
*All articles are now 
categorized by topics 
and subtopics. View at 
PM-Research.com.

Semi-Analytical Solutions for 
Barrier and American Options 
Written on a Time-Dependent 
Ornstein–Uhlenbeck Process
Peter Carr and Andrey Itkin

KEY FINDINGS

n	 For the first time the method of generalized integral transform, invented in physics for 
solving an initial-boundary value parabolic problem at [0, y(t)] with a moving boundary 
[y(t)], is applied to finance.

n	 Using this method, pricing of barrier and American options, where the underlying 
follows a time-dependent OU process (the Bachelier model with drift) are solved in a 
semi-analytical form.

n	 It is demonstrated that computationally this method is more efficient than the backward 
and even forward finite difference method traditionally used for solving these problems 
whereas providing better accuracy and stability.

ABSTRACT

In this article, we develop semi-analytical solutions for the barrier (perhaps, time-dependent) 
and American options written on the underlying stock that follows a time-dependent Ornstein–
Uhlenbeck process with a lognormal drift. Semi-analytical means that given the time-depen-
dent interest rate, continuous dividend and volatility functions, one need to solve a linear 
(for the barrier option) or nonlinear (for the American option) Volterra equation of the second 
kind (or a Fredholm equation of the first kind). After that, the option prices in all cases are 
presented as one-dimensional integrals of combination of the preceding solutions and Jacobi 
theta functions. We also demonstrate that computationally our method is more efficient than 
the backward finite difference method traditionally used for solving these problems, and can be 
as efficient as the forward finite difference solver while providing better accuracy and stability.

TOPICS

Derivatives, options, statistical methods*

The Ornstein–Uhlenbeck process with time-dependent coefficients is very pop-
ular among practitioners for modeling interest rates and credit because it is 
relatively simple, allows negative interest rates (which recently has become a 

relevant feature), and can be calibrated to the given term-structure of interest rates 
and to the prices or implied volatilities of caps, floors, or European swaptions, since 
the mean-reversion level and volatility are functions of time. Among this class, the 
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most known are the Hull-White and Vasicek models (see Brigo and Mercurio 2006 
and references therein).

The Hull-White model is a one-factor model for the stochastic short interest rate 
rt of the form

	 = θ − + σdr k t r dt t dWt t t[ ( ) ] ( ) , 	 (1)

where t is the time, k > 0 is the constant speed of mean-reversion, θ(t) is the 
mean-reversion level, σ(t) is the volatility of the process, Wt is the standard Brownian 
motion under the risk-neutral measure. This model can also be used for pricing Equity 
or FX derivatives if one assumes that the mean-reversion level vanishes, while the 
mean-reversion rate is replaced either by q(t) - r(t) for Equities, or by rf(t) - rd(t) for 
FX, where r(t), q(t) are the deterministic interest rate and continuous dividends, and 
rd(t), rf(t) are the deterministic domestic and foreign interest rates.

Without loss of generality, in this article we mostly concentrate on the Equity 
world, whereas application of this technique to the Hull-White model is considered in 
Itkin and Muravey (2020). Since the process in Equation (1) is Gaussian, the model 
is tractable for pricing European plain vanilla options. However, for exotic options 
(e.g., liquid barrier options) or for American options, these prices are not known yet 
in closed form. Therefore, various numerical methods are used to obtain them, which 
can sometimes be computationally expensive. Note that simple one-factor models 
of the type considered in this article are not well suited to replicate the implied vola-
tility surface of the exotic options, and instead more sophisticated models that treat 
volatility as a stochastic variable should be used in this case. Still, construction of a 
semi-analytical solution even for our simple model is useful and is discussed in the 
Discussion section. Once this is done, the same method could be used for solving 
other problems implicitly related to pricing of barrier options—for example, analyzing 
the stability of a single bank and a group of banks in the structural default framework, 
(Kaushansky, Lipton, and Reisinger 2018), calculating the hitting time density (Alil, 
Patie, and Pedersen 2005; Lipton and Kaushansky 2020a), and finding an optimal 
strategy for pairs trading (Lipton and de Prado 2020). Also, the method could be used 
for solving various problems in physics, where it was originally developed for the heat 
equation (see Kartashov 2001, Friedman 1964, and references therein).

In this article, we construct a semi-analytical solution for the prices of barrier 
and American options written on the process in Equation (1). The results obtained in 
this article are new. Our approach to a certain degree is similar to that in Mijatovic 
(2010), although Mijatovic used a different underlying process (the lognormal model 
with local spot-dependent volatility, and constant interest rates and dividends, but 
time-dependent barriers). Therefore, our model is more general in the sense that all 
parameters of the model are time-dependent, including time-dependent barriers. 
Also, as compared with Mijatovic (2010), we do not use a probabilistic argument but 
rather a theory of partial differential equations (PDEs). At the end we demonstrate 
that computationally our method is more efficient than the backward finite difference 
(FD) method used to solve these problems, and it can be as efficient as the forward 
finite difference solver while providing better accuracy and stability.

The rest of the article is organized as follows. In the next section, we describe 
the pricing problem for the barrier options where the underlying follows the Bache-
lier model and show how to transform the pricing PDE to the heat equation. In the 
Solution of the Barrier Pricing Problem section, we describe the method of the Gen-
eralized Integral Transform and construct semi-analytical solutions for the direct and 
inverse problems using complex analysis. In the Pricing American Options section, 
we apply the same technique for pricing American options in semi-analytical form. 
Also, by using this approach the exercise boundary is found simultaneously with the 
option price. The Numerical Example section demonstrates the results of numerical 
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experiments and tests. In the final section, various additional aspects and extensions 
of the proposed method are discussed.

