
CS6913: Web Search Engines

Torsten Suel
CSE Department

NYU Tandon School of Engineering
torsten.suel@nyu.edu

What is this Course About ?
• learn how search engines work (google, bing, baidu)

• learn about recent developments in search (incl. NN-based search)

• learn about the field of Information Retrieval (IR)

• learn about data compression & computing with large data (a little)

• learn about current research challenges in the field

• learn how to build search tools!
- basic information retrieval techniques
- what software tools to use
- system architectures and performance
- how to work with GBs or TBs of data

Not the Focus of this Course:

• web site design and HTML, javascript, etc
• building web applications, PHP scripting etc.
• how to use search engines

Not the main topic, but will come up during the course:

• machine learning and LLMs
• data analysis & data serving systems (hadoop, spark, GFS, ...)
• image and multimedia search
• social network analysis
• natural language processing (NLP)
• recommender systems

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

How the web works:

• Three different views of the web:
- text view
- graph view
- site and domain structure

• Client-server paradigm of the web
- urls, htmls, and http
- dns: domain name service

I. The Web and Web Search:

Text View of the Web: “Collection of Documents”

- billions of pages of text

- with html markup
- and flash, javascript, etc
- and images, audio, etc
- and cgi
- and database backends

- but basically, text
- “pages” or “documents”

Graph View: “The Web Graph”
- hypertext, not just text
- links between pages
- hundreds of billions of links
- the web is a giant graph!

- hyperlinks have meaning

- many links to a page à good page?
- old idea in citation and social network analysis

- local and global links
- page graph vs. site graph

Site and Domain Structure: Hierarchical View
- domain structure: .edu .nyu.edu .cse.nyu.edu
- internal structure: folders/directories
- folders, sites, and domains often contain related pages
- induces a natural topical clustering of the collection
- also, menu structure and boilerplate detection important

Web Server
(Host)

Web Server
(Host)

Web Server
(Host)

www.nyu.edu
www.cnn.com

www.irs.gov

How Web Access Works:

Desktop
(with browser)

give me the file “/world/index.html”

here is the file: “...”

Web Server

www.cnn.com

Three Main Ingredients:
• Naming: URL (uniform resource locators)

(used to identify and locate objects)

• Communication: HTTP (hypertext transfer protocol)

(used to request and transfer objects)

• Rendering: HTML (hypertext markup language)
(used to defined how object should be presented to user)

Client Server Paradigm:
• Browser uses HTTP to ask web server for an object identified by a

URL, and renders this object according to rules defined by HTML

Domain Name Service:

desktop
(or web crawler)

local DNS
server

where is www.flux.com located?

answer: 115.238.74.10

root DNS
server

DNS server
for flux.com

1.

2.
3.

4.

5.6.

Names, Addresses, Hosts, and Sites
• a machine can have several host names and IP addresses

• a host can have many sites (what is a site?)

• a site can be served by many hosts, or by CDNs
(content distribution networks)

• issues: detecting duplicates, crawling, local vs. global links

HTTP:

desktop or
crawler

web server

GET /world/index.html HTTP/1.0
User-Agent: Mozilla/3.0 (Windows 95/NT)
Host: www.cnn.com
From: …
Referer: …
If-Modified-Since: ...

HTTP/1.0 200 OK
Server: Netscape-Communications/1.1
Date: Tuesday, 8-Feb-99 01:22:04 GMT
Last-modified: Thursday, 3-Feb-99 10:44:11 GMT
Content-length: 5462
Content-type: text/html

<the html file>

HTML:

Challenges for Search Engines due to HTTP/HTML
• complex URLs:

http://www.google.com/search?q=brooklyn

http://www.amazon.com/exec/obidos/ASIN/1558605703/qid%3D9…

http:/cis.poly.edu/search/search.cgi

• result page can be computed by server in arbitrary manner!

• file types: mime types and extensions

• automatic redirects

• cookies and sessions

• javascript/flash/activeX etc technologies

• content distribution networks (CDNs), advertising networks

Things have gotten more and more complex:
•many web sites are just frontends to databases/programs
• sites such as facebook, linkedIn, twitter not fully crawlable

• to protect user privacy
• to preserve economic advantage for the site
• because crawling would be expensive or impossible

• advertising networks and user profiling (instrumentation)
• personalization of content
• web spam and auto-generated content

• this is not the web of 1995!
• it is not just about “fetching files” anymore

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

• 130 trillion pages: 1.3 * 10^14 (Google 2016)

• hundreds of trillion of hyperlinks

• plus images, movies, .. , database content

• IR paradigms: searching versus browsing

• browsing does not work well on the web (with some exceptions)

Motivation: Finding Pages/Info on the Web?

we need search tools for finding
pages and information

search engines and
related tools

Overview of Search Tools and Scenarios

• major search engines (google, bing, baidu, yandex)

• specialized search engines (news, legal, medical)
• social network search (facebook, linkedin)
• e-commerce search (amazon, google shopping, ebay)
• sponsored search and ad placement
• recommender systems (amazon, netflix, spotify)
• question answering, assistants, and chat bots
• multimedia search – images, video, audio
• privacy-preserving search

Major Search Engines:

Basic Structure of a Search Engine:

crawler

disks

index

data analysis/
mining

Search
interfacequery: “computer”

query
processing

indexing

Four Major Components:

• data acquisition / web crawling
- to collect pages from all over the web
- messy process with lots of hand tuning

• data analysis / web mining
- link analysis, spam detection, query log analysis
- using mapreduce or similar specialized platforms

• index building and maintenance

• query processing / result ranking

most of the cycles spent in data analysis and query proc.

