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Abstract

Metals and minerals are critical in the construction of solar panels, batteries and electric
vehicles. However, the emissions produced through extraction must be controlled and monitored.
The goal of the paper is twofold: a) First establish a unique Nash equilibrium in the context of N
producers of a commodity that creates emissions in the extraction process and a regulator who
has established a cap-and-trade mechanism for these emissions. b) Then extend the problem to
a multi-economy setting in which miners and oil companies operate in several regions where they
face several types of regulations, such as the Cross Border Mechanism (CBAM) which became
effective in Europe in May 2023. Accordingly, we study the EU-traded carbon instruments which
are fairly liquid at this moment and propose a two-factor model that is calibrated to traded carbon
Futures and options. Our claim is that, as explained by Damon et al. (2019) grandfathering gives
today too much advantage to the first emitters at the expenses of new entrants, while the cap-
and-trade mechanism, using Carbon Permits for instance, cannot be easily extended to a global
economy. Carbon Derivatives, instead, provide a classical and efficient way to complete the
emissions market.
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1 Introduction

The goal of the paper is twofold: a) First establish a unique Nash equilibrium in the context of
N producers of a commodity who create emissions in the extraction process and a regulator who
has established a cap-and-trade mechanism for these emissions. b) Then extend the problem to a
multi-economy setting in which big miners and oil companies operate in several regions where they
face several types of regulations, such as the Cross Border Mechanism (CBAM) that has become
effective in Europe in May 2023. Our claim is that carbon offsets preserving forests for instance
are a beautiful concept but not easy to construct, presently at least. Instead, carbon derivatives
purchased at the international level provide a safer avenue. Accordingly, we study the EU-traded
carbon instruments which are reasonably liquid at this moment and propose a two-factor model
that we calibrate on Carbon Futures and options

Within a cap-and-trade framework, the government institutes an emissions cap and promulgates
an amount of emission permits proportional to that cap. Firms need to own permits for every ton
of CO2 they emit into the atmosphere (COP21, 2015). Firms can buy or sell permits in a carbon
market that ultimately sets the emissions price. As in the second part of our paper, those with
higher emission costs have the option to buy permits from firms that can lessen their emissions at
lower costs. Hence, at core, the cap-and-trade program is a market-based incentive that establishes
a regulatory stipulation whereby companies involved in the scheme meet an aggregate emissions
cap and the regulator allows the compliance requirement to be traded across companies. Initially,
permits are granted at a low price for existing users – a practice called grandfathering (Damon et al.,
2019). Within a specific industry, companies that are covered can use their rights to emit CO2 to
compensate for their emissions. These rights must reach an equilibrium between the companies and
the regulator. On the one hand, extracting companies must maximize profits by optimizing their
extractions rates while operating under the cap. On the other hand, the regulator must maximize
its tax rate while complying with the Paris Accord to limit the level of pollution in the atmosphere.

In the first part of our paper, we exhibit a unique Nash Equilibrium under which the regulator
optimizes the tax rate it levies on the extracting company to minimize CO2 emissions, while the
extracting companies optimize the extraction rate of their mining operations to maximize their
profits. Thus, the strategic interaction between the participants leads to different outcomes from
those companies that are not covered under the cap-and-trade system. This interplay leads to a
unique Nash Equilibrium in which the actions of each participant are the best response to the other
participant’s best response.

However, as a market-based approach, the cap-and-trade generates a few macro-economic con-
cerns. First, the provision of allowances is such that emissions are reduced only by companies with
a relatively lower cost of doing so. Second, in the cap-and-trade framework, the mandatory con-
dition for alleviating the emission of CO2 in the most cost-effective manner is that all firms must
reduce CO2 at the same marginal cost, which is not easy to reach in a real market. Lastly, since
market-based perspectives create incentives for innovative technologies that can lessen the cost of
decreasing emissions, companies are not equally equipped to compete in such a market. For exam-
ple, BP recently entered the offshore wind market through a joint venture with Norway’s Equinor1.
This partnership will allow BP to significantly reduce its carbon emission in the US through the
development of offshore wind projects. As a result, BP will have access to extra carbon permits
they could sell in the carbon market, thus purposely creating for itself an advantage in terms of

1 Reuters, 2020.
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a global ESG profile compared to a company like Exxon for example, which has fewer renewable
projects. We argue in the second part of the paper that the excess of allowances created by BP
for itself can be sold as Carbon derivatives in California (the most liquid one in the US) or in the
EU. Along similar lines, Microsoft corporation and the Australian farm Wilmot Cattle entered two
years ago a partnership allowing Microsoft to use grazing cattle to offset its carbon footprint (via
carbon sequestration)2. According to the deal, Microsoft bought half a million dollars’ worth of
carbon credits from Wilmot Cattle. Evidently, this deal gave a large advantage to Wilmot Cattle
in the Australian farming industry as it used renewable technology to reduce its carbon emissions
and sell its excess of allowances in the carbon market of its choice. Returning to the US, after the
August 2022 passage of the Inflation Reduction Act (IRA), incentives for renewable energy tech-
nologies such as carbon sequestration, charging stations, and electric vehicles (EVs) have grown
substantially (Matlock and Chesnick, 2022), thus creating further areas of imperfect competition
and opportunities in the carbon market. These examples emphasize the existence of a state of
intrinsic market imperfection within the cap-and-trade framework.

We extend the analysis of Aı̈d and Biagini (2023) to a multi-economy setting that represents
the reality of the three largest iron ore miners3 for instance, and to the existence of liquid Carbon
Derivatives accessible to all economic players. We argue like Spilker and Nugent (2022) that a
voluntary Carbon Derivatives market has many virtues going forward as metal miners and oil
producers are more sensitive to their ESG ratings than to a geographically undefined regulator.
Our Carbon Derivatives model is presented in section 3. In the next section (section 2), we introduce
our carbon regulation and competition model. We conclude in section 4.

2 A Carbon Regulation and Competition Model

This section presents a stochastic differential game model blended with the theory of optimal
control. The control variables are the tax rate u0(t) chosen by player 0 (the regulator) and the
extraction rates u1(t), · · · , un(t) of player ii=1,···n (the commodity company). While accounting for
the carbon cap ζi, we examine the model within a long-term lease setting and derive the optimal
tax and extraction rates under a unique Nash Equilibrium assumption.

2.1 Problem Formulation

One of the intricacies of the regulation of carbon markets lies in the ability for firms to trade
allowances over several periods. For that matter, we first consider a time horizon T , 0 < T ≤ ∞.
We assume that the carbon market is regulated through an emissions tax rate (u0(t), 0 < t ≤ T )
and that all emitters (companies), subjected to the tax set by the regulator, extract the commodity
(oil, gas, copper metal, etc.) at a rate ui(t), i = 1, · · ·n, 0 < t ≤ T . As said above, the regulator
(or government) is denoted as player 0; player i is one of n companies.