PROBLEM FOR PRICING BARRIER OPTIONS

We start by specifying the dynamics of the underlying spot price St to be

	 = − + σdS r t q t S dt t dWt t t[ ( ) ( )] ( ) , 	 (2)

where now r(t) is the deterministic short interest rate. This model is also known in 
the financial literature as the Bachelier model. See, for example, Thomson (2016) for 
a thorough discussion of pro and contra of this model. One can think about St, for 
example, as the stock price or the price of some commodity asset. Although in the 
Bachelier model the underlying value could become negative, which is not desirable 
for the stock price, this is fine for commodities under the modern market conditions 
when the oil prices have been several times observed to be negative (see, e.g., CME 
Clearing 2020). For the sake of certainty, next we reference St as the stock price.

In Equation (2) we don’t specify the explicit form of r(t), q(t), σ(t) but assume that 
they are known as a differentiable functions of time t ∈ [0, ∞). The case of discrete 
dividends is discussed in the final section.

Further in this section we consider a contingent claim written on the underlying 
process St in Equation (2), which is the Up-and-Out barrier Call option. It is known 
that by the Feynman-Kac formula (Klebaner 2005) one can obtain a parabolic (linear) 
PDE whose solution gives the Up-and-Out barrier Call option price C(S, t) conditional 
on S0 = S, which reads

	
∂
∂

+ σ ∂
∂

+ − ∂
∂

=C
t

t
C

S
r t q t S

C
S

r t C
1
2

( ) [ ( ) ( )] ( ) .2
2

2 	 (3)

This equation should be solved subject to the terminal condition at the option 
maturity t = T

	 = − +C S T S K( , ) ( ) , 	 (4)

and the boundary conditions

	 = =C t C H t(0, ) 0, ( , ) 0, 	 (5)

where H = H(t) is the upper barrier. Note that for the arithmetic Brownian motion pro-
cess, the domain of definition is S ∈ (-∞, H]. However, here we move the boundary 
condition from minus infinity to zero; see the discussion in Itkin and Muravey (2020) 
about rigorous boundary conditions for this problem. This happens because in practice 
we can control the left boundary to make the probability of S dropping below 0 rare.

Our goal now is to build a series of transformations to transform Equation (3) to 
the heat equation.

Transformation to the Heat Equation

To transform the PDE Equation (3) to the heat equation, we first make a change 
of the dependent and independent variables as follows:

	 → →S x g t C S t e u x tf x t/ ( ), ( , ) ( , ),( , ) 	 (6)
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where new functions f(x, t), g(t) has to be determined in such a way that the equa-
tion for u is the heat equation. This can be done by substituting Equation (6) into 
Equation (3) and providing some tedious algebra. The result reads

	 ∫

= − ′ + −
σ

= 





+

f x t k t
g t g t r t q t

g t t
x

k t
g t
g

r s q s ds
t

( , ) ( )
( ) ( )( ( ) ( ))

2 ( ) ( )
,

( )
1
2

log
( )
(0)

1
2

[3 ( ) – ( )] .

3 2
2

0
	 (7)

The function g(t) solves the following ordinary differential equation

	

= − ′′ + ′ ′σ
σ

+ ′

= − ′σ
σ

− − + ′ − ′

b t g t g t g t
t
t

g t
g t

b t r t q t
t
t

r t q t r t q t

0 ( ) ( ) ( ) 2 ( )
( )
( )

2
( )
( )

,

( ) 2( ( ) ( ))
( )
( )

[( ( ) ( )) ( ) ( )].

2

2 	 (8)

The Equation (8) by substitution

	 → ∫g t e
w s ds

t

( )
( )

0 	 (9)

can be further transformed to the Riccati equation

	 ′ = + + ′σ
σ

w t b t w t w t
t
t

( ) ( ) ( ) 2 ( )
( )
( )

.2 	 (10)

This equation cannot be solved analytically for arbitrary functions r(t), q(t), σ(t) but 
can be efficiently solved numerically. Also, in some cases it can be solved in closed 
form. For instance, if |r(t) - q(t)|t = ε  1 (which at the current market is a typical 
case), then b(t) can be reduced to b(t) = 2(r(t) - q(t))σ′(t)/σ(t). Then assuming in the 
first approximation on ε

	  −w t r t q t| ( ) | | ( ) ( ) |, 	 (11)

we obtain the solution

	
∫

= σ

− σ
w t

t

D s ds
t( )

( )

( )
,

2

2

0

	 (12)

where D is an integration constant. Thus, Equation (11) can be rewritten as

+ ε





−t
V
V

D r t q tV( ) 1 ( ( ) ( )),

where V(t) = σ2(t) is the normal variance, and = ∫ σV t s dst
t( ) ( )1
0

2  is the average normal 
variance. Thus, our solution in Equation (12) is correct if ε  1 and εV V/ 1, because 
then D can always be chosen to obey the inequality − ∀ ∈t D r t q t t TV( ) ( ( ) ( )), [0, ].

With these explicit definitions, Equation (3) transforms to the form

	 σ ∫ ∂
∂

+ ∂
∂

=t e
u

x
u
t

w s ds
t1

2
( ) 0.2 2 ( )

2

2
0 	 (13)
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The next step is to make a change of the time variable

	 ∫τ → σ ∫t s e ds
t

T w m dm
s

( )
1
2

( ) ,2 2 ( )
0 	 (14)

so Equation (13) finally takes the form of the heat equation

	
∂
∂τ

= ∂
∂

u u
x

.
2

2 	 (15)

Equation (15) should be solved subject to the terminal condition

	 = ∫ −
− + −u x xe K e

w s ds f x T
T

( ,0) ( ) ,
( ) ( , )0 	 (16)

and the boundary conditions

	 τ = τ τ = τ = τ τu u y y H t g t(0, ) 0, ( ( ), ) 0, ( ) ( ( )) ( ( )). 	 (17)

These conditions directly follow from Equations (4) and (5), whereas y(τ) is now a 
time-dependent upper barrier.1 The function t(τ) is the inverse map of Equation (14). 
It can be computed for any t ∈ [0,T] by substituting it into Equation (14), then finding 
the corresponding value of τ(t), and finally inverting.