Ranking:

Ranking:

• return best pages first
• term- vs. link- vs. click-based approaches
• machine-learned ranking to combine signals
• transformer-based ranking

• coverage

• good ranking

• freshness

• user load

• manipulation

Main Challenges for Large Search Engines:

• coverage (need to cover large part of the web)

• good ranking (cases of broad and narrow queries)

• freshness (need to update content)

• user load (> 50000 queries/sec - Google)

• manipulation (sites want to be listed first)

Main Challenges for Large Search Engines:

need to crawl and store massive data sets

smart information retrieval techniques

frequent recrawling and reindexing of content

many queries on massive data

naïve techniques will be exploited quickly

• coverage (need to cover large part of the web)

• good ranking (cases of broad and narrow queries)

• freshness (need to update content)

• user load (> 50000 queries/sec - Google)

• manipulation (sites want to be listed first)

• plus monetization, personalization, localization

Main Challenges for Large Search Engines:

need to crawl and store massive data sets

smart information retrieval techniques

frequent recrawling and reindexing of content

many queries on massive data

naïve techniques will be exploited quickly

Web Directories: (Yahoo in mid 1990s)

• based on categories or topics
• organize web pages in hierarchy of topics
• not sustainable in the end

• designing topic hierarchy (in a fair way)
• automatic classification: “what is this page about?”
• Yahoo! and Open Directory were mostly human-based
• Compare to library classification (Dewey, LoC)

Topic Hierarchy:
everything

sports politics healthbusiness

baseball

hockey

soccer

….

foreign

domestic

....

....

....

....

....

Challenges:

Specialized Search Engines: (news, legal, medical)
• be the best on one particular topic
• use domain-specific knowledge and structure
• limited resources do not crawl the entire web!
• focused crawling, or meta search, or other data sources

• also related to “federated search”
• uses other search engines to answer queries
• e.g., ask the right specialized search engine
• or combine/rerank results from several engines
• or rewrite query using domain knowledge and send to engine
• not clear how well this works

�

Meta Search Engines:

E-Commerce Search: (amazon, ebay, google shopping, …)

• also called “product search”
• queries against a more or less structured “product catalog”
• semi-structured search: keywords plus product attributes
• e.g.: “red microwave oven” AND price < $200
• product attributes may depend on type of product
• e.g.: weight of laptop, power (watt) of microwave, etc.
• organize results by categories, or sort by attributes
• sometimes attributes extracted from text
• many verticals: travel, real estate, maybe resumes?

Sponsored Search: Computational Advertising

• placing the “best” ads next to search results
• or placing ads on web pages when they are visited
• sort of a search problem, but with different objective ($)
• financial foundation of “free” search engines
• use ad and page features and past user actions to pick ads
• major impediment to privacy on the web
• sponsored search runs more queries than organic search
• very complex system, could be an entire grad course

Recommender Systems: (netflix, amazon, spotify, …)
• recommends items (e.g., movies) a user might like
• based on past likes, or likes of similar users
• the right answer depends on who is asking
• very close to search, but a little different: “recsys” community

• can we understand and directly answer user questions
• “what is Abraham Lincoln’s birthday?” or just “lincoln birthday”
• ”how to fix a clogged toilet?”, or “what is the meaning of life?”
• needs NLP and deeper text analysis
• recent progress based on LLMs

Question Answering:

Multimedia search: (google image/video search, music search)
• based on keywords, or finding similar images or music
• useful for “instance retrieval” in AR apps

- identify object in image by searching a labeled set of images

• extraction and indexing of multimedia features
• image or signal processing techniques: ICASSP, CVPR

• how to search without revealing all your secrets
• partly a business problem, but also hard challenges
• private information retrieval (PIR) as a theory problem

Privacy-Preserving Search (duckduckgo, neeva)

Summary: Search Tools
• there are many search scenarios beyond Google etc.
• every large site and community needs search
• twitter, facebook, amazon, ebay, spotify
• techniques may vary, but common principles
• we focus on Google etc. but also consider other cases

algorithms

distributed
systems

information
retrieval recommender

systems

machine learning

web and
data mining

Web Search within CS:

natural
language

processing

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

“IR is concerned with the representation, storage,
organization of, and access to information items”

• focus on automatic processing (indexing, clustering, search)
of unstructured data (text, images, audio, ...)

• subfield of Computer Science, but with roots in
Library Science, Information Science, and Linguistics

• In this course, we mainly focus on text data

• Applications:
- searching a library catalog
- navigating a collection of medical, news, technical, or legal articles
- since 1995: web search engines

Information Retrieval (IR):

• WW2 era computers built for number crunching:
ballistics computations, code breaking

• since earliest days, also used to “organize information”
- Memex (Vannevar Bush, 1945)

• today, this is the main application!
- store and organize data and documents
- model organizations and work processes

• Computer Organizer

• … however, no clean separation

Historical Perspective:

• IR: lesser known cousin of the field of Databases
• Databases: focus on structured data

• IR: unstructured data: “documents”

• unstructured data is not really unstructured
• Information retrieval vs. data retrieval?
• IR focused on human users and their needs
• DB optimized to serve as building block for higher-level apps

Structured vs. Unstructured Data:

- scientific articles, novels, poems, jokes, web pages, images

Search Problem: “Given 1 million text documents, find all
documents that are about kangaroos”
Recall: the fraction of the relevant documents that are retrieved:

recall =

Evaluation in IR: Precision versus Recall

|Ra|
|R|

Precision: the fraction of retrieved documents (A) that are relevant:

precision =
|Ra|

|A|

Collection

Answer Set |A|Relevant Docs |R|
Relevant documents

in answer set |Ra|

• Suppose there are 160 documents about kangaroos
• Our search tools return 100 documents
• Of these 100 documents, 80 are about kangaroos

Example: Precision versus Recall

• Suppose there are 160 documents about kangaroos
• Our search tools return 100 documents
• Of these 100 documents, 80 are about kangaroos

• Precision is 80/100 = 0.8
• Recall is 80/160 = 0.5

Example: Precision versus Recall

• Suppose there are 160 documents about kangaroos
• Our search tools return 100 documents
• Of these 100 documents, 80 are about kangaroos

• Precision is 80/100 = 0.8
• Recall is 80/160 = 0.5

• Also used for many ML problems

Example: Precision versus Recall

How do you know that a document is relevant
to a topic or query?

How do you know that a document is relevant
to a topic or query?

You ask somebody!

An expert, a student volunteer

People getting paid to label things

• Problem: “return documents relevant to a particular query/topic”
• Extreme cases:

- if system returns no result: precision 100% but recall 0%
- if system returns all documents as result: recall 100% but precision ~0%

• Maybe in the middle:
- 8 relevant results in collection
- 6 relevant results in 10 returned results
- recall = 0.75, precision = 0.6

• fundamental trade-off

• Real IR systems use more complex evaluation measures

recall

precision

bad

good

0
0

1

1

Evaluation in IR: More Realistic Measures

• Often only interested in top-ranked results (recall not that useful)

• Popular measure: precision@k (p@k)

• For example, p@10: what fraction of top-10 results is relevant?

• p@10 = 0.59 à over many queries, about 59% of top 10 are relevant

• But we should also take degree of relevance and position into account

• We want highly relevant results at the very top

• Other measures: map, ndcg, rbp, and many others

• Ongoing area of research

• Indexing: create a full-text or keyword index

• Querying/ranking: find documents most relevant to a user query

• Clustering: group documents in sets of similar ones

• Categorization: assign documents to given set of categories

• Citation Analysis: find frequently cited or influential papers

• Summarization: automatically create a summary

• Machine translation: translate text between languages

• Info extraction/tagging: identify names of people, organizations

Typical Operations in IR Systems

Problems more typically addressed by NLP

IR different from NLP and from String Processing

• IR usually does not analyze grammar, local/sentence structure
(document as a set or bag or words - mostly)

• NLP analyzes sentence structure (shallow/deep parsing)

• IR: simple statistical methods, good for search & categorization
• NLP: good for automatic translation, summarization, extraction

• IR is largely language-independent
• NLP uses more knowledge about the language (grammar, thesaurus)

• NLP: rooted in linguistics, grammar vs. statistical NLP

• Web Search: NLP has proven useful in many cases
- extraction/tagging: finding references to people, orgs, places
- analyzing and understanding user queries
- often more important to understand queries than docs (user intent)

IR versus NLP: (Natural Language Processing, or Computational Linguistics)

IR versus Recommender Systems

• IR usually assumes some commonality of user interests
• RecSys assumes users have different preferences

• In IR, the focus is on answering search queries
• RecSys do not need queries (Spotify: “find some music I like”)

• However, IR and RecSys are converging as IR systems
need to model personal preferences, and RecSys need
to support queries on large data stets

IR versus Recommender Systems

Early Historical Development of IS and IR
• Babylonians, Greeks, Romans, etc.

• Indexing and creation of concordances
- algorithms for (full-)text indexing
- e.g., Dobson’s Byron concordance (1940-65, “last of the handmade concordances”)

• Library of Congress and Dewey Library Classifications

• Documentalism: movement in early 1900s to organize all
the information in the world in a structured form

• Microfilm rapid selectors and the Memex

• Bibliometric and Informetric distributions:
- Bradford, Lotka, Zipf, Pareto, Yule (1920s-40s)

• Citation Analysis and Social Network Analysis (1950s)

(IS = Information Science)

• microfilm for storage of large amounts of data
• storage density in MB per square inch (1925)
• but how can we search such massive data?
• idea:

- add index terms to microfilm boundaries
- build rapid selection machines that can scan index

• Rapid Microfilm Selectors:
- use light and photo cells to find matches in index terms
- scan hundreds of index cards per second

Rapid Microfilm Selectors:

Source: M. Buckland, UC Berkeley
See http://www.sims.berkeley.edu/~buckland/goldbush.html

http://www.sims.berkeley.edu/~buckland/goldbush.html

Rapid Microfilm Selectors:

• “As We May Think”, Atlantic Monthly, 1945 (mostly written in1939)

Memex: Vannevar Bush (1890-1974)

http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm

• device for storing and retrieving information

• storage based on microfilm

• users can store all their experiences and knowledge
and retrieve information later

• trails allow users to link different pieces of information

• Basically, Memex proposed the idea of hyperlinks!