Besides, the regulator chooses to set a cap level (ζi) on the amount of CO2 player i can emit
when extracting the commodity. As in Mandell (2008), we take as given an emission cap-and-trade
regulatory protocol under which carbon allowances are issued by player 0. Each permit typically
allows any player i to emit CO2 emissions at a level not to exceed ζi (ui < ζi). The regulator
sets up the cap ζi at a level corresponding to the extraction rate (ui(t), i = 1, · · ·n) of each of the

2 Agriland, 2021.
3Vale, Rio Tinto, BHP
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player i, i = 1, · · ·n; it also seeks to maximize the income tax (u0(t), 0 < t ≤ T ) it levies on each
one of them. In parallel, each player i aims at maximizing its shares of profits from its extracting
operations. Concomitantly, both player 0 and each player i share profits from the sales of the
commodity following a rule subject to the share portion θi. The regulator expects 1 − θi percent
of the profits while each of the emitters expects θi percent of them. At 0 < t ≤ T , we denote the
price Xt of the extracted commodity and choose it to be a mean reverting process with stochastic
volatility along the lines of (Schwartz, 1997) and Heston (1993). The evolution of the profit sharing
agreement between the regulator and each of the emitters follows the rules of a differential game
problem with the following state variables:

X(t) ∈ R+ and Y1(t), · · · , Yn(t) ∈ [0,K].

For each player i = 1 · · ·n, Yi(t) ∈ [0,K] is the amount of commodity produced or extracted.
K < ∞ is the total amount of commodity available at the beginning of the lease. The state
space R+ × [0,K] encapsulates the domain of the commodity price Xt as well as the amount of
commodity extracted Y (t). ξ(t) represents the main driving process of the volatility σt. The
process σt = f(ξt) is the stochastic volatility process that captures the main noise generated by
the dynamics of our commodity price. The pricing model we apply is an extension of the mean
reverting one-factor model proposed by (Schwartz, 1997) and of the stochastic volatility model of
Heston (1993). Each player i = 1 · · ·n, acting as a controller, aims at maximizing its own profit
throughout the duration of the lease. The resulting differential game problem is characterized by
the processes X(t), Y (t) =

(
Y1(t), · · · , Yn(t)

)
and follows the dynamics below.





dX(t) = X(t)

(
κ
(
µ− ln

(
X(t)

))
dt+ σtdW (t)

)

dξt = k(α− ξt)dt+ β
√
ξtdB(t), σt = f(ξt)

dY1(t) = u1(t)dt
...

dYn(t) = un(t)dt
X(s) = x, ξ(s) = ξ, Y (s) = y where y = (y1, · · · , yn), 0 ≤ s ≤ t < ∞

(2.1)

where κ the mean-reverting rate of the commodity, k the mean-reverting rate of the stochastic
volatility, µ the long-run mean, and σ the volatility of the commodity price are constants. The
parameters α and β are also constants and are defined in Heston (1993) as the long run variance and
the volatility of volatility, respectively. We also define the function f(ξt) =

√
ξt . The correlation

between W (t) and B(t) is such that dW (t)dB(t) = ρdt for some ρ ∈ (−1, 1). W (t) and B(t) are
Wiener processes defined on a probability space (Ω,F , P ). The set U0 represents the appropriate
tax rates or fees levied by the player 0 (regulator). The set Ui embodies the extraction rates from
the mining operations of each player i = 1, · · ·n. U0 and Ui are such that

{
u0(t) ∈ U0 = [u0, u0]
ui(t) ∈ Ui = [ui, ui]

The processes u0(t), u1(t), · · · , un(t) are control variables since in cap-and-trade systems, the tax
rate on CO2 emissions depends on the production of each of the n players, i = 1, ..., n. We have
u0(t) ∈ U0 = [u0, u0]

4 and ui(t) ∈ Ui = [ui, ui]
5.

4−1 ≤ u0 ≤ 1 and 0 ≤ u0 ≤ 1. −1 ≤ u0 < 0 or negative tax would be considered a tax subsidy.
5ui, ui > 0.
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Definition 2.1. The tax rate u0(·) taking values on [u0, u0] and the extraction rates u1(·), · · · , un(·)
taking values on [ui, ui]i=1···n are admissible controls with respect to the initial data (s, x, yi) ∈
[0, T ]× R× [0,K] if:

• For each player i = 1 · · ·n,, Y (t) =
(
Y1(t), · · · , Yn(t)

)
∈ [0,K] and for t ∈ [0, T ], equation

(2.1) has a unique solution with X(s) = x, Y (s) = yy=(y1,··· ,yn), and X(t) ∈ R+.

• The processes u0(·), u1(·), · · · , un(·) are {Ft}t≥0-adapted with Ft = σ
{
B(s),W (s); s ≤ t

}
.

Assumption 1. Each of the n players has an emission cap ζi=1,...,n ∈ (0, 1] set by player 0. This
cap can also be considered as an incentive parameter.

Assumption 2. Each of the n players (i = 1, ..., n) knows its own emission cap ζi but does not
know the emission cap of the other n− 1 players.

Assumption 3. The marketplace in which carbon permits are being traded is frictionless and
liquid.

2.1.1 The Carbon Cap

In our carbon model, the admissibility condition requires that we take into consideration the ex-
traction and taxation rates that depend on the information available to the players up to time t
(see Definition 2.1). For ui=1,...,n, the extraction or production rate of the commodity extracted by
player i at any given time t during the lifetime of the contract, we hold that the extraction cost
function Ci(x, ui) of each player i is measurable and defined by (2.2).

Ci(x, ui) = ηixui + ci0 − λi log(u
2
i ), (2.2)

where ci0 ≥ 0 is the initial cost incurred by player i for setting up the extraction operations of
the commodity. 0 < ηi < 1 is the proportion of revenue allocated towards the cost. Convexity is
a fundamental property of cost functions, which property can be verified for equation (2.2) with
respect to ui. While ci0 and λi are constant, for any player i = 1 · · ·n, the emission or penalty
function is given by pi(ui) and is evaluated via (2.3) or more specifically (2.4). In order to foster
a nonpolluting environment, the government entity pegs the total amount of CO2 emissions to the
extraction volume ui for each player i such that if ui exceeds the cap ζi, the emitter is taxed by
the amount λi ln

(
ui
ζi

)
. λi > 0 plays two roles; in (2.2), it is a cost control parameter specific to

each extracting firm i (PWC, 2012) while in (2.3) and (2.4) it represents an incentive parameter,
proportional to the carbon allowances auction quote (Cramton and Kerr, 2002). Typically, within
a cap-and-trade mechanism, the total amount of the cap is divided into permits, each of which
allows the company to emit one ton of CO2. The regulator allocates these permits to companies
for free or through an auction. Over a period, the cap normally gets smaller, bestowing a growing
incentive for companies to shrink their emissions more efficiently, while retaining their production
costs down6. If ui is less than ζi, then player i is allowed to trade its excess permits with other
companies in the carbon market. As mentioned above, we amply elaborate on this in the second
part of the paper.

pi(ui) =

{
0 if ui ≤ ζi
λi ln

(
ui
ζi

)
if ui > ζi.

(2.3)

6 Environmental Defense Fund, 2020.
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Although the penalty function (2.3) expresses the capping mechanism, it is not continuous and
thereby not differentiable. To palliate this hurdle, we propose another function (2.4)7 which has
similar features but is differentiable.

p̂i(ui) = λi ln
(ui
ζi

)
. (2.4)

The penalty function (2.4) has two roles. First, if the extraction rate ui is well below the regulated
cap (ui ≪ ζi), then p̂(ui) < 0 and (2.4) acts as an incentive function. In times of commodity
scarcity, commodity companies sometimes received incentives and tax exoneration (Staats, 1974).
Equation (2.4) encapsulates this important empirical fact. Secondly, if ui > ζi then p̂i(ui) > 0. In
this case, the commodity company is penalized for its excess commodity production and (2.4) acts
as a penalty function. Diverging from traditional policy approaches such as command and control,
by setting ui < ζi, we capture the fact that the cap set by the regulator characterizes the maximum
amount of allowable CO2 player i can emit(Cramton and Kerr, 2002). In doing so, we ensure that
effective enforcement will deter all the n players from emitting above the cap level (see Figure 4).