Solution of the Barrier Pricing Problem

The PDE in Equations (15), (16), and (17) is a parabolic equation whose solution 
should be found at the domain with moving boundaries. These types of problems 
have been known in physics for a long time. Similar problems arise, for example, in 
the field of nuclear power engineering and safety of nuclear reactors, in studying com-
bustion in solid-propellant rocket engines, in laser action on solids, in the theory of 
phase transitions (the Stefan problem and the Verigin problem [in hydromechanics]), 
in the processes of sublimation in freezing and melting, and in the kinetic theory of 
crystal growth (see Kartashov 1999 and references therein). Analytical solutions of 
these problems require nontraditional, and sometimes sophisticated, methods. Those 
methods were actively elaborated on by the Russian mathematical school in the 20th 
century starting from A. V. Luikov, and then by B. Ya. Lyubov, E. M. Kartashov, and 
many others.

As applied to mathematical finance, one of these methods—the method of heat 
potentials—was actively used by A. Lipton and his coauthors, who solved various 
problems of mathematical finance by using this approach (see Lipton 2001, Lipton and 
de Prado 2020, and references therein). Another method that we use in this article 
is the method of a generalized integral transform. Next we closely follow Kartashov 
(2001) when give an exposition of the method.

We start by introducing an integral transform of the form

	 ∫τ = τ
τ

u p u x x p dx
y

( , ) ( , )sinh( ) ,
0

( )
	 (18)

1 Therefore, we can also naturally solve the same problem with the time-dependent upper barrier 
H = H(t), as this just changes the definition of y(t).
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where p = a + iw is a complex number with R(p) ≥ β > 0, and − < <π πparg ( )4 4 . Let’s 
multiply both parts of Equation (15) by x psinh( ) and then integrate on x from zero 
to y(τ):

∫ ∫
∂
∂τ

= ∂
∂

τ τu
x p dx

u
x

x p dx
y y

sinh( ) sinh( ) .
0

( ) 2

20

( )

Integrating by parts, we obtain

∫

∫

∂
∂τ

τ − τ τ τ ′ τ

= ∂ τ
∂

+ τ + τ

τ

ττ τ

u x x p dx u y y p y

u x
x

x p pu x x p p u x x p dx

y

yy y| |

( , )sinh( ) ( ( ), )sinh( ( ) ) ( )

( , )
sinh( ) ( , )cosh( ) ( , )sinh( ) .

0

( )

0

( )

0

( )

0

( )

With allowance for the boundary conditions in Equation (17) and the definition in 
Equation (18), we obtain the following Cauchy problem:

	 ∫

∂
∂τ

− = Ψ τ τ

= Ψ τ = ∂ τ
∂ = τ

u
pu y p

u p u x x p dx
u x

x

y

x y|

( )sinh( ( ) ),

( ,0) ( ,0)sinh( ) , ( )
( , )

.
0

(0)

( ) 	 (19)

Equation (19) can be solved explicitly, assuming that Ψ(τ) is known. The solution 
reads

	 ∫ ∫= Ψ +− τ τ −ue k e y k p dk u x x p dxp pk
y

( ) sinh( ( ) ) ( ,0)sinh( ) .
0 0

(0)
	 (20)

As R(p) ≥ β > 0, and τ < ∞u x( , ) , the function →− τue p 0  at τ → ∞. Therefore, 
letting τ tend to ∞, we obtain an equation that makes a connection between the 
moving boundary y(τ) and Ψ(τ):

	 ∫ ∫Ψ τ τ τ = −
∞ − τe y p d u x x p dxp

y
( ) sinh( ( ) ) ( ,0)sinh( ) .

0 0

(0)
	 (21)

Using the definitions in Equation (16) and Equation (7), the integral in the RHS of 
Equation (21) can be represented as

∫≡ − ∫ −

= ∫
− − π







⋅ − 
−





+ + 
+




















= ∫ = ′ + −
σ

− −

−
− +  + 

F p e x K x p e dx

e
e

a T a T e e

p a T K
a T x p

a T
p a T K

a T x p
a T

K Ke a t
g t g t r t q t

g t t

w s ds

K

y
k T a T x

w s ds
k T x a T x p

px

a T x p

a T

w s ds

T

T

K

y

T

|

( ) ( )sinh( )

8 ( ) 2 ( )( 1)

2 ( ) erf
2 ( )

2 ( )
2 ( ) erf

2 ( )
2 ( )

,

, ( )
( ) ( )( ( ) ( ))

2 ( ) ( )
.

( )

1

(0) ( ) ( )

( )
( ) ( )

3/2
2

2 ( )

4 ( )

1 1

1

( )

3 2

0

1

2

0

2

1

(0)

0

		
		

(22)
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Thus, Equation (21) takes the form

	 ∫ Ψ τ τ τ =
∞ − τe y p d F pp( ) sinh( ( ) ) ( ),
0

	 (23)

where F(p) is known from Equation (22).
Equation (23) is a linear Fredholm integral equation of the first kind (Polyanin and 

Manzhirov 2008). The solution Ψ(τ) can be found numerically on a grid by solving a sys-
tem of linear equations. In other words, given functions r(t), q(t), σ(t), we can compute 
first w(t), then g(t), and finally τ(t) (or t(τ)), thus determining the moving boundary y(τ). 
Next we can solve Equation (23) for Ψ(τ) and substitute it into Equation (20) to obtain 
the generalized transform of u(x, τ) in the explicit form. Therefore, if this transform can 
be inverted back, we solved the problem of pricing Up-and-Out barrier Call options.