Memex:

• distributions observed in many fields of science
• some things occur much more frequently than others
“some authors are much more often cited than others”
“some people have much more money than others”
“some web pages have more in-links than others”
“some books or songs are more popular than others”
“some words are much more often used than others”

• often follows a particular class of distributions: f(i) ~ i

Zipf and Bibliometric/Informetric Distributions

-z

f(i) ~ i

• Zipf distributions, power laws, Pareto distribution, … (not always the same)
• larger z means larger skew

• heavy-tailed: “some may have a lot more, but most stuff is owned by the many”
• non heavy-tailed: “some have a lot more, and own almost everything”
• similar observations in economics, social sciences, biology, etc.

• e.g., relevance to music distribution - from broadcast to personalized

Zipf and Bibliometric/Informetric Distributions (ctd.)

-z

• “who has written the most influential papers in physics?”
• “who is the most influential person in a social network?”
• maybe the person who knows the largest number of people?
• or someone who knows a few influential people very well?

graph-theoretic approaches to analyzing
social networks and citation graphs

(Katz 1953, Garfield 1967)

• national security applications:
- funding, communication, coordination
- telephone call graphs, email graphs

• social networks (facebook, twitter, wechat)

• sociology
Note: degrees in networks often have Zipf (power law) properties

Citation and Social Network Analysis

Historical Development of IR (after 1960)
• early work by H.-P. Luhn (KWIC index, SDI, abstraction)

• hypertext (Nelson, Engelbart, 1960s)
- links between different documents and sections
- Xanadu system, hypertext community (HT conferences)

• Cranfield experiments (Cleverdon, 1960s)
• vector space model and ranking methods

- Salton et al (Cornell), 1960s
- cosine measure, SMART system
- probabilistic relevance models (1970s)

• automatic text classification using ML (1960s to now)

• world wide web, Berners-Lee, 1991
- earlier: gopher, archie, WAIS
- 1994: Mosaic browser, breakthrough in size of the web
- 1994/1995: first generation of crawler-based commercial search engines

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

• a data structure that for supporting IR queries
• most popular form: inverted index structure
• like the index of a book

Text Index:

inverted index

aalborg 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

disks with documents

indexing

Boolean Querying:

Boolean queries: cafes in Brooklyn

cafe AND Brooklyn

look up

aalborg 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

Boolean Querying:

Boolean queries: cafes in Brooklyn

cafe OR Brooklyn

look up

aalborg 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

Boolean Querying:

Boolean queries: cafes in Brooklyn

(cafe OR restaurant) AND Brooklyn

look up

aalborg 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

Boolean Querying:

Boolean queries: cafes in Brooklyn

(cafe OR restaurant) AND Brooklyn

unions/intersections of sorted lists

look up

aalborg 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

Ranking: “return best documents first”

Ranking: “return best documents first”

• what does that mean?

Ranking: “return best documents first”

• what does that mean?
• who decides what is “best”?

Ranking: “return best documents first”

• what does that mean?
• who decides what is “best”?
• Assumption: the user decides what is best

Ranking: “return best documents first”

• what does that mean?
• who decides what is “best”?
• Assumption: the user decides what is best

“make the user happy”

• Problem #1: we do not know what the user wants

• Problem #2: does the user know what she wants?

• Problem #3: relevance versus importance versus quality/veracity

• Problem #4: system goals, fairness, and equity

Ranking: “return best documents first”

• but basically, we need human judgments to evaluate

Ranking: “return best documents first”

• but basically, we need human judgments to evaluate
• traditionally, IR researchers collect feedback from paid or

unpaid volunteers
• Cranfield methodology for evaluating search tools (since 1960s)
• today, search engines pay millions per quarter to get feedback

Basic structure of a simple traditional IR system

disks

Index

indexing

user interface
Query: “computer”

look up

store

small document collection

Simple Traditional IR System (before the web)

• constructs and maintains inverted index on documents

• may supports Boolean or ranked queries

• may use automatic or manual classification

• may support other clustering techniques

• may support advanced browsing operations

• “searching vs. browsing”

• often small well-structured collections (news, medical articles)

• queries with many keywords (up to hundreds)

Web Search vs. Traditional IR Systems:

• data acquisition important (crawling the web)
• collections are much larger (3 billion pages = 50 TB)
• documents are of very mixed quality and types
• queries are VERY short (less than 3 words on average)
• traditional statistical techniques do not work as well
• we have additional features we can use:

- hyperlink structure
- usage data / logs (of course, privacy issues)

• on the other hand, there is search engine manipulation!

• each document D represented as set of words

• a query Q is also just a set of words

• let L be the set of all words in the collection, |L| = m

• D and Q correspond to m-dimensional vectors
- if word does not occur in D resp. Q, the corresponding

element is set to 0
- otherwise, element is positive

• score of D with respect to query Q is D * Q

• return documents with highest k scores

Foundations: Vector-Space Model in IR

• Example: put a 1 into vector for each word

L = {a, alice, bob, book, like, reads}, m = 6
doc1: “Bob reads a book” D1 = (1, 0, 1, 1, 0, 1)
doc2: “Alice likes Bob” D2 = (0, 1, 1, 0, 1, 0)

doc3: “book” D3 = (0, 0, 0, 1, 0, 0)

Vector-Space Model (ctd.)

