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Abstract

The modern theory of option pricing rests on Itô calculus, which is a second-order calculus based
on the quadratic variation of a stochastic process. One can instead develop a first-order stochastic
calculus, which is based on the running minimum of a stochastic process, rather than its quadratic
variation. We focus here on the analog of geometric Brownian motion (GBM) in this alternative
stochastic calculus. The resulting stochastic process is a positive continuous martingale whose laws
are easy to calculate. We show that this analog behaves locally like a GBM whenever its running
minimum decreases, but behaves locally like an arithmetic Brownian motion otherwise. We provide
closed form valuation formulas for vanilla and barrier options written on this process. We also
develop a reflection principle for the process and use it to show how a barrier option on this process
can be hedged by a static postion in vanilla options.

Keywords: First-order stochastic calculus; option pricing theory; barrier options; static hedging.

1. Introduction

The modern theory of option pricing rests on Itô calculus, which is a second-order
calculus based on the quadratic variation of a stochastic process. In the standard
Black Scholes model, the focus is on the quadratic variation of the log of the spot
price S. Letting W denote the standard Brownian motion (SBM) driving S, the
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model requires that:

hlnðS=S0Þit ¼ �2hWit, t � 0: ð1Þ
In words, the quadratic variation of the log price is positively proportional to the
quadratic variation of the driving SBM. Any martingale solution S to (1) is called
geometric Brownian motion (GBM).

In this paper, we price options using an alternative first-order calculus, which
replaces the quadratic variation of a process with its running minimum. In par-
ticular, we model the underlying price process as a continuous martingale F started
at F0 and evolving so that:

lnðF=F0Þt ¼ �Wt, t � 0, ð2Þ

where lnðF=F0Þt � s 2 [0, t]
inf

lnðFs=F0Þ denotes the running minimum of

lnðFt=F0Þ, � is a positive constant, and Wt � s 2 [0, t]
inf

Ws denotes the running
minimum of W. Comparing (1) with (2), we see that F is defined to be the analog
of the GBM S that arises when the quadratic variation of a process is replaced by
its running minimum. Since the calculus is first order, � replaces �2 as the pro-
portionality constant.

It is straightforward to solve (2) for the underlying price process F:

Ft ¼ F0e
�Wtð1þ �W v

t Þ, t � 0, ð3Þ
where W v

t � Wt �Wt is the running drawup of the SBM W. It is natural to
compare this solution with the general solution S of (1):

St ¼ S0e
��

2

2 hWit e�Wt , t � 0, ð4Þ
with the parameters S0 and � both positive.

Each process arises as the product of three factors. First, each process starts at a
positive level, denoted F0 and S0 respectively. Second, each starting level is
multiplied by a positive decreasing process, with �Wt replacing � � 2

2 hWit ¼
� �2

2 t in the argument of an exponential function. Third, each product is further
multiplied by a positive submartingale, with 1þ �W v

t in (3) replacing e�Wt in (4)
as the multiplier of that product. It follows that both processes start positive and
remain positive forever. Whenever the driving SBM W is above its minimum Wt,
the random process Wt is locally constant, so the Brownian drawup W v

t is locally
affine in W. It follows from (3) that our new martingale F is also locally affine in
the driving SBM W at such times, in stark contrast to S, which always behaves as
an exponential function of W. This locally affine behavior of F leads to a down-
ward sloping skew, characteristic of many options markets.
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It is clear from (3) that the law of F at a fixed time T depends on the bivariate
law of ðWT ,W

v
TÞ. Fortunately, the reflection principle implies that the bivariate law

of ðWT ,WTÞ is known in closed form. As a result, the desired bivariate law is also
known, allowing us to develop not only the law of FT , but also the bivariate law
ðFT ,FTÞ. The paper shows how one can use this bivariate law to price vanilla and
lower barrier options on F in closed form. We also develop a reflection principle
for the F process, relating the law of FT to the law of FT . This reflection principle
gives an investor the ability to replicate the payoff of a lower-barrier one-touch on
F, by holding a static position in co-terminal puts. We claim that this static rep-
licating portfolio of puts is robust to the introduction of independent stochastic
volatility, even if the stochastic process generating this volatility is unknown. We
argue that these properties of F render our new martingale intuitive, tractable,
realistic, and yet simple, making it a suitable springboard for further development.

2. Analysis

We assume no arbitrage and zero interest rates. By the fundamental theorem of
asset pricing, there exists a probability measure Q under which asset prices are
martingales. Financial considerations such as limited liability often restrict atten-
tion to positive martingales, with GBM being the standard example. The goal of
this paper is to explore the properties of a new positive continuous martingale,
which arises as the natural analog of GBM in a first-order calculus, which arises
when the quadratic variation of a process is replaced by its running minimum. We
will show that our new martingale may also be considered as a very special case of
the more general class of Azema Yor martingales.