2.1.2 The Setup

At any given time t ∈ [0, T ], each of the n players produces the commodity at the following total
profit rate

Pi

(
X(t), ui(t)

)
= X(t)ui(t)−

(
Ci

(
X(t), ui(t)

)
+p̂i(ui)

)
, i = 1, · · · , n, (2.5)

where Ci is defined in equation (2.2). Equation (2.5) implies that the pre-tax profit rate function
of each extracting company is

θiPi

(
X(t), ui(t)

)
, i = 1, · · · , n.

Accordingly, the profit rate function of the government entity without the tax revenue is

n∑

i=1

(1− θi)Pi

(
X(t), ui(t)

)
, i = 1, · · · , n.

So, the total income tax the government entity levies on each of the n commodity companies is
given by

n∑

i=1

u0(t)θiPi

(
X(t), ui(t)

)
, i = 1, · · · , n,

where u0 is the tax rate. As a result, the government (player 0)’s profit rate function is given by
(2.6) while the post-tax profit rate function of each of the companies (player i) is expressed by
(2.7).

L0

(
X(t), u0(t)

)
=

n∑

i=1

Pi

(
X(t), ui(t)

)(
(1− θi) + u0(t)θi

)
, i = 1, · · · , n; t < T. (2.6)

Li

(
X(t), u0(t), ui(t)

)
= θiPi

(
X(t), ui(t)

)(
1− u0(t)

)
, i = 1, · · · , n; 0 ≤ t < T. (2.7)

At the end of the lease, we assume that there are no extraction revenues. Hence, the profit rate of
each commodity company is either zero or equal to the cost of closing the mine. Thus, the terminal

7Equation (2.4) is obviously a concave function with respect to ui.
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profit rate of the government is the market value of the remaining commodity reserve and is given
by

Φ0

(
X(T )

)
= X(T )

n∑

i=1

(
K − Yi(T )

)
, i = 1, · · · , n.

Meanwhile, we define the terminal profit rate of each commodity company by

Φi

(
X(T ), Yi(T )

)
= X(T )Yi(T ), i = 1, · · · , n.

Without loss of generality, for i = 0, · · · , n, we hold that the running profit rate function Li and
the terminal profit rate function Φi are Lipschitz continuous on their corresponding bounded sets.
As a result, given a discount rate r > 0, the payoff functionals of player 0 and of each of the n
players are given by (2.8) and (2.9), respectively8.

J0(s, x, y, ξ;u0, u−0) =E

[∫ T

s
e−r(t−s)L0

(
X(t), u0(t), u−0(t)

)
dt

+ e−r(T−s)Φ0

(
X(T )

)∣∣∣∣X(s) = x, Yi(s) = yi, ξ(s) = ξ

]
, i = 1, · · · , n.

(2.8)

Ji(s, x, y, ξ;ui, u−i) =E

[∫ T

s
e−r(t−s)Li

(
X(t), ui(t), u−i(t)

)
dt

+ e−r(T−s)Φi

(
X(T ), Yi(T )

)∣∣∣∣X(s) = x, Yi(s) = yi, ξ(s) = ξ

]
, i = 1, · · · , n.

(2.9)
Player 0, knowing the strategy space and the profit rate function of each of the n players, attunes its
tax rate u0(·) in order to maximize its payoff functional (2.8). Equivalently, by choosing a suitable
strategy with knowledge of the space of admissible controls of player 0 and of its profit rate function,
each of the n players maximizes its payoff functional (2.9) through the adjustment of its extraction
rate ui(·). Player 0 and each of the n players do not have any information related to the strategy
either of them is currently using. This interaction corresponds to a non-cooperative differential
game in which co-operation only arises at an equilibrium. Our aim is to find such an equilibrium,
namely a non-cooperative Nash equilibrium u∗ = (u∗0, u

∗
1, ..., u

∗
n) such that, for y = (y1, · · · , yn),

Ji(s, x, y, ξ;u
∗
i , u

∗
−i) ≥ Ji(s, x, y, ξ;ui, u

∗
−i),∀ui(·) ∈ Ui(s, x, yi, ξ), i = 0, · · · , n. (2.10)

If the payoff functional of each player is at least equal to the payoff functional that would be earned
by wielding another strategy while the behavior of the other player stays constant, then the optimal
strategy profile u∗ = (u∗0, u

∗
1, ..., u

∗
n) or unique Nash Equilibrium would be obtained. We prove its

existence in the next section.

2.2 Nash Equilibrium

Definition 2.2. If u∗ = (u∗0, u
∗
1, · · · , u∗n) is the Nash equilibrium of our differential game problem

(2.1), then, for i = 1, · · · , n, the functions defined on [0, T ]× R+ × [0,K]n

V0(s, x, y, ξ) = sup
u0∈U0

J0(s, x, y, ξ;u0, u
∗
−0) (2.11)

8u−i = (uj)j∈N,j ̸=i is the action profile of all players except i with (uj)j∈N = (u0, · · · , un).
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Vi(s, x, y, ξ) = sup
ui∈Ui

Ji(s, x, y, ξ;ui, u
∗
−i) (2.12)

are called value functions of player 0 and of each of the n players, respectively.

The value functions (2.11) and (2.12) must satisfy the Hamilton Jacobi Isaacs equations, the solu-
tions of which will provide the sufficient and necessary condition for the existence and determination
of a unique Nash Equilibrium u∗ = (u∗0, u

∗
1, · · · , u∗n). To resolve the Hamilton Jacobi Isaacs equa-

tions, we must first define the Hamiltonians corresponding to the value functions (2.11) and (2.12).
These Hamiltonians are respectively given by (2.13) and (2.14).

H0

(
s, x, y, ξ;V0,∇V0,

∂2V0

∂x2
,
∂2V0

∂x∂ξ
,
∂2V0

∂ξ2

)
= rV0− sup

u0∈U0

{
1

2
σ2x2

∂2V0

∂x2
+ κ
(
µ− ln(x)

)
x
∂V0

∂x

+
n∑

i=1

u∗i
∂V0

∂yi
+ κ
(
µ− ln(x)

)
x
∂V0

∂x

+ k(α− ξ)
∂V0

∂ξ
+ ρβξx

∂2V0

∂x∂ξ

+
1

2
β2ξ

∂2V0

∂2ξ
+ L0(x, u0, u

∗
−0)

}
,

(2.13)

Hi

(
s, x, y, ξ;Vi,∇Vi,

∂2Vi

∂x2
,
∂2Vi

∂x∂ξ
,
∂2Vi

∂ξ2

)
= rVi− sup

ui∈Ui

{
1

2
σ2x2

∂2Vi

∂x2
+ κ
(
µ− ln(x)

)
x
∂Vi

∂x

+

n∑

j=1,j ̸=i

u∗j
∂Vi

∂yj
+ ui

∂Vi

∂yi

+ κ
(
µ− ln(x)

)
x
∂Vi

∂x
+ k(α− ξ)

∂Vi

∂ξ

+ ρβξx
∂2Vi

∂x∂ξ
+

1

2
β2ξ

∂2Vi

∂2ξ
+ Li(x, ui, u

∗
−i)

}
.