• Example: put a 1 into vector for each word

L = {a, alice, bob, book, like, reads}, m = 6
doc1: “Bob reads a book” D1 = (1, 0, 1, 1, 0, 1)
doc2: “Alice likes Bob” D2 = (0, 1, 1, 0, 1, 0)

doc3: “book” D3 = (0, 0, 0, 1, 0, 0)

Vector-Space Model (ctd.)

document matrix

• Example: put a 1 into vector for each word

L = {a, alice, bob, book, like, reads}, m = 6
doc1: “Bob reads a book” D1 = (1, 0, 1, 1, 0, 1)
doc2: “Alice likes Bob” D2 = (0, 1, 1, 0, 1, 0)

doc3: “book” D3 = (0, 0, 0, 1, 0, 0)

query: “bob, book” Q = (0, 0, 1, 1, 0, 0)

Vector-Space Model (ctd.)

• Example: put a 1 into vector for each word

L = {a, alice, bob, book, like, reads}, m = 6
doc1: “Bob reads a book” D1 = (1, 0, 1, 1, 0, 1)
doc2: “Alice likes Bob” D2 = (0, 1, 1, 0, 1, 0)

doc3: “book” D3 = (0, 0, 0, 1, 0, 0)

query: “bob, book” Q = (0, 0, 1, 1, 0, 0)

D1*Q = 2, D2 * Q = 1, D3 * Q = 1

Vector-Space Model (ctd.)

query vector

• Example: put a 1 into vector for each word

L = {a, alice, bob, book, like, reads}, m = 6
doc1: “Bob reads a book” D1 = (1, 0, 1, 1, 0, 1)
doc2: “Alice likes Bob” D2 = (0, 1, 1, 0, 1, 0)

doc3: “book” D3 = (0, 0, 0, 1, 0, 0)

query: “bob, book” Q = (0, 0, 1, 1, 0, 0)

D1*Q = 2, D2 * Q = 1, D3 * Q = 1

• very primitive ranking function: “how many words in common?”
• smarter functions: assign appropriate weights to doc vectors
• vector-matrix multiplication to score are documents

Vector-Space Model (ctd.)

• higher score for more occurrences of a word
• higher score for rare words
• lower score for long documents

Vector-Space Model (ctd.)

• higher score for more occurrences of a word
• higher score for rare words
• lower score for long documents

• example: “cosine measure” (and many others)

• = number of occurrences of term t in document d

• = total number of occurrences of t in the collection
• N = total number of documents

Vector-Space Model (ctd.)

tf
d,tf

• = number of occurrences of term t in document d
• = total number of occurrences of t in the collection of N documents

Previous Example: L = {a, alice, bob, book, like, reads}, m = 6

doc1: “Bob reads a book” D1 = (1, 0, 1, 1, 0, 1)

doc2: “Alice likes Bob” D2 = (0, 1, 1, 0, 1, 0)
doc3: “book” D3 = (0, 0, 0, 1, 0, 0)

query: “bob, book” Q = (0, 0, 1, 1, 0, 0)

D1*Q = 2, D2 * Q = 1, D3 * Q = 1

Note: N = 3, and is either 0 or 1 for all d and t, since no doc contains a word twice

doc1: “Bob reads a book” D1 = (, 0, , , 0,)

doc2: “Alice likes Bob” D2 = (0, , , 0, , 0)

doc3: “book” D3 = (0, 0, 0, 1, 0, 0)

query: “bob, book” Q = (0, 0, ln(2.5), ln(2.5), 0, 0)

D1*Q = ln(2.5) + ln(2.5) D2 * Q = ln(2.5) D3 * Q = ln(2.5)2
1

2
1

3
1

2
1
2
1

2
1

3
1

3
1

3
1

Cosine:

2
1

tf
d,tf

d,tf

• another popular (usually better) function: BM25

∑
∈ +

+
×

+

+−
=

qt td

td

t

t

fK
fk

f
fNdqBM

,

,1)1(
)

5.0
5.0

log(),(25

)
||
||)1((1
avgd
dbbkK ×+−×=

• N: total number of documents in the collection;

• ft: number of documents that contain term t;

• fd,t: frequency of term t in document d;

• |d|: length of document d;

• |d|avg: the average length of documents in the collection;

• k1 and b: constants, usually k1 = 1.2 and b = 0.75

• vast amount of work on ranking in IR

• retrieval models: vector space, probabilistic, language, neural

• retrieval model: formal way of reasoning about ranking

Ranking and Retrieval Models

• vast amount of work on ranking in IR

• retrieval models: vector space, probabilistic, language, neural

• retrieval model: formal way of reasoning about ranking

• probabilistic retrieval model: (Robertson 1977)

“rank documents according to their likelihood to be relevant to query”

Ranking and Retrieval Models

• vast amount of work on ranking in IR

• retrieval models: vector space, probabilistic, language, neural

• retrieval model: formal way of reasoning about ranking

• probabilistic retrieval model: (Robertson 1977)

“rank documents according to their likelihood to be relevant to query”

• this allows us to derive ranking functions under certain assumptions

• e.g., Bayesian approaches, under assumptions about docs & queries

Ranking and Retrieval Models

• vast amount of work on ranking in IR

• retrieval models: vector space, probabilistic, language, neural

• retrieval model: formal way of reasoning about ranking

• probabilistic retrieval model: (Robertson 1977)

“rank documents according to their likelihood to be relevant to query”

• this allows us to derive ranking functions under certain assumptions

• e.g., Bayesian approaches, under assumptions about docs & queries

• Language-modeling approach: document is relevant to a query
if query and document are likely to be generated by same underlying
random process