LetW be an SBM under a risk-neutral measure Q. LetWt � s 2 [0, t]
inf

Ws be the
running minimum of the W process over the time period [0, t]. Let W v

t � Wt �Wt

be the running drawup of the W process over the time period [0, t]. Trivially, we
can decompose Wt additively by:

Wt ¼ Wt þW v
t , t � 0:

By Skorohod’s lemma, there is a unique way to assign the Gaussian probability
density of Wt to the ordered pair ðWt,W

v
t Þ. For j � 0 and k � 0, we find that the

bivariate PDFQðWt 2 dj,W v
t 2 dkÞ depends on j and k only through their distance

k � j � 0. When we derive the marginal ofW v
t from this bivariate law, we observe

that this PDF ofW v
t is folded normal. When we furthermore derive the marginal of

Wt from the bivariate law, we observe that �Wt has the same PDF as W v
t .

We are interested in defining a “geometric” version of W, which emphasizes a
first-order variation such as W rather than the second-order variation hWit ¼ t.

First-order calculus and option pricing
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This task is accomplished by replacing differences in the Brownian minimum by
ratios and also by replacing differences in the drawup definition by ratios. The
geometric process will be the product of its minimum and its drawup, rather than
the sum of the two. The starting value of the geometric process will be the
multiplicative identity element one, rather than the additive identity element zero.
Furthermore, the geometric process stays positive, with zero and infinity as natural
boundaries.

Azema and Yor show how one can develop a family of local martingales from a
given martingale and its extremum. Consider the Azema Yor local martingale that
arises when the driving martingale is an SBM W and its extremum is W :

N̂t � �ðWt Þ þ �ðWtÞW v
t , t � 0, ð5Þ

where �ðxÞ � R
x�ðx 0Þdx 0 is an anti-derivative of �ðxÞ. Suppose we choose

�ðxÞ ¼ ex. Then an anti-derivative is �ðxÞ ¼ ex. Let Ft denote the proposed local
martingale for this choice:

Ft � eWt þ eW tW v
t

¼ eW tð1þW v
t Þ, t � 0: ð6Þ

Notice that this process separates multiplicatively into an exponential function of
the Brownian infimum Wt and an affine function of the Brownian drawup W v

t .
This is analogous to a standardized GBM S which has the form

St ¼ e�
1
2hWit eWt , t � 0: ð7Þ

SinceW ð0Þ ¼ W v
0 ¼ 0, setting t ¼ 0 in (6) implies that the process F starts at 1:

F0 ¼ 1: ð8Þ
Taking the total derivative in (6) implies that F solves:

dFt ¼ eW tdWt, t � 0, ð9Þ
subject to the initial condition (8). Hence, the process F is a local martingale, and it
can be shown that it is also a martingale.

Now let Ft � s 2 [0, t]
inf

Fs denote the running minimum of the F process over
[0, t]. Since W can only decline at the times when Wv ¼ 0, we have:

Ft ¼ eW t , t � 0: ð10Þ
Solving for Wt:

Wt ¼ lnFt ¼ lnFt, t � 0, ð11Þ
since ln x is an increasing function. It follows that we have constructed a contin-
uous martingale whose log has the same minimum as SBM. In contrast, the GBM

P. Carr

1450009-4

J.
 F

in
an

. E
ng

. 2
01

4.
01

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

IL
L

IN
O

IS
 A

T
 U

R
B

A
N

A
 C

H
A

M
PA

IG
N

 o
n 

01
/3

0/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



S in (7) is a continuous martingale whose log has the same quadratic variation as
SBM. Since quadratic variation is a second-order variation while the running
minimum is first-order, the continuous process F defined in (6) will be referred to
as the first-order martingale. When W is above its minimum, then W is locally
constant so Ft ¼ eW tð1þWt �WtÞ is locally affine in W. Hence, increments of
the continuous martingale F are locally normally distributed. When W is at its
minimum and then declines, the continuous martingale F declines exponentially.
Hence, these increments of the continuous martingale F are locally lognormally
distributed. The Lebesgue measure of the set of times when W is at its minimum
is zero. Thus, the continuous martingale F spends 100% of its time behaving
locally like an arithmetic Brownian motion (ABM). Nonetheless, (10) indicates
that Ft > 0 and hence the F process is positive. Since the dynamics mimic an ABM
almost everywhere, using the F process to describe the dynamics of an underlying
results in a downward sloping skew, characteristic of many options markets.

Substituting (10) in (9) implies that F solves the following SDE:

dFt ¼ FtdWt, t � 0, ð12Þ
subject to the initial condition (8). We also have the following differential version
of (10):

dFt ¼ FtdW t, t � 0: ð13Þ
subject to the initial condition:

F0 ¼ 1: ð14Þ
Recall that the Brownian drawup W v

t of the SBM was defined as the difference
between the Brownian level Wt and the Brownian minimum Wt. Suppose we
analogously define the drawup of the first-order martingale F as the ratio of its
level to its minimum, i.e.