(2.14)
For i = 1, · · · , n, the Hamilton Jacobi Isaacs equations corresponding to the Hamiltonians (2.13)
and (2.14) are




∂V0

∂s
= H0

(
s, x, y, ξ;V0,∇V0,

∂2V0

∂x2
,
∂2V0

∂x∂ξ
,
∂2V0

∂ξ2

)
, (s, x, y) ∈ [0, T )× R+ × [0,K]n

∂Vi

∂s
= Hi

(
s, x, y, ξ;Vi,∇Vi,

∂2Vi

∂x2
,
∂2Vi

∂x∂ξ
,
∂2Vi

∂ξ2

)
, (s, x, y) ∈ [0, T )× R+ × [0,K]n

V0(T, x, yi) = Φ0(x), x ∈ R+

Vi(T, x, yi) = Φi(x, y), (x, y) ∈ R+ × [0,K]n

(2.15)

We can show that (2.15) has a unique viscosity solution by applying the classical results on viscosity
solutions (Crandall and Lions, 1983), (Pemy, 2022).

2.3 The Long Term Lease Framework

It is well established that regulators often lease lands and implement their carbon offset program.
For example, the Biden administration recently approved a 30 year lease eight billion dollars Willow
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oil project that will allow ConocoPhillips’ to produce more than 600 million barrels of crude oil
in the state of Alaska9. Emitters also benefit from long-term leases through the securing of better
financing terms resulting in preferable investment decisions. To better supervise lands use, lease
contracts usually limit the total amount of lands for commodity extraction. They also specify the
estimated associated extraction costs. For example, according to a New York Times article10, in
March 2023, in order to block oil and gas leases on more than 13 million of the 23 million acres that
make up the National Petroleum Reserve in the state of Alaska, the Interior Department issued
new restrictive rules.

In our analysis, at the beginning of the lease, each of the n player, (i = 1, · · ·n), enters a
long-term contract with player 0 or the regulator. This contract guarantees that the state variables
remain within the state space throughout the duration of the lease11. Most extracting leases are
divided into a primary and a secondary period. However, when extracting operations are not im-
mediately effectuated, primary leases mandated renewable ten-year terms which often call for delay
rental payments (Fambrough, 2015), (Smith, 2018). Hence, there are numerous instances where
primary terms of commodity leases are extended over several years. To capture this contingency,
in equation (2.1), we let T → ∞12 and obtain





dX(t) = X(t)

(
κ
(
µ− ln

(
X(t)

))
dt+ σtdW (t)

)

dξt = k(α− ξt)dt+ β
√
ξtdB(t), σt = f(ξt),

X(0) = x, ξ(0) = ξ, 0 ≤ t < ∞.

(2.16)

For r the risk-free rate, the corresponding payoff functionals for the government entity and for each
of the commodity firms i are given by (2.17) as follows

Ji(x, ξ;ui, u
∗
−i) =E

[∫ ∞

0
e−rtLi

(
X(t), ui(t), u−i(t)

)
dt

∣∣∣∣X(0) = x, ξ(0) = ξ

]
, i = 0, · · · , n. (2.17)

Equivalently, the value functions of the government entity and of each of the n commodity firms
i = 1, · · · , n are denoted by

V0(x, ξ) = sup
u0∈U0

J0(x, ξ;u0, u
∗
−0) (2.18)

Vi(x, ξ) = sup
ui∈Ui

Ji(x, ξ;ui, u
∗
−i) (2.19)

The Hamiltonians associated with the value functions (2.18) and (2.19) are given by (2.20) and
(2.21) for player 0 and player i, respectively.

H0

(
x, ξ;V0,

∂V0

∂x
,
∂V0

∂ξ
,
∂2V0

∂x2
,
∂2V0

∂ξ∂x
,
∂2V0

∂ξ2

)
=rV0 − sup

u0∈U0

{
1

2
ξx2

∂2V0

∂x2
+ κ
(
µ− ln(x)

)
x
∂V0

∂x

+ k(α− ξ)
∂V0

∂ξ
+ ρβξx

∂2V0

∂x∂ξ
+

1

2
β2ξ

∂2V0

∂2ξ

+ L0(x, u0, u
∗
−0)

}
,

(2.20)

9 Financial Times, 2023.
10 New York Times, 2023.
11X(t) ∈ R+ and Y1(t), · · · , Yn(t) ∈ [0,K].
12See for example Golosov et al. (2014)
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Hi

(
x, ξ;Vi,

∂Vi

∂x
,
∂Vi

∂ξ
,
∂2Vi

∂x2
,
∂2Vi

∂ξ∂x
,
∂2Vi

∂ξ2

)
=rVi − sup

ui∈Ui

{
1

2
ξx2

∂2Vi

∂x2
+ κ
(
µ− ln(x)

)
x
∂Vi

∂x

+ k(α− ξ)
∂Vi

∂ξ
+ ρβξx

∂2Vi

∂x∂ξ
+

1

2
β2ξ

∂2Vi

∂2ξ

+ Li(x, ui, u
∗
−i)

}
.

(2.21)

The Hamilton Jacobi Isaacs equations corresponding to the Hamiltonians (2.20) and (2.21) are




H0

(
x, ξ;V0,

∂V0
∂x , ∂V0

∂ξ ,
∂2V0
∂x2 ,

∂2V0
∂ξ∂x ,

∂2V0
∂ξ2

)
= 0, (x, ξ) ∈ R× R+,

Hi

(
x, ξ;Vi,

∂Vi
∂x ,

∂Vi
∂ξ ,

∂2Vi
∂x2 ,

∂2Vi
∂ξ∂x ,

∂2Vi
∂ξ2

)
= 0, (x, ξ) ∈ R× R+; i = 1, · · · , n.

(2.22)

Theorem 2.3. There exists a unique Nash equilibrium u∗ = (u∗0, u
∗
1, ...., u

∗
n) and a threshold com-

modity price x̂ defined as follows

x̂ = exp

(∑n
i=1 θi

(
λi − ci0 + λi ln

( λiζi
1−ηi

))

∑n
i=1 θiλi

)
, (2.23)

such that

u∗0(x) =

{
u0 if x < x̂
u0 if x ≥ x̂,

(2.24)

and

u∗i =
λi

(1− ηi)x
, x ̸= 0, i = 1, ..., n. (2.25)

Moreover, the solutions of the Hamilton Jacobi equations (2.22) are

V0(x, ξ) = A0 ln(x) + g0(ξ), Vi(x, ξ) = Ai ln(x) + gi(ξ), i = 1, · · · , n, (2.26)

such that

A0 =

∑n
i=1 λi

(
(1− θi) + u01{x,x<x̂}θi + u01{x,x≥x̂}θi

)

r + κ
, (2.27)

Ai =





θiλi(1− u0)

r + κ
if x < x̂

θiλi(1− u0)

r + κ
if x ≥ x̂, i = 1, ..., n,

(2.28)

and the functions gi, i = 0, ..., n satisfy the differential equations

ξg′′i (ξ) +
2k(α− ξ)

β2
g′i(ξ)−

2r

β2
gi(ξ) =

ξAi

β2
+ Ci, (2.29)

where

C0 = −2κµA0

β2
− 2

β2

n∑

i=1

(
λi − ci0 + λi ln

( λiζi
1− ηi

))(
(1− θi) + u01{x,x<x̂}θi + u01{x,x≥x̂}θi

)
.