The Inverse Transform

In this section the description of inversion is borrowed from Kartashov (2001). 
Because that book has not been translated into English, we provide a wider exposition 
of the method. Also, the book contains various typos that are fixed here.

As known from a general theory of the heat equation, the solution of the heat 
equation τ = = ∂ ∂τ − ν ∂ ∂u x x( , ) 0, / /2 2L L  at the space domain 0 < x < l, where l is a 
constant, can be expressed via Fourier series of the form, (Polyanin 2002)

∑τ = α π





=

∞
− νγu x e

n x
ln

n

tn( , ) sin ,
1

2

where ψ(x) = sin(nπx/l) are the eigenfunctions of the heat operator L, and γn = nπ/l 
are its eigenvalues.

Therefore, by analogy we look for the inverse transform of u , or for the solution 
of Equation (20) in terms of u(x, τ), to be a generalized Fourier series of the form 
(Kartashov 2001)

	 ∑τ = α τ π
τ







− π
τ







τ

=

∞
u x e

n x
yn

n
y

n
sin( , ) ( )

( )
,( )

1

2

	 (24)

where α(τ) are some functions to be determined. Note that this definition automatically 
respects the vanishing boundary conditions for u(x, τ). We assume that this series 
converges absolutely and uniformly ∀x ∈ [0, y(τ)] for any τ > 0.

Applying this generalized integral transform to both parts of Equation (18) and 
integrating, we obtain

	 ∑ − α τ
+ π τ

= τ
π τ

τ
( )+ − π τ τ

=

∞ n e
p n y

y
py

u p
n

n
n y

n

( 1) ( )
( / ( ))

( )
sinh( ( ))

( , ).
1 / ( )

2
1

2

	 (25)

The LHS of this equation is regular everywhere except simple poles on the neg-
ative semi-axis (see Exhibit 1),

= − π
τ







=p
n
y

nn ( )
, 1,2, ...

2
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Let us sequentially integrate both sides of Equa-
tion (25) on p along contours γ1, γ2, …. The contour 
γn consists of the vertical line γ > 0, the half-round of 
radius Rn = [π2/(2y(τ)](2n2 + 2n + 1) (the contour γn 
crosses the Re(p) axis in the middle point between pn 
and pn + 1 with the center in the origin), and two hor-
izontal lines Y = ±[π2/(2y(τ))] (2n2 + 2n + 1). It means 
that the circle Rn doesn’t hit any pole of the LHS of 
Equation (25). Then by the Cauchy’s residual theorem 
(Mitrinovic and Keckic 1984), the integral taken along 
the contour γn is equal to 2pi times the sum of residu-
als of the LHS of Equation (25) that lie inside γn.

As poles are simple, and the function under the 
integral in the LHS of Equation (25) has the form F1(p)/
F2(p), the residual of such a function is (Mitrinovic and 
Keckic 1984)

= ′ =F p F p p F p F pk p pk
|Res[ ( )/ ( ); ] ( )/ ( )1 2 1 2

The preceding analysis is the basis for running 
a residual machinery to calculate all the coefficients 
αn(τ).

Residual Machinery

Let us denote via kI  the following contour integral

∫=
π

τ
τγi

u p
py

dpk
k

1
2

( , )
sinh( ( ))

.I

Next we show that all coefficients αn, n = 1, …, ∞ can be expressed via these 
integrals.

	 1.	 Coefficient α1(τ). Integrating Equation (25) along the contour γ1 gives

 



∫ ∑ ∫

∫

α τ
+ π τ

+ − α τ
+ π τ

= τ
π

τ
τ

( ) ( )− π τ τ

γ

+

=

∞
− π τ τ

γ

γ

e
p y

dp n e
p n y

dp

y u p dp
py

y n

n
n

n y( )
1

( / ( ))
( 1) ( )

1
( / ( ))

( ) ( , )
sinh( ( ))

.

1
/ ( )

2
1

2

/ ( )
2

2

1

2

1

1

	Observe, that

 ∫ ∫+ π τ
= π

+ π τ
= ≥

γ γp y
dp i

p n y
dp n

1
( / ( ))

2 ,
1

( / ( ))
0, 2,2 2

1 1

	where the second result is due to the Cauchy integral theorem (Mitrinovic 
and Keckic 1984). Then

EXHIBIT 1
Contours of Integration in a Complex Plane: pn, n = 1, 2 
… Are Simple Poles of the LHS of Equation (25), γn–the 
Integration Contours

••••p4 p3 p2 p1 Re p
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	 α τ = τ
π

( )π τ τy
y

e y I( , )
( )

.1
/ ( )

1

2

	 (26)

	 2.	 Coefficient α2(τ). By analogy, integrating the second equation of Equation (25) 
along the contour γ2 we obtain

           

 

 

∫ ∫

∑ ∫ ∫ ( )

α τ
+ π τ

− α τ
+ π τ

+ − α τ
+ π τ

= τ
π

τ
τ

( ) ( )

( )

− π τ τ

γ

− π τ τ

γ

+

=

∞
− π τ τ

γ γ

e
dp

p y
e

dp
p y

e
dp

p n y
y u p

py
dp

y y

n

n
n

n y

( )
( / ( ))

2 ( )
(2 / ( ))

( 1) ( )
( / ( ))

( ) ( , )

sinh ( )
,

1
/ ( )

2 2
2 / ( )

2

1

3

/ ( )
2

2

2

2

2

2

2 2

	whence using again the residual theorem and Equation (26) we find

[ ]α τ = − τ
π

−( )π τ τy
y

e y I I( , )
( )

2
.2

2 / ( )
2 1

2

	 3.	 Coefficient αn(τ). Proceeding in a similar manner, we obtain a general formula 
for the coefficients αn, n ≥ 1

	 α τ = − τ
π

− − δ 
( )+ π τ τ

−
y
n

en
n n y

n n nI I( ) ( 1)
( )

(1 ) ,1 / ( )
,1 1

2

	 (27)

	where δn,1 is the Kronecker symbol.