Ranking and Retrieval Models

• vast amount of work on ranking in IR

• retrieval models: vector space, probabilistic, language, neural

• retrieval model: formal way of reasoning about ranking

• many different ranking functions, based on different models

Ranking and Retrieval Models

• vast amount of work on ranking in IR

• retrieval models: vector space, probabilistic, language, neural

• retrieval model: formal way of reasoning about ranking

• many different ranking functions, based on different models

• additional factors in ranking (mainly for web):
- higher weight if word in title, in large font, in bold face
- search engines: higher score if word in URL, in anchortext
- distance between terms in text (near, or far away?)
- user feedback (clicks) or browsing behavior?
- hyperlink structure

Ranking and Retrieval Models

• vast amount of work on ranking in IR

• retrieval models: vector space, probabilistic, language, neural

• retrieval model: formal way of reasoning about ranking

• many different ranking functions, based on different models

• additional factors in ranking (mainly for web):
- higher weight if word in title, in large font, in bold face
- search engines: higher score if word in URL, in anchortext
- distance between terms in text (near, or far away?)
- user feedback (clicks) or browsing behavior?
- hyperlink structure

• baseline execution: “compute scores of all documents containing at least
one query term, by scanning the inverted lists and ranking”

Ranking and Retrieval Models

• many traditional ranking methods focus on term matching

• that is, do the query terms occur in the document?

• but such lexical similarity is not the same as semantic simularity

The Vocabulary Mismatch Problem

• many traditional ranking methods focus on term matching

• that is, do the query terms occur in the document?

• but such lexical similarity is not the same as semantic similarity

(Example due to Antonio Mallia)

The Vocabulary Mismatch Problem

• many traditional ranking methods focus on term matching

• that is, do the query terms occur in the document?

• but such lexical similarity is not the same as semantic simularity

The Vocabulary Mismatch Problem

• due to differences in wording between user and document

• because there are many ways to ask same question

• synonyms or closely related terms: car/automobile, boat/yacht

• or because users and document authors have different background

The Vocabulary Mismatch Problem

• due to differences in wording between user and document

• because there are many ways to ask same question

• synonyms or closely related terms: car/automobile, boat/yacht

• or because users and document authors have different background

• traditional approach: query expansion and relevance feedback

The Vocabulary Mismatch Problem

• due to differences in wording between user and document

• because there are many ways to ask same question

• synonyms or closely related terms: car/automobile, boat/yacht

• or because users and document authors have different background

• traditional approach: query expansion and relevance feedback

• also, document expansion

The Vocabulary Mismatch Problem

• due to differences in wording between user and document

• because there are many ways to ask same question

• synonyms or closely related terms: car/automobile, boat/yacht

• or because users and document authors have different background

• traditional approach: query expansion and relevance feedback

• also, document expansion

• very recently: transformers and high-dimensional vector
representations for modeling semantic similarity

• word2vec, BERT, nearest-neighbor approaches

The Vocabulary Mismatch Problem

• query logs and modeling user behavior

• relevance feedback and query expansion

• advanced issues in search system evaluation

• clustering and decomposition techniques (LSI, SVD)

• optimized index representation, access, and compression

• distributed search systems

• adversarial information retrieval

• learning to rank, and deep neural nets for ranking

Many Other Important Ideas in IR

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

Basic Structure of a Search Engine:

crawler

disks

index

analysis/
mining

Search
interfacequery: “computer”

query
processing

indexing

Four Major Components:

• data acquisition / web crawling
- to collect pages from all over the web
- messy process with lots of hand tuning

• data analysis / web mining
- link analysis, spam detection, query log analysis
- using mapreduce or similar specialized platforms

• index building

• query processing

most of the cycles spent in data analysis and query proc

Crawling:
Crawler

disks• fetches pages from the web
• starts at set of “seed pages”
• parses fetched pages for hyperlinks
• then follows those links (e.g., BFS)

• variations:
- recrawling
- focused crawling
- crawl priorities to focus on important pages or to balance load

Indexing:

disks

• parse & build lexicon & build index

• indexes are very large

I/O-efficient and parallel algorithms needed

“inverted index”

indexing

aardvark 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

Querying:

Boolean queries: (dog AND cat) OR mouse

compute unions/intersections of lists

Ranked queries: zebra armadillo

give scores to all docs in union/intersect

look up

aardvark 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

Ranking:

• return best pages first
• term, link, and click-based approaches
• machine-learned ranking
• also add meaningful snippets

Hardware setup:
• large data centers running customized Linux
• document and index data partitioned over many machines

• no ACID (E. Brewer: “BASE = Basically Available, Soft-state, Eventual consistency”)

• not a (relational) database

high-speed
LAN

Servers with
large RAM,

SSDs, and HDDs

Hardware setup:
• large data centers running customized Linux
• document and index data partitioned over many machines

• no ACID (E. Brewer: “BASE = Basically Available, Soft-state, Eventual consistency”)

• not a (relational) database

• search system challenges led to new generation of software tools:
- distributed file systems such as Google FS, Hadoop FS
- tuple stores and noSQL DBs (Cassandra, Hbase, Mongo, BigTable, Sherpa)
- data analysis tools (Hadoop mapreduce, Pig, Spark, Giraph)
- big impact on emerging data center architectures and energy management techniques

• many data centers with 10000s of servers each (Google)

• > trillions of web pages and many millions of web sites

• need to crawl, store, and process petabytes of data

• >> 50000 queries / second (major engines)

• “giant-scale” or “planetary-scale” web service

(google search, facebook, gmail, twitter, wechat)