F v
t �

Ft

Ft
, t � 0: ð15Þ

Then we trivially have the first-order martingale F that decomposes multiplica-
tively as:

Ft ¼ FtF
v
t , t � 0: ð16Þ

Comparing (16) with (6) and (10), we conclude that our first-order process’
drawup is affine in the Brownian drawup:

F v
t ¼ 1þW v

t , t � 0: ð17Þ
There are no parameters in our definition of the first-order process F, but it

would be straightforward to introduce two parameters. The first one, naturally

First-order calculus and option pricing
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labeled F0, would be the starting value of F and hence is required to be positive.
The second parameter, naturally labeled �, is also required to be positive. The
square of this parameter �2 has units of one over years and controls the width
of the PDF of Ft through �2t. The definition of the two parameter first-order
martingale is:

Ft ¼ F0e
�Wtð1þ �W v

t Þ, t � 0, ð18Þ
where recall W v

t � Wt �Wt. It is natural to compare this two parameter process
with the GBM:

St ¼ S0e
�1

2�
2
te�Wt , t � 0: ð19Þ

For the first-order F process, scaling W by � is accompanied by scaling W by �. In
contrast, for the second-order S process scaling W by � is accompanied by scaling
hWit ¼ t by �2.

For each fixed time t � 0 and starting level F0 > 0, we may regard Ft as a
function of the parameter �. Differentiating w.r.t. � and setting � ¼ 0 implies that:

@

@�
Ftð�Þ

���
�¼0

¼ Wt þW v
t ¼ Wt, t � 0: ð20Þ

Thus this stochastic flow is just the driving SBM W. The well-known Brownian
scaling property of Wt extends to the pair ðWt,W

v
t Þ so that ð�Wt,�W

v
t Þ has the

same bivariate law as ðW � 2t,W
v
� 2tÞ.

3. Derivation of Bivariate Laws

Let T > 0 be a fixed time called the terminal time. In this section, we derive in
closed form the bivariate law of the terminal minimum FT and the terminal drawup
F v

T , conditional on the current levels Ft and F
v
t at any prior time t 2 [0, T]. We first

develop the corresponding results for SBM and then use these to develop the
bivariate law of ðFT ,F

v
TÞ given ðFt,F

v
t Þ.

Consider a down-and-in binary call (DIBC) written on the terminal Brownian
drawupW v

T . For in-barrier j � 0 and strike k � 0, the payoff at the terminal time T
is 1ðWT � j,W v

T � kÞ. Let � be the first passage time of the SBM W to the lower
barrier j � 0. As usual, if W never hits j, we set � ¼ 1. For t 2 ð0, �Þ, let
DIBC[t,T]ð j, kÞ � QtfWT � j,W v

T � kg denote the value at time t of the DIBC
expiring at T. Using a no arbitrage argument, the appendix shows that for
t 2 ð0, �Þ, j � 0, k � 0:

DIBC[t,T]ð j, kÞ ¼ 2QtfWT � j� kg: ð21Þ
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In words, prior to knocking in, the DIBC with barrier j � 0 and strike k � 0 has
the same value as two co-terminal binary puts on WT struck at j� k � 0. The
conditional value of the two binary puts on WT can of course be determined in
closed form:

2QtfWT � j� kg ¼ 2N
j� k �Wtffiffiffiffiffiffiffiffiffiffiffi

T � t
p

� �
, t 2 [0, TÞ, ð22Þ

where NðzÞ � R z
�1 e�

x2

2ffiffiffiffi
2�

p dx is the univariate normal distribution function.
Equations (21) and (22) together imply that for t 2 ð0, �Þ, j � 0, k � 0:

DIBC[t,T]ð j, kÞ � QtfWT � j,W v
T � kg ¼ 2N

j� k �Wtffiffiffiffiffiffiffiffiffiffiffi
T � t

p
� �

: ð23Þ

So the bivariate law in the middle just depends on the univariate normal distri-
bution function on the RHS. Notice that this bivariate law depends on the time t
values of Wt and W v

t only through their sum Wt ¼ Wt þW v
t . In contrast, the

dependence on j � 0 and k � 0 occurs only through the distance k � j � 0. As a
result, subtracting j from both arguments of the DIBC does not affect the result
implying that for t 2 ð0, �Þ:

QtfWT � 0,W v
T � k � jg ¼ QtfW v

T � k � jg ¼ 2N
j� k �Wtffiffiffiffiffiffiffiffiffiffiffi

T � t
p

� �
: ð24Þ

Hence, the marginal law of W v
T at t ¼ 0 with Wt ¼ 0 is folded normal. If we

subtract k from both the arguments of the DIBC in (23), we get that for t 2 ð0, �Þ:

QtfWT � j� k,W v
T � 0g ¼ QtfWT � j� kg ¼ 2N

j� k �Wtffiffiffiffiffiffiffiffiffiffiffi
T � t

p
� �

: ð25Þ

Comparing (24) and (25), we see that at t ¼ 0 withWt ¼ 0,�WT has the same law
as W v

T .
Differentiating (23) w.r.t. j and k yields the following simple closed form

formula for the bivariate PDF of the Brownian minimum and Brownian drawup:

QtfWT 2 dj,W v
T 2 dkg ¼ bð j, kÞdjdk,

where

bð j, kÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�ðT � tÞ3

s
ðk � j�WtÞe�

ðk�j�Wt Þ 2
2ðT�tÞ , j � 0, k � 0:

Armed with these results, we now derive the conditional bivariate PDF of the
pair ðFt,F

v
t Þ. Evaluating (11) and (17) at t ¼ T implies that:

