
FRE6831

COMPUTATIONAL FINANCE LABORATORY (PYTHON)

Edward D. Weinberger, Ph.D., F.R.M

Adjunct Professor

Dept. of Finance and Risk Engineering

edw2026@nyu.edu

Office Hours by appointment

(6 46) 436-6174 (cell)

This half-semester course introduces the Python programming language . Interest in Python is

growing faster than any other major programming language, according to a survey conducted

by Stack Overflow, a widely consulted programming website. While there is much general

interest due to Python’s many extensions (NumPy, Pandas, SymPy, and a variety of AI tools,

for example), Python is of particular interest in finance because a version of it is being used as

the “glue” that holds together the computing infrastructure of several major financial

institutions (Bank of America, JP Morgan Chase, and Goldman Sachs have working systems,

and I’m told that Barclays is working on it.).

Course Overview and Goals:

Python is sufficiently quirky that a half-semester (six lecture + project) course must

necessarily focus on the language itself, as opposed to specific financial applications. Python

basics, just like the basics of English, are reasonably easy to learn, given the prerequisites

below. However, just as there is a world of difference between a native English speaker and

one that is merely fluent, there is a world of difference between mastering the basics and

becoming a true Pythonista. The substantial project required by this course will get students

started (but only started!) on becoming the latter.

Prerequisites:

Students will be expected to have fluency in an object-oriented language, such as C++, Java,

or C#, as this course is intended to introduce students to object oriented Python, not

programming in general, nor to the object-oriented paradigm in general.

Required text:

The Quick Python Book by Naomi Cedar, 3rd Ed., Manning, 2007, ISBN-10: 1617294039.

Recommended Reading

Just about everything there is to know about Python can be found somewhere on the web by

Googling “Python <name of feature>”. Often, the answers can be found

mailto:edw2026@nyu.edu

on stackoverflow.com or in the standard documentation maintained by the Python

Software Foundation, https://docs.python.org/3/, which is surprisingly readable.

Course Materials and Resources

• Access your course materials: BrightSpace (https://brightspace.nyu.edu/d2l/home/141264)
• Databases, journal articles, and more: Bern Dibner Library (library.nyu.edu)

NYU Virtual Business Library (guides.nyu.edu/vbl)
• Obtain 24/7 technology assistance: Tandon IT Help Desk (soehelpdesk@nyu.edu,

646.997.3123)

NYU IT Service Desk (AskIT@nyu.edu, 212-998-3333)

Course Requirements and Grading

To keep students engaged, I will occasionally ask them questions about such things as the

likely output of a program, etc. This kind of class participation will be ungraded. Grades will

be assigned based on the above-mentioned project, the preparation of a Python program that

instantiates a U.S. treasury bond object, along with methods to compute yield to maturity, etc.

(In the past, I asked students to do this using market quotations for various instruments

involving USD LIBOR. However, LIBOR has been officially discontinued for new

transactions as of January 1, 2002. I am in the process of working out the details of a

replacement project that involves US treasury debt, and I will post these in a project

description on the course website. Further details can be inferred from spreadsheets, posted

on the website for this class, that implement samples of these calculations.). Lectures will

include a discussion of how to build pieces of this program.

My overall philosophy of grading is that students who are able to demonstrate mastery of

everything I taught them deserve an “A”, partial mastery deserves a “B”, and students who

“aren’t in the room” deserve a “C”. Projects that cannot reproduce the calculations displayed

by the posted spreadsheets are in the “not in the room” category. Projects that can not only

reproduce these calculations but also pass additional tests that I do not post on the website

earn higher grades, depending on how many they pass.

In the past, most students’ projects are unable to pass all of the tests, as there are a

considerable number of special cases to be dealt with.