• but a lot of proprietary code and secret recipes

Major search engines are based on scalable
clusters of low-cost servers connected by LANs

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

Web Crawling:
• Basic idea:

- start at a set of known URLs
- explore the web in “concentric circles” around these URLs

Web Crawling:
• Basic idea:

- start at a set of known URLs
- explore the web in “concentric circles” around these URLs

start pages

distance-one pages

distance-two pages

Simple Breadth-First Search Crawler:

this will eventually download all pages reachable from the start set
(also, need to remember pages that have already been downloaded)

insert set of initial URLs into a queue Q

while Q is not empty

currentURL = dequeue(Q)

download page from currentURL

for any hyperlink found in the page

if hyperlink is to a new page

enqueue hyperlink URL into Q

Traversal strategies: (why BFS?)
• crawl will quickly spread all over the web

• load-balancing between servers

• in reality, more refined strategies (but still somewhat BFSish)

• many other strategies (focused crawls, recrawls, site crawls)

• Scripting languages (Python, Perl)

• Java (performance tuning can be tricky)

• C/C++ with sockets (low-level)

• available crawling tools (usually not completely scalable)

Tools/languages for implementation:

Details: (lots of ‘em)
• handling filetypes

(exclude some extensions, and use mime types)

• URL extensions and CGI scripts
(to strip or not to strip? Ignore?)

• frames, imagemaps, base tags

• black holes (robot traps, spam bots)
(limit maximum depth of a site)

• different names for same site
(could check IP address, but no perfect solution)

• duplicates, mirrors

Performance considerations: later!

Robot Exclusion Protocol
• file robots.txt in root directory
• allows webmaster to “exclude”

crawlers (crawlers do not have to obey)
• may exclude only certain robots or certain parts of the site

- to “protect proprietary data” (e.g., eBay case)
- to prevent crawlers from getting lost
- to avoid load due to crawling
- to avoid crashes (protect CGI bin)

• also allows to set crawl delay
• details at https://yoast.com/ultimate-guide-robots-txt/

• if at all possible, follow robot exclusion protocol!

https://yoast.com/ultimate-guide-robots-txt/

Robot exclusion - example:

Robot META Tags

• allow page owners to restrict access to pages

• does not require access to root directory

• excludes all robots

• not supported by all crawlers, rarely used

• “noindex” and “nofollow”

• rarely used

Crawling Courtesy
• minimize load on crawled server

• no more than one outstanding request per site

• better: wait some seconds between accesses to same site
(this number is not fixed)

• problems:
- one server may have many sites (use domain-based load-balancing)
- one site may have many pages (3 years to crawl 3-million page site)

- intervals between requests should depend on site

• give contact info for very large crawls (email or URL)

• expect to be contacted ...

Crawling Challenges
• crawler may have to run for several weeks or months

• will interact with millions of web server

• some of them will be odd:
- noncompliant server responses

- unfamiliarity with robot exclusion protocol
- robot traps
- CGI and unintended consequences
- network security tools
- weird webmasters

• unclear legal situation for crawling (in 3 ways)

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

Indexing:

disks with pages

• would like to build an index
- in I/O-efficient manner if index cannot fit in main memory
- in parallel on many machines and using many cores

• closely related to sorting
• also, can we compress an index (ideally while building it)

inverted index

indexing

aardvark 3452, 11437, …..
.
.
...
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

Indexing:

• index entry or index posting
- usually contains document ID and frequency of term in document
- or a precomputed term impact score and sometimes even position info

• inverted list: all index entries for one term
• document IDs can be assigned in various ways

inverted index

aardvark 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

�

• we are interested in building a “full-text index”

• meaning: all words/terms that occur in the doc are indexed

• alternative: “keyword index” -- only index certain words
- e.g., words in title or abstract, keywords provided by publisher
- words that are identified as important via text mining or NLP
- or other features/terms that we want to associate the document with

Basic Indexing Concepts and Choices:

• we are interested in building a “full-text index”

• meaning: all words/terms that occur in the doc are indexed

• alternative: “keyword index” -- only index certain words
- e.g., words in title or abstract, keywords provided by publisher
- words that are identified as important via text mining or NLP
- or other features/terms that we want to associate the document with

• what is a word?

Basic Indexing Concepts and Choices:

• we are interested in building a “full-text index”

• meaning: all words/terms that occur in the doc are indexed

• alternative: “keyword index” -- only index certain words
- e.g., words in title or abstract, keywords provided by publisher
- words that are identified as important via text mining or NLP
- or other features/terms that we want to associate the document with

• what is a word?
- anything between two spaces
- or between two separating characters such as , ; . () - [] ? and so on
- includes numbers, misspelled words, garbage (maybe limit length)
- how do we separate words e.g., in Chinese?
- is “New York City” one word or three?