FT ¼ eWT , F v
T ¼ 1þW v

T , t � 0:

First-order calculus and option pricing
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Using the standard change of variables formula, it follows that for J 2 ð0, 1], K � 1
and t 2 ð0, �Þ, the conditional bivariate PDF of the pair ðFt,F

v
t Þ is given by:

QtfFT 2 dJ,F v
T 2 dKg ¼ f ðJ,KÞdJdK, where

f ðJ,KÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
�ðT � tÞ3

s
ðK � 1� lnðJ Þ �WtÞ

e�
1

2ðT�tÞðK�1�ln J�WtÞ 2

J
, with

Wt ¼ lnðFtÞ þ F v
t � 1: ð26Þ

3.1. Marginal of the first-order martingale

At the terminal time T, the first-order martingale FT is just the product of its
terminal minimum FT and its terminal drawup F v

T :

FT ¼ FTF
v
T :

Since the conditional bivariate law of ðFT ,FvÞ is known, the law of the product is

QtfFT 2 dFg¼
Z 1

0
f J,

F

J

� �
dJ

¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ðT � tÞ3

s
F

J
� 1� lnðJ Þ �Wt

� �

� e�
1

2ðT�tÞ
F
J �1�lnðJ Þ�Wtð Þ 2

J
dJ: ð27Þ

Hence, the transition PDF of FT is given by the bounded integral in (27). This
integral cannot be calculated in closed form, so evaluating the PDF requires
quadrature. However, we will see in Sec. 4 that iterating the integration does not
introduce additional quadratures.

4. Pricing Lower Barrier Claims and Calls

Since the first-order martingale is driven by a single SBM, one can replicate any
contingent claim written on its path via dynamic trading in the underlying risky
asset and in a riskless asset. No arbitrage implies that the value of such a path-
dependent claim is given by the cost of this replicating portfolio. In this section, we
develop closed form pricing formulas for this replication cost for a few contingent
claims. In particular, we focus on some simple lower barrier options and on
standard calls.
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4.1. One-touch

We start with a one-touch lower barrier. We will present a semi-static hedge for this
claim in the next section. In this section, we just focus on providing a simple
closed form pricing formula assuming zero interest rates.

Let OTtðL,TÞ denote the arbitrage-free value of a one-touch at time t 2 [0, T]:

OTtðL, TÞ � Et1ðFT � LÞ, ð28Þ
for any barrier L � F0. We trivially have:

OTtðL,TÞ ¼ 1ðFt � LÞ þ 1ðFt > LÞEt1ðFT � LÞ, ð29Þ
for all t 2 [0, T], and for all L � F0. Since the underlying F is our first-order
martingale:

1ðFT � LÞ ¼ 1ðWT � lnðLÞÞ, ð30Þ
for all L 2 ð0, 1]. Substituting (30) in (29) implies that:

OTtðL, TÞ � 1ðFt � LÞ ¼ 1ðFt > LÞEt1ðWT < lnðLÞÞ

¼ 1ðFt > LÞ2N lnðLÞ �Wtffiffiffiffiffiffiffiffiffiffiffi
T � t

p
� �

, ð31Þ

where NðzÞ is the standard normal distribution function and Wt is given in (26).

4.2. Down-and-in call

We next turn to the pricing of a down-and-in call (DIC) assuming zero interest
rates. We first establish some preliminary model-free results concerning the value
of a DIC. We then assume that its underlying is our first-order martingale F,
allowing us to strengthen our conclusions substantially.

A DIC with strike price K and maturity date T pays its owner ðFT � KÞþ at T,
so long as the underlying F process has touched or crossed some lower barrier
L � F0 prior to T. If F fails to touch or cross L prior to T, then the DIC expires
worthless. Let DICtðL,K, TÞ denote the arbitrage-free value of a DIC at time
t 2 [0, T]:

DICtðL,K,TÞ � Et1ðFT � LÞðFT � KÞþ, ð32Þ
for any barrier L � F0 and strike price K � L. Setting L ¼ F0 results in the
arbitrage-free value of a vanilla call:

CtðK,TÞ � EtðFT � KÞþ, ð33Þ

First-order calculus and option pricing
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for any time t 2 [0, T] and strike price K � F0. The two option prices are trivially
related by:

DICtðL,K, TÞ ¼ 1ðFt � LÞCtðK, TÞ þ 1ðFt > LÞEt1ðFT � LÞðFT � KÞþ, ð34Þ
for all t 2 [0, T], L � F0, and K � L. This result just says that before the barrier is
hit, the arbitrage-free value of the DIC is given by its expected payoff, while after
the barrier is hit, the DIC value coincides with the vanilla call value.