Detailed Course Outline

Note: Placement of topics in lectures is only approximate

Lecture 1

http://www.nyu.edu/its/classes
https://brightspace.nyu.edu/javascript:/
https://library.nyu.edu/locations/bern-dibner-library/
https://guides.nyu.edu/vbl
mailto:soehelpdesk@nyu.edu
mailto:AskIT@nyu.edu

Topic 1: Introduction to the Course and to Python

I. Course “Mechanics”

II. Observations on the FinTech eco-system
a. 50 years of coding: what has and what hasn’t changed
b. A few insights from Computer Science 101

i. Interpreted vs compiled languages
ii. Objects

iii. O(N) vs O(log N) vs O(1) implementations
iv. Hashing
v. Sorting: an example of efficiency

c. Data, data, everywhere!

i. Input sources

ii. Databases
iii. Need to process disparate data elements

d. Industrial strength programming
e. Need well known language to interface with machine learning, symbolic

calculation
III. How Python fits in

a. Why Python?
i. Elementary Python easy to learn, but also “expert friendly”

1. Addresses some annoying things in other languages

2. Can do a lot in a few lines
a. “batteries included” libraries

b. Expressive syntax, most notably lists and dictionaries
ii. Intended to be readable

iii. Free, but very well supported
iv. Many, many extensions (SciPy, NumPy, SymPy, AI libraries, etc.)
v. Multi-platform (no platform dependencies)

vi. Full support for object-oriented programming, including operator

overloading, but without

1. explicit garbage collection
2. explicit pointers

b. Problems with Python (primarily because Python is interpreted)

i. Slower than C/C++
IV. Characteristics and Quirks of Python

a. Readability is key; hence indents used as block identifiers

b. Python 2.x vs Python 3.x (to be discussed more fully later on)

c. Python is interpreted, but …
d. Python uses “duck typing” and automated garbage collection
e. Everything is an object; object oriented programming fully supported
f. Lots of introspection

V. Installing Python
a. “Hello, world!”
b. Libraries

VI. The very beginnings

a. Numbers: int float complex

b. Strings
c. Booleans

d. None
e. Built-in functions: https://docs.python.org/3/library/functions.html
f. Pictorial Programming
g. Dates via datetime

Reading: Cedar, Introduction and Chapters 1 – 4

Topic 2: Lists, Tuples, and Sets

I. Lists
a. “Declaring” a list
b. Arrays, but with a twist!

i. Length unspecified beforehand; entries added at end

ii. List operators (append, indicies/slices, etc.)
iii. List operations

iv. Lists as queues and stacks
v. Nested lists and deep copies

II. Tuples

a. Mutability vs Immutability
b. Declaration

c. List-tuple conversion

d. Packing/unpacking tuples

III. Sets
a. Uniqueness of elements

b. Set operations

Reading: Cedar, Chapter 5

Lecture 2

Topic 3: Strings

I. Strings as immutable sequences of characters, including special characters

II. str vs repr

III. String methods

a. split and join

b. Conversions
c. Other string methods

IV. The many ways of formatting and printing strings
V. The bytes data type

VI. Unicode basics

https://docs.python.org/3/library/functions.html

Reading: Cedar, Chapter 6

Topic 4: Dictionaries

I. Review: Hashing
II. Definition as an associative array with immutable

III. Dictionary operations

IV. Some applications

Reading: Cedar, Chapter 7

Lecture 3

Topic 5: Control Flow

I. Statements, blocks, and indentation

II. Boolean values and expressions
III. Standard stuff: if and while

IV. Loops over sets

a. The range function

b. break and continue

c. tuple unpacking
d. enumerate and zip

e. list comprehensions

f. generators

Reading: Cedar, Chapter 8

Topic 6: Python Functions

I. Definition and scoping

II. Function parameter options
III. Lambda expressions

IV. Functions assignment to “pointer” variables
V. Decorators

VI. Generator functions
VII. The dir function

VIII. Comments and doc strings

Reading: Cedar, Chapter 9

Topic 7: Input and output

I. Variants of the print statement

II. File objects

III. Reading command line parameters

Reading: Cedar, Chapter 13 (optionally Chapter 12)

Lecture 4

Topic 8: Basics of Objects in Python

I. Basics of object definitions

a. Attributes and methods
b. The __init__() method

II. Member vs class variables

III. Static and class methods

IV. Inheritance

V. Private variables and methods

Reading: Cedar, Chapter 15 and 17

Topic 9: Modules

I. Setting up a module
II. Local and global variables

III. The import statement

IV. The main statement

V. Scoping rules

Reading: Cedar, Chapter 10

Lecture 5

Topic 9: More About Classes

I. Multiple inheritance

II. Operator overloading
III. Making a class callable
IV. Get/set attrib

V. @property

Reading: Cedar, Chapter 17

Topic 10: Exceptions

Reading: Cedar, Chapter 14

Topic 11: Regular expressions (if time permits)

