- 1 Credits Engineering and Technology Forum EG-UY 1001
- In this course the notion of invention, innovation and entrepreneurship (i2e) is introduced to the students’ educational experience. Students will be exposed to elements of a research-intensive institution and diverse research performed by leading engineers, scientists, inventors and entrepreneurs.
- 4 Credits Writing the Essay: EXPOS-UA 1
- This foundational writing course is required for CAS, Stern, Nursing, Social Work, Steinhardt and Tandon incoming undergraduates. Writing The Essay provides instruction and practice in critical reading, creative and logical thinking, and clear, persuasive writing. Students learn to analyze and interpret written texts, to use texts as evidence, to develop ideas, and to write exploratory and argumentative essays. Exploration, inquiry, reflection, analysis, revision, and collaborative learning are emphasized. In Spring, sections 1-6 are, with department consent, available for undergraduates interested in writing about the Sciences. Students should email EWP for access codes. Sections 9-72 are regular Spring sections for undergraduates, excluding sections 66,67 which are for Tandon students in Brooklyn. In Fall, sections 16-125 are available to incoming undergraduates on the WSQ campus and sections 126-167 are available to incoming undergraduates on the BROOKLYN campus. Students are NOT permitted to add or switch sections after the first week of classes without first obtaining EWP permission. Contact: dm1@nyu.edu Two special versions requiring department consent are available to qualifying undergraduates. Writing the Essay, Science (sections 1-7 offered both Fall and Spring) is tailored for UA students with a STRONG interested in science, medicine or psychology. Students must contact an advisor to discuss this option and obtain access. Writing The Essay, Goddard (sections 8-13, offered in Fall only) is offered ONLY for students who live in the Goddard Residential College. Writing the Essay, Rubin (sections 14-15, offered in Fall only) is offered ONLY for students who have been selected for the Rubin Themed Writing the Essay Community. Students placed in these sections will receive instructions for enrollment.

- 4 Credits Calculus II for Engineers MA-UY 1124
- This course covers techniques of integration, introduction to ordinary differential equations, improper integrals, numerical methods of integration, applications of integration, sequences, series, power series, approximations of functions via Taylor polynomials, Taylor series, functions of two variables, graphs of functions of two variables, contour diagrams, linear functions, functions of three variables. MA-UY 1424 is for students who wish to take MA-UY 1124 but need more review of precalculus. MA-UY 1424 covers the same material as MA-UY 1124 but with more contact hours per week, incorporating a full discussion of the required precalculus topics.

Prerequisites: MA-UY 1022 (with a grade of B or better) or MA-UY 1024 or MA-UY 1324 (with a grade of B or better).

Corequisite: EX-UY 1. - 3 Credits Mechanics PH-UY 1013
- This course is the first of a three-semester lecture sequence in general physics for science and engineering students. Motion of particles and systems of particles. One-dimensional motion. Vectors and two-dimensional motions. Forces and acceleration. Conservation of energy and momentum. Rotations. The free and driven harmonic oscillator. Gravitation. (This class meets four hours per week for lectures and recitation.)

Prerequisites: MA-UY 1024 or an approved equivalent. Corequisites: MA-UY 1124 or approved equivalent, and EX-UY 1 - 4 Credits General Chemistry for Engineers CM-UY 1004
- This is a one-semester introductory course in general chemistry. It covers chemical equations, stoichiometry, thermodynamics, gases, atomic and molecular structure, periodic table, chemical bonding, states of matter, chemical equilibrium, organic, inorganic and polymeric materials and electrochemistry.

Corequisite: EX-UY 1 - 2 Credits Introduction to Electrical Engineering ECE-UY 1002
- This course introduces numerous Electrical Engineering subject areas, including power systems, power electronics, computer networking, computer processors, communications, feedback control, signal processing, and EM fields/waves. As appropriate for each area, the course introduces various devices, design and operational issues, design methodologies and algorithms. Also introduced are basic equations to model systems and algorithms to solve specific problems. Important technical developments and problems are discussed. Mathematical methods are introduced as needed. The course gives an overview of department courses. Faculty lecturers discuss research and industrial projects in which they have been involved. Assignments include computer simulations and Investigations of different systems. Written reports based on articles from the IEEE Spectrum Magazine are assigned. The IEEE Code of Ethics and ethics-related readings from the IEEE literature are discussed.