Next consider the problem of pricing a DIC written on our first-order martin-
gale F. We will show that since:

FT ¼ eWT ð1þW v
TÞ, ð35Þ

and

FT ¼ eWT , ð36Þ
the payoff of a DIC written on F can be related to the payoff from a claim written
on WT and W v

T . For L 2 ð0, 1] and Kc � L:

1ðFT � LÞðFT � KcÞþ ¼
Z L

0
�ðFT � JÞJ 1þW v

T � Kc

J

� �þ
dJ

¼
Z L

0
�ðeWT � e lnðJ ÞÞJðW v

T � kðKc=JÞÞþdJ, ð37Þ

where

kðxÞ � x� 1: ð38Þ
Now

�ðeWT � e lnðJ ÞÞ ¼ �ðWT � lnðJ ÞÞ 1
J

ð39Þ

from the properties of Dirac delta functions. Substituting (39) in (37) implies that
the payoff of a DIC written on F can be related to the payoff from a claim written
on WT and W v

T :

1ðFT � LÞðFT � KÞþ ¼
Z L

0
�ðWT � lnðJ ÞÞðW v

T � kðKc=JÞÞþdJ: ð40Þ

Multiplying (40) by 1ðFt > LÞ and taking conditional expectations at time t:

1ðFt > LÞEt1ðFT � LÞðFT � KÞþ ¼ 1ðFt > LÞ
Z L

0
Et�ðWT � lnðJ ÞÞ

� ðW v
T � kðKc=JÞÞþdJ: ð41Þ
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Substituting (41) in (34) implies:

DICtðL,K, TÞ � 1ðFt � LÞCtðK,TÞ ¼ 1ðFt > LÞ
Z L

0
Et�ðWT � lnðJ ÞÞ

� ðW v
T � kðKc=JÞÞþdJ: ð42Þ

We now show how to eliminate W v
T from (42). The appendix proves that for

any j � 0 and k � 0:

1ðWt > jÞEt1ðWT � jÞðW v
T � kÞþ ¼ 1ðWt > jÞ2Etð j� k �WTÞþ: ð43Þ

In words, a DIC written onW v
T with in-barrier j and strike k has the same pre-touch

value as 2 co-terminal puts written on WT struck at j� k. Suppose that t 2 [0, �],
so we have Wt > j. Since 1ðWt > jÞ ¼ 1, differentiating both sides of (43) w.r.t. j
implies that for t 2 [0, �]:

1ðWt > jÞEt�ðWT � jÞðW v
T � kÞþ ¼ 1ðWt > jÞ2Et1ðWT � j� kÞ: ð44Þ

However, when Wt > j, it is well known that the reflection principle implies that:

2Et1ðWT � j� kÞ ¼ Et1ðWT � j� kÞ: ð45Þ
In words, two digital puts have the same pre-touch value as a co-terminal one-
touch. Substituting (45) in (44) implies that for t 2 [0, �]:

1ðWt > jÞEt�ðWT � jÞðW v
T � kÞþ ¼ 1ðWt > jÞEt1ðWT � j� kÞ: ð46Þ

Since J � L 2 ð0, 1], we have lnðJ Þ � 0, and since K � L, we have
kðKc=JÞ � 0. Evaluating (46) at j ¼ lnðJ Þ and at k ¼ kðK, JÞ, substitution into
(42) implies that we can eliminate W v

T :

DICtðL,K, TÞ � 1ðFt � LÞCtðKc,TÞ

¼ 1ðFt > LÞ
Z L

0
Et1ðWT � lnðJ Þ � kðKc=JÞÞdJ

¼ 1ðFt > LÞ
Z L

0
2N

lnðJ Þ � kðKc=JÞ �Wtffiffiffiffiffiffiffiffiffiffiffi
T � t

p
� �

dJ, ð47Þ

where Wt is given in (26). The price of a standard call struck at Kc � 1 is just the
special case when L ¼ 1:

CtðKc,TÞ ¼
Z 1

0
2N

lnðJ Þ � kðKc=JÞ �Wtffiffiffiffiffiffiffiffiffiffiffi
T � t

p
� �

dJ: ð48Þ
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We can now state the main result of this subsection. For L 2 ð0, 1] and Kc � L,
a DIC on the first-order martingale F is priced by:

DICtðL,Kc, TÞ ¼ 1ðFt � LÞCtðKc, TÞ

þ 1ðFt > LÞ
Z L

0
2N

lnðJ Þ � kðKc=JÞ �Wtffiffiffiffiffiffiffiffiffiffiffi
T � t

p
� �

dJ, ð49Þ

where CtðKc,TÞ is given by (48), Wt is given by (26), and where kðKc=JÞ is given
by (38). Hence, the problem of valuing a DIC has been reduced to a single
quadrature. If we differentiate the DIC value twice with respect to its strike Kc, we
obtain the joint risk-neutral PDF of FT and FT as a single quadrature.

5. Semi-Static Replication of a One-Touch

As mentioned, the arbitrage-free approach to pricing is based on establishing the
existence of a replicating portfolio and determining its initial cost. The standard
approach for replication requires the ability to trade continuously in the underlying
risky asset and in a riskless asset. For some path-dependent contingent claims (e.g.,
barrier options and lookbacks) and for some dynamics (e.g., GBM), there may exist
an alternative replicating strategy which just involves static positions in co-terminal
options. In this section, we show that for a lower barrier one-touch written on our
first-order martingaleF, there is a static hedge involving just co-terminal put options.
The hedge is established at the time the one-touch is sold, and the hedge is liquidated
if the barrier is first touched before expiry. At this first hitting time, the value of the
portfolio of co-terminal puts is guaranteed by the model to be a worthy one, re-
gardless of the actual value of the hitting time. If the barrier is not touched by expiry,
the portfolio of co-terminal puts is guaranteed to expire worthless because all the put
options are struck below the barrier. We refer to this type of replication as “semi-
static”, since the put options in the hedge may be sold before they mature.