The Final Solution

To calculate the integrals in the RHS of Equation (27), we rewrite them in the 
explicit form by using the solution for τu p( , )  previously found in Equation (20),

∫ ∫ ∫=
π τ

Ψ +





τ

γ

τ −

i
e
y p

s e y s p ds u x x p dx dpj

p
ps

y

k


I
1

2 sinh( ( ) )
( ) sinh( ( ) ) ( ,0)sinh( ) .

0 0

(0)

As sinh(x) is a periodic complex function with the period πk/i, the RHS of this 
equation is regular everywhere except simple poles, where τpysinh( ( ))  vanishes. 
It is easy to checks that these poles are exactly pi, i = 1, …, k. Therefore, we again 
can directly apply the Cauchy residual theorem. Computing residuals, after some 
algebra we obtain

	 ∫ ∫α τ =
τ

π
τ







+ Ψ π
τ

















( )π ττ

y
u x

n x
y

dx e s
n y s

y
dsn

y n y s( )
2
( )

( ,0)sin
( )

( )sin
( )

( )
.

0

(0) / ( )

0

2

	 (28)

Thus, from Equation (24) and Equation (28) we find the final solution

∑ ∫

∑ ∫

τ =
τ

π
τ







π
τ













+ π
τ







Ψ π
τ





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




( )

− π
τ





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τ

=

∞

=

∞
π τ −ττ

u x
y

e
n x
y

u x
n x
y

dx

n x
y

e s
n y s

y
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n
y

n

y

n

n y s

( , )
2
( )

sin
( )

( ,0)sin
( )

sin
( )

( )sin
( )

( )
.

( )

1
0

(0)

1

/ ( ) ( )

0

2
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This can also be rewritten as

	
∫ ∑

∫ ∑

τ =
τ

π
τ







π
τ













+ Ψ π
τ







π
τ












( )

− π
τ







τ

=

∞

τ π τ −τ

=

∞

u x
y

dz u z e
n x
y

n z
y

ds s e
n y s

y
n x
y

y
n
y

n

n y s

n

( , )
2
( )

( ,0) sin
( )

sin
( )

( ) sin
( )

( )
sin

( )
.

0

(0) ( )

1

0

/ ( ) ( )

1

2

2

	 (29)

We proceed with the observation that the sums in Equation (29) could be expressed 
via Jacobi theta functions of the third kind (Mumford et al. 1983). By definition,

	 ∑θ ω = + ω
=

∞

z nzn

n

( , ) 1 2 cos(2 ).3
1

2

	 (30)

Therefore,

	

∑

∑

π
τ







π
τ







= θ φ ω − θ φ ω

π
τ





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π
τ







= θ φ ω − θ φ ω

ω = ω = φ = π −
τ
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− π
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
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e
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e
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y
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( )
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( )

1
4

[ ( ( ), ) ( ( ), )],

sin
( )

( )
sin

( )
1
4

[ ( ( ( )), ) ( ( ( )), )],

, , ( )
( )
2 ( )

, ( )
( )
2 ( )

.

( )
3 1 3 1

1

/ ( ) ( )

1
3 2 3 2

1
( )

2
( )

2

2

2 2

	(31)

A well-behaved theta function must have parameter |ω| < 1 (Mumford et al. 1983). 
This condition holds at any τ > 0.

Thus, Equation (29) transforms to a simpler form:

	
∫

∫

τ =
τ

θ φ ω − θ φ ω


+ Ψ θ φ ω − θ φ ω 


− +

τ

− +

u x
y

dz u z z z

ds s y s y s

y
( , )

1
2 ( )

( ,0)[ ( ( ), ) ( ( ), )]

( )[ ( ( ( )), ) ( ( ( )), )] .

0

(0)

3 1 3 1

0 3 2 3 2 	 (32)

The RHS of Equation (29) depends on x via functions φ-, φ+. Since the theta 
function θ3(z, ω) is even in z, the boundary condition at x = 0 is satisfied. At x = y(τ) it 
is also satisfied as follows from Equation (31) if one reads it from right to left.

The result in Equation (32) to some extent is not a surprise, as it is known that 
the Jacobi theta function is the fundamental solution of the one-dimensional heat 
equation with spatially periodic boundary conditions (Ohyama 1995).

It is also worth mentioning that Equation (32) can be transformed to the Volterra 
equation of the second kind for Ψ(τ) by differentiating both parts on x and then letting 
x = y(τ). This equation can be solved instead of Equation (23), which is computationally 
easier than solving Equation (23) (Carr, Itkin, and Muravey 2020).

PRICING AMERICAN OPTIONS

We recall that an American option is an option that can be exercised at any time 
during its life. American options allow option holders to exercise the option anytime 
prior to and including its maturity date, thus increasing the value of the option to 
the holder relative to European options, which can be exercised only at maturity. 

 b
y 

A
nd

re
y 

It
ki

n 
on

 S
ep

te
m

be
r 

2,
 2

02
1.

 C
op

yr
ig

ht
 2

02
1 

Pa
ge

an
t M

ed
ia

 L
td

. 
ht

tp
s:

//j
od

.p
m

-r
es

ea
rc

h.
co

m
D

ow
nl

oa
de

d 
fr

om
 

https://jod.pm-research.com


The Journal of Derivatives  |  19Fall 2021

The majority of exchange-traded options are American 
style. For a more detailed introduction, see Detemple 
(2006) and Hull (1997).

