1. Given the preorder traversal of a binary search tree is as follows: 9 5 4 3 7 6 8 13 11 12 15…

 a. Draw the described tree.

 b. Now that you have the tree, what is its postorder traversal?
2. Given a min heap with the structure as defined below, redraw the minheap after performing the following operations…

```
    5
   / \
  6   7
 /   / / / /
9 10 11 15
 /   \
17   18
```

 a. Insert 8

 b. Delete min
3. Write a function which recursively determines if a binary tree is balanced or not. By balanced, we mean that the right and left subtrees have at most a difference in height of 1. Note: You may use a helper if this helps you.
4. Define a non-recursive function which will print out the specified level of a tree, using only a stack and a queue and constant additional space.

5. Draw the resultant Hash Table after inserting the below items into the table (of size 13), with hash function \(h(k) = k \mod 13 \). Use linear probing to deal with the collisions.

 Insert 32, 5, 23, 29, 26, 41, 39, 42, 17, 19