(2.30)
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For i = 1, ..., n we have

Ci =





−2κµAi

β2 − 2θi
β2

(
λi

1− ηi
− ci0 + λi ln

( λiζi
1− ηi

))
(1− u0) if x < x̂

−2κµAi

β2 − 2θi
β2

(
λi

1− ηi
− ci0 + λi ln

( λiζi
1− ηi

))
(1− u0) if x ≥ x̂.

(2.31)

We prove this crucial Theorem in Appendix A.1. Also, see Figure 2 and Figure 3. See Table 4
for a summary of all notations.

3 A Two-Factor Model for Pricing Carbon Derivative

As previously discussed, a fundamental caveat with the cap-and-trade protocol is that it can create
an imperfect market through an unequal issuance of allowances. In this section, our attempt is to
resolve this imperfection by constraining the allocation of carbon permits to the emission rate (ut)
and the underlying carbon permit (Zt). Accordingly, we propose an original two-factor approach to
price a carbon derivative by factoring in the emission rate, which we construe as a mean-reverting
process, and a carbon permit, which is random and follows a geometric brownian process (Vasicek,
1977). Denoting σ1 the volatility of the carbon permit and σ2 the volatility of the emission rate,
the dynamics of our novel carbon model are characterized by





dZt = Zt

(
(µ1 + λut)dt+ σ1dW1,t

)

dut = (m− but)dt+ σ2dW2,t

Zt0 = z, ut0 = u, 0 ≤ t0 ≤ t < ∞, b > 0,
(3.1)

where µ1 measures the average rate of growth of the carbon permit, λ is a coefficient that measures
how much the emission rate contributes to the drift of the carbon permit, m represents the mean of
the mean reverting process, and b stands for the mean coefficient (measures how much the emission
rate revolves around the mean). The processes W1,t and W2,t are correlated Wiener processes with
correlation ρ ∈ (−1, 1) such that dW1,tdW2,t = ρdt. W1,t and W2,t are defined on the risk-neutral

probability space (Ω,Ft,Q) with filtration Ft = σ
(
{Wt0 , t0 ≤ t}

)
. At strike price K and maturity

t, the call written on a carbon permit is

C(t0, t, z, u,K) = EQ

[
e−r(t−t0)

(
max(Zt −K, 0

)]

and the price of a put option is

P (t0, t, z, u,K) = EQ

[
e−r(t−t0)

(
max(K − Zt, 0

)]
.

Lemma 3.1. The processes Zt and ut that solve (3.1) are given as follows

Zt = Zt0 exp

(
λ

b
ut0 +(µ1−

1

2
σ2
1 +

λ

b
m)(t− t0)−

λ

b

(
e−b(t−t0)ut0 +

m

b
(1− e−b(t−t0))

)
+W3,σ3(t0,t)2

)

(3.2)
and

ut = e−b(t−t0)ut0 +
m

b
(1− e−b(t−t0)) + σ2

∫ t

t0

e−b(t−ξ)dW2,ξ, (3.3)
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with

σ3(t0, t)
2 = σ2

1(t− t0) +
λ2σ2

2

b2
(
√
t− t0 −

√
h(t0, t))

2 + 2ρ
σ1σ2λ

√
t− t0|

√
t− t0 −

√
h(t0, t)|

b
(3.4)

and

h(t0, t) =
1
2b(1− e2b(t−t0)).

3.1 Carbon Futures Contracts

Since carbon permits are essentially traded in futures and forwards, in this section, we derive the
price of an European option on a Futures contract. To do so, we assume that a futures contract
on a carbon permit has maturity T1. We then consider a European option on this futures contract
with maturity T . It is evident that T1 ≥ T . Let (F (t;T1))t denote the futures price where t is a
variable time in the future. By construction of Q, we have

F (t;T1) = EQ
[
ZT1 |Ft

]
. (3.5)

For K the strike price of a European call/put option, the European call price is

C(t, z, u,K, T ) = EQ
[
e−r(T−t)max

(
F (t;T1)−K, 0

)
|Zt = z, ut = u

]
.

For a speculative initial time t0, the European put price is

P (t, z, u,K, T ) = EQ
[
e−r(T−t0)

(
max(K − FT1 , 0

)
|Ft0 = z, ut0 = u

]
.

Assuming that a carbon permit is a financial asset, the discounted process e−rTZT is a martingale
under the equivanlent probability measure Q (Geman, 2005). Hence, we can simplify (3.5) as
follows

F (t;T1) = er(T1−t)EQ
[
e−r(T1−t)ZT1 |Ft

]
= er(T1−t)Zt. (3.6)

As a matter of fact, we have

C(t, z, u,K, T, T1) = EQ
[
e−r(T−t)

(
F (t;T1)−K

)+|Zt = z, ut = u
]

(3.7)

Theorem 3.2. The call option on a carbon Futures is given by

C(t, u,K, T, T1) = e−r(T−t)

(
F (t, T1)e

κ(t,T,u)+ 1
2
σ2
3(t,T )N

(
ln
(

F (t,T1)
K

)
+κ(t,T,u)

σ3(t,T ) + σ3(t, T )

)

−KN

(
ln
(F (t,T1)

K

)
+ κ(t, T, u)

σ3(t, T )

)) (3.8)

and the put option on a carbon Futures is given by

P (t, u,K, T, T1) = e−r(T−t)

(
KN

(
− ln

(F (t,T1)
K

)
+ κ(t, T, u)

σ3(t, T )

)

−F (t, T1)e
κ(t,T,u)+ 1

2
σ2
3(t,T )N

(
− ln

(F (t,T1)
K

)
+ κ(t, T, u)

σ3(t, T )
− σ3(t, T )

))
,

(3.9)



13

where

κ(t, T, u) :=
λ

b
u+ (

λ

b
m− 1

2
σ2
1)(T − t)− λ

b

(
e−b(T−t)u+

m

b
(1− e−b(T−t))

)
(3.10)

Figure 5 illustrates the application of this Theorem13 for which the proof is given in Appendix A.3.

3.2 Data

We calibrate our model using ICE European Carbon Emission Allowance (EUA) Futures data from
The ICE (2022). An European Carbon Emission Allowance (EUA) is a financial instrument that
entitles the emission of one metric ton of CO2 to participants under the European Union Emissions
Trading System (EU-ETS). All EU-ETS participants have the obligation to surrender enough EUAs
to cover all their emissions at the end of each compliance cycle. The carbon allowance or carbon
permit price is the price of emitting one metric ton of CO2. Figure 1 shows recent trends of EUA
prices. From this Figure14, we see that, since 2018, the average annual price of carbon permits in
the EU has increased significantly.Data on emission rates are taken from Statista (2022). Given
the unstructured nature of the initial dataset, we used Python 3.10 (64 bit) for massaging and
extracting the information needed for the calibration. We formulate and write several m-files using
Matlab R2022a (64 win).

Figure 1: EUA Futures Prices in the European Union 2022-2023

3.3 Calibration

For any given time t ∈ [t0, T1], we let F (t;T1) denote the price at time t of the futures contract
expiring at T1. To calibrate our model, we assume that under the risk-neutral condition, FT is the
risk-neutral expectation of the carbon permit spot price ZT1 . Hence, using (3.6) we have

F (t, T1) = EQ
[
ZT1 |Ft

]
(3.11)

13The computation of the expectation of Ft rests on the computation of the mean and variance of the process W ∗
1,t.