ABET criteria: i, h.

Prerequisites: First-year standing - 4 Credits The Advanced College Essay EXPOS-UA 2
- The course follows Writing the Essay (EW 1013) and provides advanced instruction in analyzing and interpreting written texts from a variety of academic disciplines, using written texts as evidence, developing ideas, and writing argumentative essays. It stresses analysis, argument, reflection, revision, and collaborative learning.

Prerequisite(s): EW 1013

- 4 Credits Linear Algebra and Differential Equations MA-UY 2034
- MA-UY 2034 is an introduction to ordinary differential equations and linear algebra. The course develops the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that are widely used in modern engineering and science. Linear algebra is used as a tool for solving systems of linear equations as well as for understanding the structure of solutions to linear (systems) of differential equations. Topics covered include the fundamental concepts of linear algebra such as Gaussian elimination, matrix theory, linear transformations, vector spaces, subspaces, basis, eigenvectors, eigenvalues and the diagonalization of matrices, as well as the techniques for the analytic and numeric solutions of ordinary differential equations (and systems) that commonly appear in modern engineering and science.

Prerequisite: MA-UY 1124, MA-UY 1424 or MA-UY 1132. Note: Not open to students who have taken MA-UY 3044 or MA-UY 3054 or MA-UY 3083 or MA-UY 4204. - 3 Credits Electricity, Magnetism, & Fluids PH-UY 2023
- This is the second course of a three-semester lecture sequence in general physics for science and engineering students. Fluids at rest and in motion. An introduction to electric and magnetic forces and fields. Electric charge density. Electric fields from simple charge distributions. Electric potential. Capacitance.
Magnetic forces. Magnetic field from a current loop. Inductance. Magnetism
in matter. Current and resistance. (This class meets four hours per week for lectures and recitation.)

Prerequisites: PH-UY 1013 and MA-UY 1124 or an approved equivalent. Co-requisite: PH-UY 2121 General Physics Laboratory I, and EX-UY 1 - 1 Credits General Physics Laboratory I PH-UY 2121
- PH-UY 2121 General Physics Laboratory I (0.5:1:0:1). An introductory level experimental course. Fundamental laboratory experiments in classical mechanics and electrostatics. Stresses basic experimental techniques, error analysis, and written presentation of experiment results. Experiments require progressively more detailed and sophisticated analysis. This laboratory class meets for three hours on alternate weeks.

Prerequisites: PH-UY 1013 and MA-UY 1124 or equivalent. Co-requisite: PH-UY 2023. - 4 Credits Fund. of Electric Circuits ECE-UY 2004 4
- Fundamentals of Circuits includes circuit modeling and analysis techniques for AC, DC and transient responses. Independent and dependent sources, resistors, inductors and capacitors are modeled. Analysis techniques include Kirchhoff’s current and voltage laws, current and voltage division. Thevenin and Norton theorems, nodal and mesh analysis, and superposition. Natural and forced responses for RLC circuits, sinusoidal steady-state response and complex voltage and current (phasors) are analyzed. Alternate-week laboratory. A minimum of C- is required for students majoring in EE. Objective: fundamental knowledge of DC and AC circuit analysis.

Co-requisites for Brooklyn Engineering Students: MA-UY 2034 and PH-UY 2023

Prerequisites for Abu Dhabi Students: SCIEN-AD 110, MATH-AD 116, and MATH-AD 121. ABET competencies a, c, e, k. - 4 Credits Digital Logic and State Machine Design CS-UY 2204 4
- This course covers combinational and sequential digital circuits. Topics: Introduction to digital systems. Number systems and binary arithmetic. Switching algebra and logic design. Error detection and correction. Combinational integrated circuits, including adders. Timing hazards. Sequential circuits, flipflops, state diagrams and synchronous machine synthesis. Programmable Logic Devices, PLA, PAL and FPGA. Finite-state machine design. Memory elements. A grade of C or better is required of undergraduate computer-engineering majors.