Consider a static position in a portfolio of co-terminal European options of
maturity T. Suppose we never use in-the-money options, hence we use only at-the-
money (ATM) and out-of-the-money (OTM) puts and calls. By allowing arbitrary
static positions in a continuum of positive strikes, one can construct any terminal
payoff hðFTÞ of the terminal first-order martingale FT . In particular, using initially
OTM put options struck at a level K 2 ð0, 1] and below, one can construct the
payoff ðlnK � lnFTÞþ � lnþðK=FTÞ, which we refer to as “put on the log”. The
initial goal of this section is to prove that for K 2 ð0, 1]:

EQ
0 [1þ lnþðK=FTÞ] ¼ EQ

0 W e
K

FT

� �
, ð50Þ
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where Wð�Þ denotes the Lambert W function. In words, the path-dependent claim
paying Wðe K

FT
Þ at its maturity date T with strike price K < F0 ¼ 1 has the same

initial price as the co-terminal path-independent claim paying 1þ lnþðK=FTÞ. We
may consider (50) as the analog of the reflection principle for the first-order mar-
tingale F. The next section shows that the relative pricing result in (50) survives
intact when the underlying first-order martingale F is generalized into any Ocone
martingale. In another way, the introduction of independent stochastic volatility
with unknown dynamics does not change the relative pricing result in (50).

Of course, the contingent claims on each side of (50) do not trade outright in
financial markets. However, Mellin transforms can be used to invert for the PDF
of FT implicit on the RHS of (50). Integration then yields the CDF of FT which
is just the value of a one touch. Since the LHS can be interpreted as the price of
a portfolio of bonds and OTM put options, the inversion and subsequent inte-
gration gives a relative pricing relation between a one touch and a portfolio of
bonds and co-terminal OTM puts. We indicate how this latter relative pricing
relationship can be used to provide a semi-static replicating portfolio for a one
touch.

For K 2 ð0, 1], the payoff ðlnK � lnFTÞþ from the put on the log struck at lnK
arises by combining the payoff from 1

K puts on FT struck at K with the payoffs from
dJ
J 2 puts on FT struck at all strikes below K:

ðlnK � lnFTÞþ ¼ 1
K
ðK � FTÞþ þ

Z K

0

1
J 2

ðJ � FTÞþdJ: ð51Þ

Let P0ðKÞ be the initial value of a European put struck at K and maturing at T. It
follows from no arbitrage that for K 2 ð0, 1]:

EQ
0 [1þ ðlnK � lnFTÞþ] ¼ 1þ 1

K
P0ðKÞ þ

Z K

0

1
J 2

P0ðJ ÞdJ: ð52Þ

In words, the path-independent payoff [1þ ðlnK � lnFTÞþ] has the same initial
value as a static position in:

(1) a co-terminal bond paying $1 at T,
(2) 1

K co-terminal puts on FT struck at K with each put paying ðK � FTÞþ at T, and
(3) an infinitesimal position in dJ

J 2 co-terminal puts struck at J, for each J 2 ð0,KÞ.
For any K � 0, the payoff from the put on the log struck at lnK decomposes

into the sum of the payoffs from all binary puts on the log struck below lnK:

ðlnK � lnFTÞþ ¼
Z lnK

�1
1ðlnFT � ‘Þd‘: ð53Þ

First-order calculus and option pricing
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Evaluating (6) at t ¼ T and taking logs implies that for the first-order martingale:

lnFT ¼ WT þ ln ð1þW v
TÞ: ð54Þ

Substituting (54) into (53) implies:

ðlnK � lnFTÞþ ¼
Z lnK

�1
1ðWT þ ln ð1þW v

TÞ � ‘Þd‘

¼
Z lnK

�1

Z 1

0
1ðWT þ ln ð1þ kÞ � ‘Þ�ðW v

T � kÞdkd‘, ð55Þ

by the law of total probability. Thus, the payoff from the put on the log arises by
combining the payoffs from a static position in co-terminal down-and-in butterfly
spreads written on the terminal Brownian drawup. From no arbitrage, the put on
the log also has the same value as an ensemble of co-terminal down-and-in but-
terfly spreads written on the terminal Brownian drawup:

EQ
0 ln

þðK=FTÞ ¼
Z lnK

�1

Z 1

0
EQ

0 1ðWT � ‘� ln ð1þ kÞÞ�ðW v
T � kÞdkd‘: ð56Þ

Recall that the appendix showed that for any barrier j � 0 and k � 0:

EQ
0 1ðWT � jÞ1ðW v

T > kÞ ¼ 2EQ
0 1ðWT < j� kÞ ¼ EQ

0 1ðWT < j� kÞ

by the reflection principle. Differentiating w.r.t. k and negating:

EQ
0 1ðWT � jÞ�ðW v

T � kÞ ¼ EQ
0 �ðWT � ð j� kÞÞ: ð57Þ

We now suppose that K 2 ð0, 1Þ so that ‘� ln ð1þ kÞ � 0 for all k � 0. Eval-
uating (57) at j ¼ ‘� ln ð1þ kÞ and substituting the result in (56) implies that:

EQ
0 ln

þðK=FTÞ ¼
Z lnK

�1

Z 1

0
EQ

0 �ðWT � ð‘� ln ð1þ kÞ � kÞdkd‘: ð58Þ

By Fubini and the symmetry of the Dirac delta function:

EQ
0 ln

þðK=FTÞ ¼ EQ
0

Z 1

0

Z lnK

�1
�ð‘� ðln ðð1þ kÞekÞ þWTÞÞd‘dk

¼ EQ
0

Z 1

0

Z 1

�1
�ð‘� ðln ðð1þ kÞekÞ þWTÞÞ1ð‘ � lnKÞd‘dk

¼ EQ
0

Z 1

0
1ðln ðð1þ kÞekÞ þWT � lnKÞdk, ð59Þ
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using the sifting property of the Dirac delta function. Exponentiating inside the
indicator function implies that:

EQ
0 ln

þðK=FTÞ ¼ EQ
0

Z 1

0
1 ðk þ 1Þekþ1 � e

K

FT

� �
dk: ð60Þ

Recall that the Lambert W function WðxÞ is the inverse of xex and is increasing for
x > 0. It follows that:

EQ
0 ln

þðK=FTÞ ¼ EQ
0

Z 1

0
1 k þ 1 � W e

K

FT

� �� �
dk

¼ EQ
0 W e

K

FT

� �
� 1: ð61Þ

Hence, the path-independent payoff 1þ ln þð K
FT
Þ has the same initial price �ðKÞ as

the path-dependent payoff Wðe K
FT
Þ, i.e.:

�ðKÞ � EQ
0 1þ lnþ

K

FT

� �� �
¼ EQ

0 W e
K

FT

� �
: ð62Þ

Evaluating (25) at k � j ¼ ln J and at t ¼ 0 with W0 ¼ 0, the distribution
function of FT is known in closed form:

Q0fWT � ln Jg ¼ Q0fFT � Jg ¼ 2N
ln Jffiffiffiffi
T

p
� �

, J 2 ð0, 1]: ð63Þ

Differentiating w.r.t. J implies that the PDF of FT is also known in closed form:

Q0fFT 2 dJg ¼
ffiffiffiffiffiffiffi
2
�T

r
e�

ðln JÞ 2
2T

dJ

J
, J 2 ð0, 1]: ð64Þ

Hence, the expected value on the RHS of (62) can be written as an explicit integral:

�ðKÞ ¼ EQ
0 W e

K

FT

� �
¼

Z 1

0
W e

K

J

� � ffiffiffiffiffiffiffi
2
�T

r
e�

ðln JÞ 2
2T

dJ

J
: ð65Þ

The RHS of (65) is recognized as a multiplicative convolution in K of the function

wð�Þ � Wðe�Þ with the function qð�Þ �
ffiffiffiffiffi
2
�T

q
e�

ðln �Þ 2
2T 1ð� 2 ð0, 1ÞÞ, i.e.:

�ðKÞ ¼ ðw � qÞðKÞ, K > 0, ð66Þ
where the � denotes multiplicative convolution. The Mellin transform of a function
f ðJ Þ, J > 0 is defined by:

Mf ðsÞ �
Z 1

0
J s�1f ðJ ÞdJ, ð67Þ
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for s in some region in the complex plane where the integral converges. Taking the
Mellin transform of both sides of (66):

M�ðsÞ ¼ MwðsÞMqðsÞ: ð68Þ
In words, the Mellin transform of � is just the product of the Mellin transform of w
and the Mellin transform of q. In principle, the Mellin transform on the LHS of
(68) can be directly observed from the smile. From Corless et al. (1997), the
Mellin transform of the Lambert W function on the RHS is:

MWðsÞ �
Z 1

0
J s�1WðJ ÞdJ ¼ ð�sÞ�s�ðsÞ

s
: ð69Þ

By a simple change of variables, the Mellin transform of wð�Þ � Wðe�Þ is:

MwðsÞ �
Z 1

0
J s�1WðeJÞdJ ¼ �ðsÞ

sð�esÞs : ð70Þ

Substituting (70) in (67) implies:

M�ðsÞ ¼
�ðsÞ

ð�esÞssMqðsÞ: ð71Þ

One can solve (71) for the the Mellin transform of q:

�ðsÞ � MqðsÞ ¼
sð�esÞs
�ðsÞ M�ðsÞ: ð72Þ

Let OTðLÞ � R L
0 qðJ ÞdJ be the value of a one-touch with lower barrier L 2 ð0, 1].