14 Ember, 2023.
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So, by (3.2) and for t0 ≤ t ≤ T1 we have

ZT1 = Zt0e
k(t0,t,ut0 )+W3,σ3(t0,t)

2

and we compute
F (t, T1) = EQ

[
ZT1 |Ft

]

Therefore

EQ
[
F (t, T1)|Ft0 = t0, ut0 = u

]
= er(T1−t)EQ

[
Zt|Zt0 = z, ut0 = u

]

= er(T1−t)EQ
[
Zt0e

k(t0,t,ut0 )+W3,σ3(t0,t)
2 |Zt0 = z, ut0 = u

]

= er(T1−t)EQ
[
Zt0e

r(t−t0)+κ(t0,t,ut0 )+W3,σ3(t0,t)
2 |Zt0 = z, ut0 = u

]

= zer(T1−t)+r(t−t0)eκ(t0,t,u)EQ
[
e
W3,σ3(t0,t)

2)

]

= zer(T1−t0)eκ(t0,t,u)+
1
2
σ3(t0,t)2

= F (t0, T1)e
κ(t0,t,u)+

1
2
σ3(t0,t)2

(3.12)
because

κ(t0, t, ut0) = k(t0, t, ut0)− r(t− t0). (3.13)

Applying ICE futures quotes (The ICE, 2022) at different time horizons, we solve equation (3.14).

EQ[F (t, T1)] = F (t0, T1)e
κ(t0,t,ut0 )+

1
2
σ3(t0,t)2

log
(
EQ[F (t, T1)]

)
= log

(
F (t0, T1)

)
+κ(t0, t, ut0) +

1

2
σ3(t0, t)

2
(3.14)

We subsequently use (3.14) to estimate our model parameters. To determine the remaining un-
known parameters (u, λ, b,m, ρ, σ1, and σ2), we wield seven data points from (The ICE, 2022)
to setup a system of equations. The latter produce the following estimates for our parameters:
u = 0.495, λ = 0.84, b = −1.194,m = 0.0023, ρ = 0.5116, σ1 = 0.511, and σ2 = 0.0285.

Table 1: Settlement Price (ICE Futures vs our Model)
Carbon Call Option : Strike Price=50 - Strip: 12/27/2022

Settlement Date Time to Maturity Carbon Forward Price SettIement Price (ICE) Settlement Price (our Model) ERROR

06/07/21 1.58 57.61 26.13 26.71 2.21%

06/08/21 1.576 58.6 26.91 27.46 2.06%

06/09/21 1.572 59.85 27.90 28.42 1.87%

06/10/21 1.568 59.86 27.90 28.47 2.05%

06/11/21 1.564 58.8 27.06 27.75 2.57%

06/14/21 1.56 58.98 27.19 27.93 2.74%

06/15/21 1.556 57.37 25.91 26.81 3.46%

06/16/21 1.552 57.36 25.60 26.84 4.88%

06/17/21 1.548 56.91 25.24 26.56 5.26%

06/18/21 1.544 57.89 26.00 27.32 5.07%

We implement the calibration using the EUA futures contract price (3.12)15. We calculate
the maturity time by determining the number of trading days between the EUA futures contract

15See section ?? for a discussion on the characterizations of the EUA futures contracts.
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Table 2: Settlement Price (ICE Futures vs our Model)
Carbon Put Option : Strike Price=65 - Strip: 12/25/2022

Settlement Date Time to Maturity Carbon Forward Price SettIement Price (ICE) Settlement Price (our Model) ERROR

06/07/21 1.58 55.21 25.75 26.37 2.39%

06/08/21 1.576 56.2 25.35 25.97 2.43%

06/09/21 1.572 57.45 24.87 25.49 2.51%

06/10/21 1.568 57.46 24.86 25.41 2.25%

06/11/21 1.564 56.4 25.26 25.69 1.72%

06/14/21 1.56 56.58 25.17 25.56 1.55%

06/15/21 1.556 54.97 25.80 26.03 0.88%

06/16/21 1.552 54.96 25.51 25.96 1.79%

06/17/21 1.548 54.51 25.68 26.05 1.42%

06/18/21 1.544 55.49 25.29 25.64 1.41%

Table 3: Settlement Price (ICE Futures vs our Model)
Carbon Call Option : Strike Price=55 - Strip: 12/27/2022

Settlement Date Time to Maturity Carbon Forward Price SettIement Price (ICE) Settlement Price (our Model) ERROR

06/07/21 1.58 57.61 24.29 25.33 4.28%

06/08/21 1.576 58.6 25.04 26.06 4.09%

06/09/21 1.572 59.85 25.99 26.98 3.80%

06/10/21 1.568 59.86 26.00 27.03 3.98%

06/11/21 1.564 58.8 25.18 26.33 4.57%

06/14/21 1.56 58.98 25.30 26.50 4.72%

06/15/21 1.556 57.37 24.08 25.41 5.53%

06/16/21 1.552 57.36 23.74 25.44 7.15%

06/17/21 1.548 56.91 23.40 25.16 7.52%

06/18/21 1.544 57.89 24.13 25.89 7.29%

settlement date and the Strip (maturity of the future contract) date16 knowing that the number of
months in a trading year is 250. Exerting the strike price of the carbon permit and applying our
model parameters as well as the emission rate, we obtain the settlement prices (carbon call and
put options). As an example, for a Strip corresponding to 12/27/2022 and a strike price equal to
50, our settlement prices are slightly higher (compared to The ICE (2022)) for both the call and
put options with an error rate varying from 1.87% to 5.26% (for the call option) and from 4.59%
to 6.45% (for the put option). We obtain similar results with different Strip dates and strike prices
as shown in Tables 1, 2, and 3. Table 4 summarizes the calibration parameters.

4 Conclusion

We first showed that a mechanism of cap-and-trade between N corporations producing emissions in
the mining industry and a regulator can lead to a unique Nash equilibrium under proper assump-
tions. In the second part, we argue that the development of a liquid market of Carbon Derivatives
– for which we have proposed a pricing methodology – can provide an answer while awaiting an
international regulation that has to take place since mining and oil companies need to answer the
concerns of their shareholders on their ESG ratings.

16In the EUA ETS market, the option matures two weeks before the futures.
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Appendix

A Proofs

A.1 Proof of Theorem 2.3

We first apply the Hamilton Jacobi Isaacs equation (2.22) to the Hamiltonian (2.21), for i = 1, · · · , n
as follows:

0 = Hi

(
x, ξ;Vi,

∂Vi

∂x
,
∂Vi

∂ξ
,
∂2Vi

∂x2
,
∂2Vi

∂x∂ξ
,
∂2Vi

∂ξ2

)

= r
(
Ai ln(x) + gi(ξ)

)
− sup

ui∈Ui

{
−1

2
ξAi + κ

(
µ− ln(x)

)
Ai + k(α− ξ)g′i(ξ) +

1

2
β2ξg′′i (ξ)

+ θi

(
xui − ηixui − ci0 + λi log(u

2
i )− λi ln

(ui
ζi

))
(1− u∗0)

}
.

(A.1)
Consider the following expression

θi

(
xui − ηixui − ci0 + λi log(u

2
i )− λi ln

(ui
ζi

))
(1− u∗0), i = 1, · · · , n. (A.2)

The optimality condition requires that the derivative of expression (A.2) with respect to ui be equal
to zero. Thus, we have

θi

(
x(1− ηi) + 2λi

1

ui
− λi

ui

)
(1− u∗0) = 0, i = 1, · · · , n,

u∗i =
λi

(1− ηi)x
, x ̸= 0, i = 1, · · · , n.