It is known that pricing American (or Bermudan) 
options requires solution of a linear complementary 
problem. Various efficient numerical methods have 
been proposed for doing that—for instance, when the 
underlying stock price St follows the time-dependent 
Black-Scholes model; these (finite difference) meth-
ods are discussed in Itkin (2017; see also references 
therein).

Another approach—elaborated in Andersen, Lake, 
and Offengenden (2016), for example, for the Black-
Scholes model with constant coefficients—uses a 
notion of the exercise boundary SB(t). The boundary 
is defined in such a way that, for example, for the 
American Put option PA(S, t) at S ≤ SB(t) it is always 
optimal to exercise the option, therefore PA(S, t) = K 
- S. For the complementary domain S > SB(t) the ear-
lier exercise is not optimal, and in this domain PA(S, t) 
obeys the Black-Scholes equation. This domain is 
called the continuation (holding) region. The problem 

of pricing American options lies in the fact that SB(t) is not known in advance. Instead, 
we know only the price of the American option at the boundary. For instance, for the 
American Put we have PA(SB(t), t) = K - SB(t), and for the American Call, CA(SB(t), t) =  
SB(t) - K. A typical shape of the exercise boundary for the Call option obtained with 
the parameters K = 100, r = 0.05, q = 0.03, σ = 0.2 is presented in Exhibit 2. The 
method proposed in Andersen, Lake, and Offengenden (2016) finds SB(t) by numeri-
cally solving an integral (Volterra) equation for SB(t). The resulting scheme is straight-
forward to implement and converges at a speed several orders of magnitude faster 
than existing approaches.

In terms of this article, the continuation region is a domain with the moving 
boundary, where the option price solves the corresponding PDE. In case of our model 
in Equation (2), this is the PDE in Equation (3). Therefore, this problem is, by nature, 
similar to that for the barrier options considered in the first section of the article, but 
the difference is as follows:

§	For the barrier option pricing problem, the moving boundary (the time-depen-
dent barrier) is known, as this is stated in Equation (17). But the Option Delta 
∂
∂
u
x  at the boundary x = y(τ) is not, and should be found by solving the linear 

Fredholm equation in Equation (23). Also, the problem is solved subject to 
the vanishing condition at the barrier (the moving boundary) for the option 
value.

§	For the American option pricing problem the moving boundary is not known. 
However, the option Delta ∂

∂
u
x  at the boundary x = y(τ) is known (it follows from 

the conditions =∂
∂ =
C
S S S t
A

B
| 1( )  and = −∂

∂ =
P
S S S t
A

B
| 1( )  expressed in variables x and y(τ) 

according to their definitions in Section 1). Also the boundary condition for 
the American Call and Put at the exercise boundary (the moving boundary) 
differs from that for the Up-and-Out barrier option, namely, it is CA(SB(t), t)) = 
SB(t) - K for the Call, and PA(SB(t), t)) = K - SB(t) for the Put.

Because of the similarity of these two problems, it turns out that the American 
option problem can be solved for the continuation region together with the simultaneous 

EXHIBIT 2
Typical Exercise Boundary for the American Call Option
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finding of the exercise boundary by using the same approach that we proposed for 
solving the barrier option pricing problem. However, due to the highlighted differences, 
some equations slightly change. Also, it is worth mentioning that a similar approach, 
which uses a method of heat potentials, has been developed in Lipton and Kaushan-
sky (2020b).

Solution of the American Call Option Pricing Problem

Because the PDE we need to solve is the same as in Equation (3), we do same 
transformations as in the first section of this article and come up to the same heat 
equation as in Equation (15). It should be solved subject to the terminal condition

= ∫ −
− + −u x xe K e

w s ds f x T
T

( ,0) ( ) ,
( ) ( , )0

and the boundary conditions

[ ]

τ = τ τ ≡ ψ τ = τ −

Ψ τ ≡ ∂
∂

= + τ τ − = ′ + −
σ= τ

− τ

u u y y K

u
x

e
g t

a t y y K a t
g t g t r t q t

g t tx y

f y t

|

(0, ) 0, ( ( ), ) ( ) ( ) ,

( )
( )

1 ( ) ( )( ( ) ) , ( )
( ) ( )( ( ) ( ))

( ) ( )
,

1

( )

( ( ), )

2 1 1 2

where t = t(τ). We underline once again that the function y(τ) here is not known yet, 
while Ψ(τ) is known. These problems with the free boundaries are also well known 
in physics.

We proceed by using the same transformation in Equation (18) and by analogy 
with Equation (19) obtain the following Cauchy problem:

∫

∂
∂τ

− = Ψ τ + ψ τ

=

sin h

sin h

u
pu x p p

u p u x x p dx
y

( ) ( ) ( ) ,

( ,0) ( ,0) ( ) .

1

0

(0)

This problem can be solved explicitly to yield (Kartashov 2001),

∫ ∫ ∫= Ψ τ τ τ + + ψ τ τ− τ τ − τ − ττ
ue e y p d u x x p dx p e dp p

y
p( ) sinh( ( ) ) ( ,0)sinh( ) ( ) .

0 0

(0)

0 1

Accordingly, instead of Equation (21) we obtain

∫ ∫Ψ τ τ + τ








 τ = − = +− τ∞

e
y p
p

y d
K
p p

u x x p dx
K
p

F p
p

p
y

( )
sinh( ( ) )

( )
1

( ,0)sinh( )
( )

.
0 0

(0)

This is a nonlinear Fredholm equation of the first kind but now with respect to the 
function y(τ). It can also be solved numerically (iteratively).