• lexicon: set of all words encountered in collection

Basic Indexing Concepts and Choices:

• for each word occurrence:
store index of document where it occurs, and frequency of word in document

• also store position within document? (often yes)
- increases space for index significantly!
- allows efficient search for phrases
- relative positions of words may be important for ranking
- otherwise, need to scan document to determine positions

• also store additional context of words? (in title, bolded, in URL, in anchortext)

• stop words: common words such as “is”, “a”, “the”
• ignore stop words? (maybe better not)

- saves space in index
- cannot search for “to be or not to be” or “the who”
- queries with stop words expensive - more important than space issues

• stemming: “runs = run = running” (depends on language)

• parsing / tokenization issues

Basic Indexing Concepts and Choices:

Indexing: (simplified approach)

(1) scan through all documents

(2) for every work encountered
generate entry (word, doc#, pos)

(3) sort entries by (word, doc#, pos)

(4) now transform into final form

doc1: “Bob reads a book”
doc2: “Alice likes Bob”
doc3: “book”

bob, 1, 1 reads, 1, 2 a, 1, 3

book,1, 4 alice, 2, 1 likes, 2, 2

bob, 2, 3 book, 3, 1

a, 1, 3 alice, 2, 1 bob, 1, 1

bob, 2, 3 book, 1, 4 book, 3, 1

likes, 2, 2 reads, 1, 2

a: (1,3)
Alice: (2, 1)
Bob: (1, 1), (2, 3)
book: (1, 4), (3, 1)
likes: (2, 2)
reads: (1, 2)

A Naive Approach
a) create an empty dynamic

data structure (e.g., hash
table) in main memory;

b) scan through all documents,
for every word encountered:

i. create an entry in dictionary if
the word does not exist;

ii. Insert (doc id, pos) into the
inverted list corresponding to
the word;

c) traverse the dictionary and
dump inverted index on disk

doc1: “Bob reads a book”
doc2: “Alice likes Bob”
doc3: “book”

bob 1 1

bob
reads
a
book
alice
likes

1 1 2 3
1 2

1 3

1 4

2 1

2 2

3 1

…

…

A Naive Approach
a) create an empty dynamic

data structure (e.g., hash
table) in main memory;

b) scan through all documents,
for every word encountered:

i. create an entry in dictionary if
the word does not exist;

ii. Insert (doc id, pos) into the
inverted list corresponding to
the word;

c) traverse the dictionary and
dump inverted index on disk

doc1: “Bob reads a book”
doc2: “Alice likes Bob”
doc3: “book”

bob 1 1

bob
reads
a
book
alice
likes

1 1 2 3
1 2

1 3

1 4

2 1

2 2

3 1

…

…DOES
NOT
SCALE

• If data too large for memory then we need to implement
indexing carefully to exploit properties of hard disk or SSD
– would like to index thousands of pages per second

– need to store pages on disk in consecutive order (we cannot
afford separate seek time for each page)

– need to implement highly efficient sort of large files of postings
on disk (need to sort many MB of data per second)

– resulting inverted index needs to be laid out sequentially to allow
efficient query processing

– Ideally integrate compression into indexing process as well as
the final index structure format

• More details on how to do this in next lectures

Inverted index compression

• encode sorted runs by their gaps
significant compression for frequent words!

• we can also compress frequencies
• many highly optimized schemes studied
• can decompress billions of postings per second

..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.

..
arm 4, 15, 10, 69, 45, ...
armada 145, 312, 332, ...
armadillo 678, 1456, 1836, ...
armani 90, 166, 116, 139, ...
.
.

• suppose we only store document IDs (no position or context)

• should we use 32-bit integer for each document ID?

Lecture 1: Introduction
I. The Web and Web Search:

- how the web works
- web search tools

II. Introduction to Information Retrieval
- origins of IR
- basic setups and techniques

III. Main Components of a Search Engine
- basic search engine architecture
- web crawling
- indexing
- querying and ranking

Querying:

Boolean queries: (dog AND cat) OR mouse

compute unions/intersections of lists

Ranked queries: zebra armadillo

give scores to all docs in union/intersect

look up

aardvark 3452, 11437, …..
.
.
.
..
arm 4, 19, 29, 98, 143, ...
armada 145, 457, 789, ...
armadillo 678, 2134, 3970, ...
armani 90, 256, 372, 511, ...
.
.
.
.
.
zebra 602, 1189, 3209, ...

• most web queries involve one or two common words
Boolean querying returns millions of hits

• would like to rank results by …
- importance?
- relevance?
- accuracy?

• in general, arbitrary score function:
“return pages with highest score relative to query”

• use inverted index as access path for pages
- start with (possibly expanded) Boolean query (e.g., OR)
- only rank Boolean results
- in fact, try to avoid computing complete Boolean results

(pruning methods, covered much later in semester)

• scoring function: assigns score to each document with respect
to a given query

• top-k queries: return k documents with highest scores

• example cosine measure for query with terms t to t

• can be implemented by computing score for all documents
that contain any of the query words (union of inverted lists)

• in case of search engines: often intersection instead of union

• in large collections, lists are many MB for average queries

0 m-1

Cascading Query Execution

• Everybody now uses highly complex ranking functions
• But these are expensive to compute
• Cascading approach (e.g., Wang/Lin/Metzler, SIGIR 2011)

• Each cascade trained on output of previous
• Simple ranking function = cascade #0 (candidate generation)

inverted
lists for

query term

top
2000

top
100 result

BM25 or
similar

cascade
#1

cascade
#2

Approximate Semester Overview
• Chapter 1: Introduction
• Chapter 2: Indexing
• Chapter 3: Query Processing
• Chapter 4: Data and Index Compression
• Chapter 5: Link Analysis & Computing with Web Graphs
• Chapter 6: Search Logs, Sessions, and Clicks
• Chapter 7: Advanced Crawling and Search Architecture
• Chapter 8: Search Evaluation and Quality
• Chapter 9: Query Expansion and Relevance Feedback
• Chapter 10: Information Retrieval Models
• Chapter 11: Learning to Rank and Neural IR
• Chapter 12: Computational Advertising and Spam