(A.3)

Substituting (A.3) into (A.1) yields the desired results (2.28), (2.31) and (2.29) after simplifications.
We now apply the Hamilton Jacobi Isaacs equation (2.22) to Hamiltonian (2.20) in the following
manner

0 = H0

(
x, ξ;V0,

∂V0

∂x
,
∂V0

∂ξ
,
∂2V0

∂x2
,
∂2V0

∂x∂ξ
,
∂2V0

∂ξ2

)
(A.4)

Given that the operator H0 is linear with respect to u0, so the optimality depends on the sign of the

quantity
n∑

i=1

θi

(
xu∗i − ηixu

∗
i − ci0 + λi log(u

∗
i )

2 − λi ln
(u∗i
ζi

))
. Using the fact that for i = 1, · · · , n,

at u∗i =
λi

(1− ηi)x
, we can simplify this quantity as follows

n∑

i=1

θi

(
xu∗i − ηixu

∗
i − ci0 + λi ln(u

∗
i )

2 − λi ln
(u∗i
ζi

))

=
n∑

i=1

θi

(
λi − ci0 + λi ln

(
λiζi
1− ηi

)
−λi ln(x)

)
.
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We define the function

ϱ(x) =
n∑

i=1

θi

(
λi − ci0 + λi ln

( λiζi
1− ηi

)
−λi ln(x)

)
. (A.5)

Thus the optimal control u∗0 is obtained as follows

u∗0(x) =

{
u0 if ϱ(x) > 0
u0 if ϱ(x) ≤ 0.

(A.6)

But, note that ϱ(x) > 0 if and only if

n∑

i=1

θi

(
λi − ci0 + λi ln

( λiζi
1− ηi

)
−λi ln(x)

)
> 0

Set

x̂ = exp

(∑n
i=1 θi

(
λi − ci0 + λi ln

(
λiζi
1−ηi

))

∑n
i=1 θiλi

)
. (A.7)

u∗0(x) =

{
u0 if x < x̂
u0 if x ≥ x̂

(A.8)

Finally, replacing (A.8) in (A.4) yields

0 = r
(
A0 ln(x) + g0(ξ)

)
+
1

2
ξA0 − κ

(
µ− ln(x)

)
A0 − k(α− ξ)g′0(ξ)−

1

2
β2ξg′′0(ξ)

−
n∑

i=1

(
xu∗i − ηixu

∗
i − ci0 + λi ln((u

∗
i )

2)− λi ln
(u∗i
ζi

))(
(1− θi) + u01{x,x<x̂}θi

+ u01{x,x≥x̂}θi
)
.

(A.9)

Consequently, in order to guarantee that (A.9) vanishes, A0 should be

A0 =

∑n
i=1 λi

(
(1− θi) + u01{x,x<x̂}θi + u01{x,x≥x̂}θi

)

r + κ
(A.10)

and g0(ξ), should solve the following second order linear differential equation

1

2
β2ξg′′0(ξ) + k(α− ξ)g′0(ξ)− rg0(ξ) =

1

2
ξA0 − κµA0

−
n∑

i=1

(
λi − ci0 + λi ln

( λiζi
1− ηi

))(
(1− θi) + u01{x,x<x̂}θi + u01{x,x≥x̂}θi

)
.

(A.11)

Thus we have

ξg′′0(ξ) +
2k(α− ξ)

β2
g′0(ξ)−

2r

β2
g′(ξ) =

ξ

β2
A0 + C0 (A.12)

where

C0 = −2κµA0

β2
− 2

β2

n∑

i=1

(
λi − ci0 + λi ln

( λiζi
1− ηi

))(
(1− θi) + u01{x,x<x̂}θi + u01{x,x≥x̂}θi

)
.

(A.13)
The concavity of the Hamiltonian Hi with respect of ui=1,...,n and the linearity of H0 with respect
to u0 conveniently yield the uniqueness of the Nash equilibrium (u∗0, u

∗
1, ..., u

∗
n).
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A.2 Proof of Lemma 3.1

In order to price our carbon derivatives, we will introduce another process that will help us solve
equation (3.1). Let Yt = ln(Zt) + δut, using the Itô’s Lemma we have

dYt = 1
Zt
dZt − 1

2σ
2
1dt+ δdut

= (µ1 − 1
2σ

2
1 +

λ
bm)dt+ σ3dW3,t,

(A.14)

where

σ3 =

√
σ2
1 + 2ρ

σ1σ2λ

b
+

σ2
2λ

2

b2

and

dW3,t =
σ1dW1,t + σ2

λ
b dW2,t

σ3
.

Therefore,

Yt = Yt0 + (µ1 −
1

2
σ2
1 +

λ

b
m)(t− t0) + σ1W1,t−t0 +

λσ2
b

W2,t−t0 ,

and

Zt = eYt−λ
b
ut

= Zt0 exp

(
λ

b
ut0 + (µ1 −

1

2
σ2
1 +

λ

b
m)(t− t0)−

λ

b
ut + σ1W1,t−t0 +

λσ2
b

W2,t−t0

)
.

(A.15)

Note that

ut = e−b(t−t0)ut0 +
m

b
(1− e−b(t−t0)) + σ2

∫ t

t0

e−b(t−ξ)dW2,ξ. (A.16)

Moreover, it is worth nothing from the definition of the Itô integral that the integral

∫ t

s
e−b(t−ξ)dW2,ξ

is Gaussian. It has expectation zero and its variance is given by the Itô isometry

E

[(∫ t

t0

e−b(t−ξ)dW2,ξ

)2]
=

∫ t

t0

e−2b(t−ξ)dt0 =
1

2b

(
1− e−2b(t−t0)

)
,

Consequently, the carbon permit process Zt is

Zt = Zt0 exp

(
λ

b
ut0 + (µ1 −

1

2
σ2
1 +

λ

b
m)(t− t0)−

λ

b

(
e−b(t−t0)ut0 +

m

b
(1− e−b(t−t0))

)

+σ1W1,t−t0 +
λσ2
b

W2,t−t0−h(t0,t)

)
.

(A.17)

We have

σ1W1,t−t0 +
λσ2
b

W2,t−t0−h(t0,t) = W3,σ3(t0,t)2 (A.18)

with

σ3(t0, t)
2 = σ2

1(t− t0) +
λ2σ2

2

b2
(t− t0 − h(t0, t)) + 2ρ

σ1σ2λ
√
t− t0

√
t− t0 − h(t0, t)

b
. (A.19)

In sum we have

Zt = Zt0 exp

(
λ

b
ut0 + (µ1 −

1

2
σ2
1 +

λ

b
m)(t− t0)−

λ

b

(
e−b(t−t0)ut0 +

m

b
(1− e−b(t−t0))

)
+W3,σ3(t0,t)2

)
.
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A.3 Proof of Theorem 3.2

We start by noticing that the futures call option premium is C(t, z, u,K, T ) = EQ[e−r(T−t)(F (T, T1)−
K)+

∣∣Zt = z, ut = u] and that F (t, T1) = EQ[ZT1 |Ft] = EQ[ze
k(t,T1,u)+W

3,σ2
3(t,T1) |Zt = z, ut = u].