The next step is to reduce our problem to that with homogeneous boundary con-
ditions. This can be done by change of the dependent variable

τ = τ + Θ τ Θ τ = − τ ψ τu x W x x x x y( , ) ( , ) ( , ), ( , ) (1 / ( )] ( ).1

The function W(x, τ) solves he same heat equation with the same terminal condi-
tion and with the homogeneous boundary conditions. Therefore, it can be solved by 
using the method of generalized integral transform described in the Solution of the 
Barrier Pricing Problem section. The solution reads
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∑

∫∫

τ = Θ τ + α τ π
τ







α τ =
τ

Θ π
τ







+ Ψ + ψ





π
τ

















=

∞ − π
τ







τ

π ττ

u x x e
n x
y

y
u z z

n z
y

dz e s
s

y s
n y s

y
ds

n
n

n
y

n
n y s

y

( , ) ( , ) ( ) sin
( )

,

( )
2
( )

[ ( ,0) – ( ,0)]sin
( )

( )
( )

( )
sin

( )
( )

.

1

( )

( / ( ))

0

1

0

(0)

2

2

Again, using the definition of the Jacobi theta function in Equation (30), this can 
be finally rewritten as

∫

∫

τ = Θ τ +
τ

− Θ θ φ ω − θ φ ω

+ Ψ + ψ





θ φ ω − θ φ ω

− +

τ

− +

u x x
y

dz u z z z z

ds s
s

y s
y s y s

y[

]

( , ) ( , )
1

2 ( )
[ ( ,0) ( ,0)][ ( ( ), ) ( ( ), )]

( )
( )

( )
[ ( ( ( )), ) ( ( ( )), )] .

0

(0)

3 1 3 1

0

1
3 2 3 2

NUMERICAL EXAMPLE

To test performance and accuracy of our method, in this section we provide a 
numerical example where a particular time dependence of r(t), q(t), σ(t) is chosen as

	 = = σ = σ− −σr t r e q t q t er t tk k( ) , ( ) , ( ) .0 0 0 	 (33)

Here r0, q0, σ0, rk, σk are constants. With this model, Equation (10) can be solved 
analytically to yield

	 = − −w t q r e r tk( ) .0 0 	 (34)

Accordingly, from Equation (9) we find

	 = + −










−g t q t
r
r

e
k

r tk( ) exp ( 1) ,0
0 	 (35)

and from Equation (7)

	 = = 





− + −










−f x t k t
g t
g

q t
r
r

e
k

r tk( , ) ( )
1
2

log
( )
(0)

3 (1 ) .0
0 	 (36)

The algorithm described in the first section was implemented in python. We did 
it for two reasons. First, we found neither any standard implementation of the Jacobi 
theta functions in Matlab nor any custom good one. Surprisingly, this is also not a 
part of numpy or scipy packages in python. However, they are available as a part of 
the python package mpmath, which is a free (BSD-licensed) Python library for real and 
complex floating-point arithmetic with arbitrary precision; see Johansson (2007). It has 
been developed by Fredrik Johansson since 2007, with help from many contributors.

Also, we didn’t find any standard implementation of solver for the Fredholm inte-
gral equation of the first kind in both python and Matlab. Therefore, we implemented 
a Tikhonov regularization method as this is described in Fuhry (2001). In particular, 
with the model used in this section, the function F(p) reads

	 = − − + − 
−

F p
e

p
p K y py K p py

k T

( ) ( )cosh( ) sinh( ) sinh( ) .
( )

1 0 0 1 0 	 (37)
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The algorithm described in the first section was 
implemented in python. Finally to validate the results 
provided by our method, we implemented an FD solver 
for pricing Up-and-Out barrier options. This solver is 
based on the Crank–Nicolson scheme with a few Ran-
nacher first steps and uses a nonuniform grid (for 
more detail, see, e.g., Itkin 2017). We implemented 
two solvers: one for the backward PDE, and the other 

for the forward PDE. But logically, because in this article we solved the backward 
PDE, it does make sense to compare our method with the backward solver. This 
implementation has been done in Matlab.

In our particular test, we choose parameters of the model as they are presented 
in Exhibit 3.

We recall that here σ(t) is the normal volatility. Therefore, we choose its typical 
value by multiplying the log-normal volatility by the barrier level.

We run the test for a set of maturities T ∈ [1/12, 0.3, 0.5, 1] and strikes K ∈ 
[50, 55, 60, 65, 70, 75, 80]. The Up-and-Out barrier Call option prices computed in 
such an experiment are presented in Exhibit 4.

In Exhibit 5, the relative difference between the Up-and-Out barrier Call option 
prices obtained by using our method and the FD solver are presented as a function 
of the option strike K and maturity T. Here, to provide a comparable accuracy, we  
run the FD solver with 101 nodes in space S and the time step Δt = 0.01.

It can be seen that the quality of the FD solution is not sufficient. Therefore, we 
reran it by using 201 nodes in space S and the time step Δt = 0.001. The relative 
difference between our semianalytic and the FD solutions in this case is presented 
in Exhibit 6.

We show that the agreement between prices obtained by using our method and 
the FD pricer is good, so the relative difference is about 1%. However, the cost for this 
improvement of the FD method is speed. In Exhibit 7, we compare the elapsed time 
of both methods. The no Ψ column has the following meaning. Since the volatility 
and the interest rate change with time relatively slow, contribution of the second 
integral in Equation (32) to the option price is negligible. Therefore, in this particular 

EXHIBIT 3
Parameters of the Test
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EXHIBIT 4
Up-and-Out Barrier Call Option Price Computed by Our Method in the Test
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case we can find the option price by computing only the first integral in Equation (32). 
Accordingly, we don’t need to solve the Fredholm equation in Equation (23), which 
almost halves the elapsed time.

Finally, our tests show that linear algebra in python (numpy) at our machine is 
about three times slower than that in Matlab. Therefore, given the same accuracy, 
our method is about 30–40 times faster than the backward FD solver.