Prerequisite: CS-UY 1114 (C- or better) or CS-UY 1133 (C- or better). ABET competencies: a, c, e, k.

- 4 Credits Calculus III: Multi-Dimensional Calculus MA-UY 2114
- Vectors in the plane and space. Partial derivatives with applications, especially Lagrange multipliers. Double and triple integrals. Spherical and cylindrical coordinates. Surface and line integrals. Divergence, gradient, and curl. Theorems of Gauss and Stokes.

Prerequisite: MA-UY 1124 or MA-UY 1424 or MA-UY 1132. - 3 Credits Waves, Optics, & Thermodynamics PH-UY 2033
- This is the third course of a three-semester lecture sequence in general physics for science and engineering students. Water, sound and electromagnetic waves. Reflection, scattering and absorption. Standing waves and spectra. Superposition, diffraction and beats. Geometrical optics. Introduction to thermodynamics; temperature, heat, and entropy. (This class meets four hours per week for lectures and recitation.)

Prerequisites: PH-UY 2121 and PH-UY 2023. Co-requisites: PH-UY 2131, and EX-UY 1. - 1 Credits General Physics Laboratory II PH-UY 2131
- PH 2131 General Physics Laboratory II (0.5:1:0:1). The second part of the introductory physics laboratory program. Fundamental laboratory experiments in E&M, waves, optics, and thermodynamics. Stresses experimental models and design, error and data analysis. This laboratory class meets for three hours on alternate weeks.

Prerequisites: PH-UY 2121 and PH-UY 2023. Corequisite: PH-UY 2033 - 4 Credits Fundamentals of Electronics I ECE-UY 3114
- This course focuses on circuit models and amplifier frequency response, op-amps, difference amplifier, voltage-to-current converter, slew rate, full-power bandwidth, common-mode rejection, frequency response of closed-loop amplifier, gain-bandwidth product rule, diodes, limiters, clamps and semiconductor physics. Other topics include Bipolar Junction Transistors; small-signal models, cut-off, saturation and active regions; common emitter, common base and emitter-follower amplifier configurations; Field-Effect Transistors (MOSFET and JFET); biasing; small-signal models; common-source and common gate amplifiers; and integrated circuit MOS amplifiers. The alternate-week laboratory experiments on OP-AMP applications, BJT biasing, large signal operation and FET characteristics. The course studies design and analysis of operational amplifiers; small-signal bipolar junction transistor and field-effect transistor amplifiers; diode circuits; differential pair amplifiers and semiconductor device- physics fundamentals.

Prerequisites for Brooklyn Engineering Students: EE-UY 2024 or EE-UY 2004 (C- or better) and PH-UY 2023

Prerequisites for Abu Dhabi Students: ENGR-AD 214 and SCIEN-AD 110.

Prerequisites for Shanghai Students: EENG-SHU 251 (C- or better) and PHYS-SHU 93 or CCSC-SHU 51. ABET competencies a, b, c, e, k. - 4 Credits Introduction to Programming in C CS-UY 2164
- This course covers programming in C. Topics: The syntax, variables, expressions, working environment, printf and scanf. Function calls and returns. Branching and looping. Relational operators. Bit-wise operators. Boolean expressions. Recursion. Pointers. Data structures: Arrays, structs, lists, stacks, trees, queues. String processing. Low level memory management. dynamic memory allocation. The preprocessor. File processing: fprintf, fscanf, fseek, sscanf. Concurrency, fork, pipe, signal. Dynamic multidimensional arrays, OS APIs. Linux/UNIX Integration. A laboratory meets weekly.