Reading: Cedar, Chapter 16

Topic 12: NumPy

Reading: https://numpy.org/

Lecture 6

Various advanced topics, chosen from the following:

I. Pandas
II. Multi-threading

III. Unit testing and the mock library
IV. New features of Python 3.7

a. Sorted dictionaries
b. Ways of declaring variables with a given type

V. Functional programming

VI. Python and SQL databases
VII. SymPy

VIII. Other topics, to be determined

Reading: Cedar, chapters to be determined; other sources to be determined

Departmental/School-Wide Policies (Comments specific to
the project in bold, below)

Academic Misconduct

A. Introduction: The School of Engineering encourages academic excellence in an environment
that promotes honesty, integrity, and fairness, and students at the School of Engineering are
expected to exhibit those qualities in their academic work. It is through the process of
submitting their own work and receiving honest feedback on that work that students may
progress academically. Any act of academic dishonesty is seen as an attack upon the School
and will not be tolerated. Furthermore, those who breach the School’s rules on academic
integrity will be sanctioned under this Policy. Students are responsible for familiarizing
themselves with the School’s Policy on Academic Misconduct.

B. Definition: Academic dishonesty may include misrepresentation, deception, dishonesty, or
any act of falsification committed by a student to influence a grade or other academic
evaluation. Academic dishonesty also includes intentionally damaging the academic work of
others or assisting other students in acts of dishonesty. Common examples of academically
dishonest behavior include, but are not limited to, the following:

1. Cheating: intentionally using or attempting to use unauthorized notes, books,
electronic media, or electronic communications in an exam; talking with fellow
students or looking at another person’s work during an exam; submitting work

https://numpy.org/

prepared in advance for an in-class examination; having someone take an exam for
you or taking an exam for someone else; violating other rules governing the
administration of examinations.

2. Fabrication: including but not limited to, falsifying experimental data and/or
citations.

3. Plagiarism: Intentionally or knowingly representing the words or ideas of another as
one’s own in any academic exercise; failure to attribute direct quotations,
paraphrases, or borrowed facts or information. Submitting code that implements
the same methodology as another student is not plagiarism; submitting the same
code is plagiarism. It is surprisingly easy to tell the difference.

4. Unauthorized collaboration: working together on work that was meant to be done
individually. You are encouraged to discuss the project with others. However, since
I need to assign grades individually, I hold each of you individually responsible for
the quality of the project you submit. Submitting code “borrowed” from another
student that is not fully understood therefore runs two risks: First, that I will
punish you for plagiarism, and, second, that you will not detect problems in the
code because you don’t understand it!

5. Duplicating work: presenting for grading the same work for more than one project or
in more than one class, unless express and prior permission have been received from
the course instructor(s) or research adviser involved.

6. Forgery: altering any academic document, including, but not limited to, academic
records, admissions materials, or medical excuses.

Disability Disclosure Statement

Academic accommodations are available for students with disabilities. Please contact the Moses
Center for Students with Disabilities (212-998-4980 or mosescsd@nyu.edu) for further information.
Students who are requesting academic accommodations are advised to reach out to the Moses
Center as early as possible in the semester for assistance.

Inclusion Statement

The NYU Tandon School values an inclusive and equitable environment for all our students. I hope to
foster a sense of community in this class and consider it a place where individuals of all backgrounds,
beliefs, ethnicities, national origins, gender identities, sexual orientations, religious and political
affiliations, and abilities will be treated with respect. It is my intent that all students’ learning needs
be addressed both in and out of class, and that the diversity that students bring to this class be
viewed resource, strength and benefit. If this standard is not being upheld, please feel free to speak
with me.

One of the ways that I try to maintain an equitable environment is by devising grading standards
that are fair to all students. I therefore cannot arbitrarily raise a student’s grade simply because
failure to do so will “spoil their GPA” or cause them to lose a scholarship.

mailto:mosescsd@nyu.edu