The Mellin transform of the indefinite integral OT is related to the Mellin trans-
form of the function q being integrated by:

MOTðsÞ ¼ � �ðsþ 1Þ
s

¼ � ð�eðsþ 1ÞÞsþ1

�ðsþ 1Þ M�ðsþ 1Þ: ð73Þ

The inverse Mellin transform of a function f ðsÞ is defined as:

fM�1f gðJ Þ ¼ 1
2�i

Z cþi1

c�i1
J�sf ðsÞds, ð74Þ

where c is any real such that the integral converges. Applying the inverse Mellin
transformation to (73), we have:

OTðLÞ � Q0fFT � Lg ¼ M�1 � ð�esÞsþ1

�ðsþ 1Þ M�ðsþ 1Þ
� �� �

ðLÞ, L 2 ð0, 1]:

ð75Þ
While this representation is certainly more complicated than integrating the simple
formula for the PDF of FT in (64), the advantage of the representation is that it
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holds unchanged when the dynamics of the underlying process are generalized to
entertain independent stochastic volatility.

To replicate the payoff of a one-touch written on the first-order martingale F,
(75) indicates that one initially buys co-terminal puts for all strikes below some
critical level. If the underlying first-order martingale does not touch L by expiry,
then all these puts expire worthless. On the other hand, if the underlying first-order
martingale does touch L at some time prior to expiry, then at the first passage time,
this portfolio of puts should be sold. The revenue generated is just sufficient to buy
a bond paying one dollar at T. Once this bond is purchased, the payoff to the one-
touch is replicated.

The next section shows that this semi-static replication result survives intact if the
SBMW driving the first-order martingale is generalized into an Ocone martingale.

6. Summary and Extensions

We developed a positive continuous martingale denoted by F and analyzed it. In
particular, we gave a closed form formula for the bivariate PDF ðFT ,F

v
TÞ. We

showed that the PDF and CDF of FT are both given by a bounded integral. We also
explored the implication of symmetry for our first-order martingale.

One can generalize our first-order martingale by replacing the exponential
function by the distribution function of a non-positive random variable. One can
treat these PAY martingales as the skeleton of some more complicated process that
arise due to time change. If the time change is continuous and independent, we
have the same link between the law of the level and the joint law of the minimum
and drawup. If the stochastic clock is a subordinator, Weiner Hopf factorization
can be explored. When two correlated SBM’s act as drivers, we still have trac-
tability since the joint law of the two minima is known. In the interests of brevity,
these extensions are best left for future research.
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Appendix

Consider a DIBC written on W v
T , the terminal drawup of an SBM, with in-barrier

j � 0 and strike price k � 0. The payoff at time T is 1ðWT � j,W v
T � kÞ and

prior to knocking in, the price is 1ðWt > jÞEt1ðWT � j,W v
T � kÞ. In this
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appendix, we will show that for j � 0 and k � 0:

1ðWt > jÞEt1ðWT � j,W v
T � kÞ ¼ 1ðWt > jÞ2Et1ðWT � j� kÞ: ðA:1Þ

In words, we claim that prior to knocking in, the DIBC described above has the
same price as 2 binary puts onWT struck at j� k. The reason is that the two binary
puts can be used to replicate the payoff of the DIBC. Suppose that for some
t 2 [0, T], we have Wt > j. If W stays above j between t and T, then the two puts
expire worthless, as does the DIBC. If instead, W hits j between t and T, then at the
first passage time, one of the binary puts can be sold. By the symmetry of SBM,
the revenue generated from the sale of the binary put struck at j� k is just suf-
ficient to buy one binary call struck at jþ k. After purchasing the call, the investor
has a binary call and a binary put on W which are equally OTM. If the minimum
does not sink further by T, then the binary call part of the position provides the
desired payoff. If the minimum does sink further, then at each time that the
minimum decreases, the whole position is sold and a new one is purchased which
is centered at the running minimum. By the symmetry of SBM, the revenue
generated by rolling down the binary put strike is just sufficient to cover the cost of
rolling down the binary call strike. Again, the binary call part of the position
provides the desired payoff.

We now show that for j � 0 and k � 0:

1ðWt > jÞEt1ðWT � jÞðV w
T � kÞþ ¼ 1ðWt > jÞ2Etðj� k �WTÞþ: ðA:2Þ

In words, we claim that prior to knocking in, a DIC written on the terminal
drawup of an SBM has the same price as two puts struck at j� k. The reason is
that the two puts can be used to replicate the payoff of the DIC. Suppose that for
some t 2 [0, T], we have Wt > j. If W stays above j between t and T, then the two
puts expire worthless, as does the DIC. If instead, W hits j between t and T, then at
the first passage time, one of the puts can be sold. By the symmetry of SBM, the
revenue generated from the sale of the put struck at j� k is just sufficient to buy
one call struck at jþ k. After purchasing the call, the investor has a strangle on W
centered at j. If the minimum does not sink further by T, then the call part of the
strangle provides the desired payoff. If the minimum does sink further, then at
each time that the minimum decreases, the strangle is sold and a new one is
purchased which is centered at the running minimum. By the symmetry of SBM,
the revenue generated by rolling down the put strike is just sufficient to cover the
cost of rolling down the call strike. Again, the call part of the strangle provides the
desired payoff.

P. Carr
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