Now we can compute the value of a European call option as follows

C(t, z, u,K, T ) = e−r(T−t)EQ
[(
z exp

(
r(T1 − T ) + k(t, T, u) +W3,σ2

3(t,T )

)
−K

)+]
. (A.20)

Let us find the density function of the process X := z exp
(
(r− δ)(T1−T )+ k(t, T, u)+W3,σ2

3(t,T )

)
.

The distribution function of X is

F (x) = Q
[
W3,σ2

3(t,T ) ≤ ln
(x
z

)
− (r − δ)(T1 − T )− k(t, T, u)

]
,

so the density of X is

g(x) =
1

xσ3(t, T )
√
2π

exp

(
−
(
ln
(
x
z

)
− (r − δ)(T1 − T )− k(t, T, u)

)2

2σ2
3(t, T )

)
.

So we have

C(t, z, u,K, T )

=
e−r(T−t)

σ3(t, T )
√
2π

∫ ∞

K
(x−K) exp

(
−
(
ln
(
x
z

)
− (r − δ)(T1 − T )− k(t, T, u)

)2

2σ2
3(t, T )

)
dx

(A.21)

We set y :=

(
ln
(
x
z

)
− r(T1 − T )− k(t, T, u)

)

σ3(t, T )
, thus dy =

dx

xσ3(t, T )
therefore we should have x =

zer(T1−T )+k(t,T,u)+yσ3(t,T ).
Consequently (A.21) becomes

C(t, z, u,K, T )

= ze−r(T−t)+r(T1−T )+k(t,T,u)+ 1
2
σ2
3(t,T )N

( ln
(
z
K

)
+ r(T1 − T ) + k(t, T, u)

σ3(t, T )
+ σ3(t, T )

)

= −e−r(T−t)KN
( ln
(
z
K

)
+ r(T1 − T ) + k(t, T, u)

σ3(t, T )

)
.

(A.22)

Set D1(t, z, T, T1,K, u) :=
ln
(
z
K

)
+ r(T1 − T ) + k(t, T, u)

σ3(t, T )
+ σ3(t, T ) and D2(t, z, T, T1,K, u) :=

ln
(
z
K

)
+ r(T1 − T ) + k(t, T, u)

σ3(t, T )
so we have Using the fact that under risk-neutral assumption µ1 =

r, we have
k(t, T, u) = r(T − t) + κ(t, T, u), (A.23)

where

κ(t, T, u) :=
λ

b
u+ (

λ

b
m− 1

2
σ2
1)(T − t)− λ

b

(
e−b(T−t)u+

m

b
(1− e−b(T−t))

)
. (A.24)
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C(t, z, u,K, T )

= e−r(T−t)

(
F (t, T1)e

κ(t,T,u)+ 1
2
σ2
3(t,T )N

(
ln
(

F (t,T1)
K

)
+κ(t,T,u)

σ3(t,T ) + σ3(t, T )

)

−KN

(
ln
(F (t,T1)

K

)
+ κ(t, T, u)

σ3(t, T )

)) (A.25)

Now, we compute the price of the European put option

P (t, z, u,K, T )

=
e−r(T−t)

σ3(t, T )
√
2π

∫ K

−∞
(K − x)

1

x
exp

(
−
(
ln
(
x
z

)
− r(T1 − T )− k(t, T, u)

)2

2σ2
3(t, T )

)
dx

(A.26)

We set y :=

(
ln
(
x
z

)
− r(T1 − T )− k(t, T, u)

)

σ3(t, T )
, thus dy =

dx

xσ3(t, T )
. Hence, we should have x =

zer(T1−T )+k(t,T,u)+yσ3(t,T ).
So, (A.26) becomes

P (t, z, u,K, T )

= e−r(T−t)KN

(
ln
(
K
z

)
− r(T1 − T )− k(t, T, u)

σ3(t, T )

)

−ze−r(T−t)+r(T1−T )+k(t,T,u)+ 1
2
σ2
3(t,T )N

(
ln
(
K
z

)
− r(T1 − T )− k(t, T, u)

σ3(t, T )
− σ3(t, T )

) (A.27)

Using the risk neutral assumption µ1 = r, and using (A.23) and (A.24) we can simplify (A.27) as
follows

P (t, z, u,K, T )

= e−r(T−t)

[
KN

( ln
(

K
F (t,T1)

)
− κ(t, T, u)

σ3(t, T )

)

−F (t, T1)e
κ(t,T,u)+ 1

2
σ2
3(t,T )N

( ln
(

K
F (t,T1)

)
− κ(t, T, u)

σ3(t, T )
− σ3(t, T )

)]
.

(A.28)



21

B Tables

Table 4: Parametrization

SECTION 2
0 < t ≤ T – given time within the time horizon
s – hypothetical initial state (s < t ≤ T )
ζi – carbon cap on the maximum amount of CO2 the extracting firm can emit
Xt – price or market value of the commodity at time t
x – value of X(t) at t = s
θi – share portion between commodity company and government
K < ∞ – total amount of commodity available at the beginning of the lease
Yi(t) ∈ [0,K] – amount of commodity produced or extracted
yi – value of Yi(t) at t = s
ξ(t) – main process driving volatility σt
σt = f(ξt) – stochastic volatility process
ξ – value of ξt at t = s
κ – mean-reverting rate of the commodity
k – mean-reverting rate of the stochastic volatility
µ – long-run mean
σ – volatility of the commodity price
α – long run variance
β – volatility of volatility
r – risk-free rate
W(t),B(t) – Wiener processes
ρ – correlation between W (t) and B(t)
(Ω,F ,P) – probability space
[u0,u0] – lower bound, upper bound (tax rate)
[ui,ui] – lower bound, upper bound (extraction rate)
Ft = σ

{
B(s),W(s); s ≤ t

}
– Filtration (σ- algebra generated by B(s) and W (s)

Ci(x,ui) – extraction cost function of each player i
ci0 ≥ 0 – initial cost incurred by player i for setting up extraction operations
λi > 0 – cost control parameter or incentive parameter
0 < ηi ≤ 1 – proportion of revenue allocated towards the extraction cost Ci(ui)
pi(ui) – emission or penalty function
p̂i(ui) – continuous and differentiable pi(ui)

SECTION 3
t – variable time in the future (0 < t < ∞)
t0 – observed initial/current time (0 ≤ t0 ≤ t < ∞)
T – maturity of the European option (0 ≤ t0 ≤ t ≤ T < ∞)
T1 – maturity of the futures contract (0 ≤ t0 ≤ t ≤ T ≤ T1 < ∞)
Zt – carbon permit
ut – emission rate
z – value of Zt at t = t0
u – value of ut at t = t0
m – mean of the mean reverting process
b – mean coefficient
µ1 – measures of the average rate of growth of the carbon permit
σ1 – volatility of the carbon permit
σ2 – volatility of the emission rate
K – strike price
Q – probability measure
Ft,T – price of the futures contract expiring at T for a given time t
r – risk-free rate
W1,t,W2,t – correlated Wiener processes
(Ω,Ft,Q) – risk-neutral probability space
Ft = σ({Wt0 , t0 ≤ t}) – filtration
ρ ∈ (−1,1) – correlation
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C Figures

Admissible Controls:
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tion: Ci[ui(t)]

Emission Func-
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]
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Rate Functions: Φi
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Figure 2: Carbon Regulation Model Overview
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Figure 3: Carbon Regulation Model Algorithm
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Figure 4: Carbon Competition: Tax, Cap, and Trade
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Figure 5: Carbon Competition: Carbon Derivative as Hedge
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