Prerequisites: EE-UY major status and either CS-UY 1133 or CS-UY 1114

- 3 Credits Advanced Linear Algebra and Complex Variables MA-UY 3113
- This course provides a deeper understanding of topics introduced in MA-UY 2012 and MA-UY 2034 and continues the development of those topics, while also covering functions of a Complex Variable. Topics covered include: The Gram-Schmidt process, inner product spaces and applications, singular value decomposition, LU decomposition. Derivatives and Cauchy-Riemann equations, integrals and Cauchy integral theorem. Power and Laurent Series, residue theory.

Prerequisites: (MA-UY 2122 or MA-UY 2114) AND (MA-UY 2012 or MA-UY 2034). Note: Not open to students who have taken MA-UY 1533, MA-UY 3112 or MA-UY 4433. - 3 Credits Introduction to Probability ECE-UY 2233
- Standard first course in probability, recommended for those planning further work in probability or statistics. Probability of events, random variables and expectations, discrete and continuous distributions, joint and conditional distributions, moment generating functions, the central limit theorem.

Prerequisites: MA-UY 109, MA-UY 2112, OR MA-UY 2114. Note: Not open to students who have taken MA-UY 2224 or MA-UY 3012 or MA-UY 3022. - 4 Credits Signals and Systems ECE-UY 3054 4
- This course centers on linear system theory for analog and digital systems; linearity, causality and time invariance; impulse response, convolution and stability; the Laplace, z- transforms and applications to Linear Time Invariant (LTI) systems; frequency response, analog and digital filter design. Topics also include Fourier Series, Fourier Transforms and the sampling theorem. Weekly computer-laboratory projects use analysis- and design-computer packages. The course establishes foundations of linear systems theory needed in future courses; use of math packages to solve problems and simulate systems; and analog and digital filter design.

Prerequisites for Brooklyn Engineering Students: MA-UY 2012/2132 or MA-UY 2034.

Prerequisites for Abu Dhabi Students: MATH-AD 116 and MATH-AD 121.

Prerequisites for Shanghai Students: MATH-SHU 124 and MATH-SHU 140. ABET competencies a, b, c, e, k.

- 3 CreditsEE Elective
- 4 CreditsHumanities and Social Sciences Course 2

- 4 CreditsElectromagnetic Waves ECE-UY 3604
- 4 CreditsEE Restricted Elective 3
- 4 CreditsEE Restricted Elective 3
- 4 CreditsHumanities and Social Sciences Course 2

- 3 CreditsDesign Project I EE 4XX3
- 1 CreditECE Professional Development and Presentation EE-UY 4001
- 4 CreditsEE Restricted Elective 3
- 3 CreditsEE/EL Elective
- 4 CreditsHumanities and Social Sciences Course 2

- 3 CreditsDesign Project II EE 4XX3
- 3 CreditsEE/EL Elective
- 3 CreditsEE/CS/EL Elective
- 3-4 CreditsFree Elective
- 4 CreditsHumanities and Social Sciences Course 2

1) For transfer students and students changing major, EE-UY 1002 is not required.

2) Choice of Humanities and Social Sciences courses must conform to university requirements.

3) The Restricted Electives must be 3 of 4 courses:

- EE-UY 3124 Fundamentals of Electronics II
- EE-UY 3824 Electric Energy Conversion Systems
- EE-UY 3404 Fundamentals of Communication Theory
- EE-UY 3064 Feedback Control

4) A grade of at least C- is required in CS-UY 1114 or CS-UY 1133, CS-UY 2204, EE-UY 2004 and EE-UY 3054.

5) CS-UY 1114 is strongly recommended, but CS-UY 1133 is also acceptable (for students changing major to EE, etc.).

6) Three 4-credit electives may be used in place of four 3-credit electives.

- Email / Network
- soehelpdesk@nyu.edu
- Website
- engineering.webteam@nyu.edu
- Login (Faculty + Staff)

© NYU Tandon

Follow Us:Facebook Twitter InstagramYouTube