EXHIBIT 5
The Relative Difference in the Up-and-Out Barrier Call Option Prices Obtained by Using Our Method and the FD Solver 
with 101 Nodes in Space S and Time Step Δt = 0.01

EXHIBIT 6
The Relative Difference in the Up-and-Out Barrier Call Option Prices Obtained by Using Our Method and the FD Solver 
with 201 Nodes in Space S and Time Step Δt = 0.001
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EXHIBIT 7
Elapsed Time in Seconds of Various Tests
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Of course, the forward FD solver is by an order of magnitude faster than the 
backward one if we need to simultaneously price multiple options of various strikes 
and maturities but written on the same underlying. However, for barrier options this 
approach requires a careful implementation, which often is not universal and has a 
lot of tricks.

Also, as can be seen from Exhibit 4, the relative difference—although small—
increases when the strike and time to maturity increase. This happens because, in 
this case, the strike is closer to the barrier and the probability of reaching the barrier 
over the life of the option is higher. In this case, the FD solver—because the price 
has a kink at the barrier—provides a bigger difference.

DISCUSSION

In the first section of the article, our attention was drawn to the Up-and-Out bar-
rier Call option Cuao. Obviously, using the barriers parity (Hull 1997), the price of the 
Down-and-Out barrier Call option Cdao can be found as Cdao = Cvan - Cuao, where Cvan is 
the price of the European Vanilla Call option. It is known that the latter is given by 
the corresponding formula for the process with constant coefficients, where those 
efficient constant coefficients r , q, σ are defined as

∫ ∫ ∫= = σ = σr
T

r s ds q
T

q s ds
T

s ds
T T T1

( ) ,
1

( ) ,
1

( ) .
0 0

2 2

0

Second, we underline that in addition to the model with time-dependent coef-
ficients we also consider the barriers to be some arbitrary functions of time. Our 
method provides full coverage of this case, whereas constant barriers are just some 
particular case of the general solution.

The third and perhaps the most important point is about computational efficiency 
of our method. In addition to what was presented in the Numerical Example section, 
let’s look at this problem from a theoretical pint of view. Suppose the barrier pricing 
problem is attacked by solving the forward PDE for a set of strikes = …K i ki, 1, ,  and 
a set of maturities = …T j mj, 1, ,  numerically by some FD method on a grid with N 
nodes in the space domain S ∈ [0, H], and M nodes in the time domain t ∈ [0, Tm

_]. 
Then the complexity of this method is known to be O(MN + 4N). This should be com-
pared with the complexity of our approach.

Let’s assume that the Riccati equation in Equation (10) can be solved either 
analytically or, at least, approximately, as this is discussed in the Transformation to 
the Heat Equation section. Then the first computational step consists of solving the 
linear Fredholm equation in Equation (23) (or the corresponding Volterra equation). 
This can be done on a rarefied grid with M1 < M nodes and complexity O M( )1

3 . The 
intermediate values in t can be found (if necessary) by interpolation with the complex-
ity O M( )1

2 . As the integral kernel doesn’t depend on strikes Ki, this calculation can be 
done simultaneously for all strikes still preserving the complexity O M( )1

3 .
The final solution of the pricing problem is provided in the form of two integrals 

in Equation (32). Therefore, if we need the option price at a single value of S0 (same 
as when solving the forward PDE), but for all strikes and maturities, the complexity 
is +O kL M N(2 ( )1 1 ), where N1 is the number of points in the x space, and O(L) is the 
complexity of computing the Jacobi theta function θ3(z, ω). Normally, M1 ≤ N, L  N, N1 
 N for the typical values of N in the FD method (about 50–100 or even more). Thus, 
the total complexity of our method is fully determined by the solution of the Fredholm 
equation. Therefore, our method is slower than the corresponding FD method if M1 > 
(MN)1/3. For the American option, this situation is worse because instead of solving 
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a linear Fredholm equation, we need to solve a nonlinear equation. This can be done 
iteratively, for example, using k iterations until the method converges to the given 
tolerance. Then the total complexity becomes O kM( )1

3 . However, our experiments show 
that using just M1 = 10 points in p space could be sufficient, while further increase 
of M1 doesn’t change the results.

Also, the accuracy of the method in x can be increased if one uses high-order 
quadratures for computing the final integrals. For instance, one can use the Simpson 
instead of the trapezoid rule that doesn’t affect the complexity of our method, while 
increasing the accuracy for the FD method is not easy (i.e., it significantly increases 
the complexity of the method; e.g., see Itkin 2017).

Another advantage of the approach advocated in this article, as was mentioned 
in Carr, Itkin, and Muravey (2020), is computation of option Greeks. Since the option 
prices are represented in closed form via integrals, the explicit dependence of prices 
on the model parameters is available and transparent. Therefore, explicit represen-
tations of the option Greeks can be obtained by a simple differentiation under the 
integrals. This means that the values of Greeks can be calculated simultaneously 
with the prices almost with no increase in time because differentiation under the 
integrals slightly changes the integrands, and these changes could be represented 
as changes in weights of the quadrature scheme used to numerically compute the 
integrals. Since the major computational time has to be spent for computation of 
densities, which contain special functions, they can be saved during the calculation 
of the prices and then reused for computation of Greeks.

It is worth mentioning that our method can also be extended to pricing American 
options where the underlying pays discrete dividends. Indeed, the constructed ana-
lytical solution covers the time interval starting from maturity T and up to the last 
ex-dividend date tn using the final payoff as the terminal condition. Then, at tn we have 
option prices u(τ, x) for all x. Due to continuity, shifting the underlying by the dividend 
amount ∆ = + ∆x x x x x(so ) and reinterpolating the prices to τu x( , ), we obtain the 
new terminal condition. Then the algorithms continue from tn to tn-1 by replacing T with 
tn and the terminal condition at tn by τu x( , ). And so on. This same approach is used 
when solving this problem using the FD method (Itkin 2017; Tavella and Randall 2000).
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