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1 | INTRODUCTION

Consider an underlying risky asset, which exhibits both stochastic volatility and independent
jumps. In this setting, we show how to value claims on the log price of the asset and its quadratic
variation relative to vanilla European puts and calls. Under an additional assumption that jump
sizes of the log price of the risky asset are restricted to a discrete finite set, we show how to replicate
claims on the log price of the asset and its quadratic variation by dynamically trading zero-coupon
bonds, shares of the underlying and a portfolio of European puts and calls.
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The class of models we consider in this paper is semi-parametric in a sense we now describe.
The distribution and arrival rate of jumps of the risky asset must be specified parametrically. How-
ever, we do not specify a particular volatility process. Rather, we simply require that the volatil-
ity process be an adapted right-continuous process that evolves independently of the Brownian
motion and Poisson random measure that drive the price process of the risky asset. In particular,
the volatility process may be non-Markovian and it may experience jumps. Because we need not
specify a particular volatility process, our pricing formula and replication strategies are robust to
misspecification of the volatility process.

This paper is the updated version of the working paper Carr and Lee (2009), which showed how
to price and replicate claims on the quadratic variation of the log price of a risky asset without
jumps. That work was extended in Carr et al. (2015) where the authors show how to value and
replicate a variety of barrier-style claims on the log price and quadratic variation of a risky asset
without jumps. In both papers, the underlying is assumed to have continuous sample paths and
an independent volatility-driving process. These assumptions imply a symmetric model-induced
implied volatility smile. Symmetric smiles are observed in certain markets (e.g., FX), but generally
are not observed for options on equity, where smiles typically exhibit downward sloping at-the-
money skews.

Matching the skew of implied volatility is important both for pricing and hedging, and there
are a number of ways this can be achieved. One method of matching skew is to use Dupire’s for-
mula Dupire (1994) to find the local volatility model that is consistent the market’s quoted call
and put prices. Another means of matching skew is to consider a stochastic volatility model such
Heston Heston (1993) or SABR Hagan et al. (2002). In these models, the correlation between the
log price and volatility processes can be adjusted in order to match the observed implied volatility
skew. A third means of matching the skew is the approach taken in this paper: to consider models
that allow the underlying risky asset to experience jumps; asymmetric jumps induce asymmetric
smiles. While both local volatility and jump models can match quoted option prices, the corre-
sponding delta hedges differ significantly. The delta computed from the local volatility model typ-
ically falls below the Black-Scholes delta (as computed using a given option’s implied volatility),
whereas the delta computed from the model with jumps typically falls above the Black-Scholes
delta. As, empirically, delta is above the Black-Scholes delta (for options on SPX), this is motiva-
tion for matching the skew of implied volatility with jumps rather than local volatility. Another
reason for considering models with jumps is that, consistent with empirical observations, these
models induce an explosion of the at-the-money skew as time to maturity approaches zero. By
contrast, the implied volatility skews induced by stochastic volatility models such as Heston and
SABR remain bounded as time to maturity approaches zero.

The rest of this paper proceeds as follows. In Section 2 we describe a market for a risky asset
and state our modeling assumptions. In Section 3 we show how to price power-exponential-
style claims on log price and its quadratic variation and in Section 4 we show these claims can
be replicated. Lastly, in Section 5, we price a variety of claims that do not fall into the power-
exponential category.

2 | MODEL AND ASSUMPTIONS

We fix a finite time horizon T < oo and consider a frictionless market, defined on a filtered prob-
ability space (Q, %, [F,P) satisfying the usual conditions, such that the prices of all assets are
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martingales with respect to (F, P). The probability measure [P represents the market’s chosen pric-
ing measure and the filtration F = (%, )y<;<r represents this history of the market.

Assume F = G vV Hwhere G = (6,)g<;<r and H = (#,)o<;<r are independent filtrations, let W
be a G-Brownian motion, let o be a G-adapted right-continuous process independent of W, and
let N be a Poisson random measure with respect to H, with intensity measure v(dz)du for some
Lévy measure v.

Let B; be the price of a zero-coupon bond paying one unit of currency at time T. Assuming zero
interest rates, or that all prices are expressed as T-forward prices, we have B, = 1 forall ¢t € [0, T].
Let S; be the price of a risky asset, which pays no dividends. Suppose S is strictly positive and has
dynamics of the form

ds, = o,S,dW, + /(ez —1)S,_N(dt,dz), N(dt,dz) = N(dt,dz) — v(dz)dt, )
R

where W is a Brownian motion and N is the compensated Poisson random measure with respect

to (F, ). We refer the reader to (Qksendal and Sulem, 2005, Ch. 1) for an overview of Lévy-It6 pro-

cesses. We will not specify dynamics for the volatility process o. Note that o may be non-Markovian

and may experience jumps. However, we have required that o evolve independently of W and N.
For simplicity, we further assume there exist constants b, ¢ < oo such that

T
/ oZdt < b, P(R) < o, v(|z| > ¢) = 0. )
0

For certain claims, conditions (2) can be relaxed, as described in (Carr and Lee, 2009, Section 8).
However, our aim is not to provide here the most general conditions under which our pricing and
hedging methodology can be applied. Rather, we aim to provide simple conditions, which allow
us to clearly illustrate our pricing and hedging methods without complicating the presentation
with numerous technicalities.

The log price of the risky asset X, := log S, therefore has dynamics

dx, = —éafdt + o, dW, — /(ez —1-—2z)w(dz)dt + / zN(dt,dz). Q)
R R

Let P,(K) and C,(K) be the time-t prices of, respectively, a European put and European call
written on S, maturing at time T with strike K. Under the assumptions above,

Pt(K) = IE{(K - ST)+’ C[(K) = IEt(ST _K)+’ te [0’ T]7 K Z 07 (4)

where the notation E, - := [E[ - |%,] denotes conditional expectation. As S = ¥, we may refer to
claims written on S or X interchangeably, with the understanding that these are the same thing.
Our payoff decompositions will assume a European put or call trades at every strike K > 0. As
Breeden and Litzenberger (1978) show, this assumption is equivalent to knowing the distribution
of Sr under P. Additionally, Carr and Madan (1998) show that this assumption allows general
T-expiry European claims on St to be perfectly replicated with a static portfolio of bonds, puts,
and calls; for general function f that can be expressed as the difference of convex functions, the
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resulting pricing formula, under integrability conditions, is

Sy oo
Ef(Sr) = f(SOB + | 7 (KP.K)IK + / FECKK, ®)
S

0 t

where f is the left-derivative of f and f” is the second derivative, which exists as a generalized
function. While in reality calls and puts trade at only finitely many strikes, this can be addressed
following techniques described in Leung and Lorig (2015), who show how to optimally adjust
static hedges when calls and puts are traded at only discrete strikes in a finite interval.

Remark 2.1 (Limitations of our modeling framework). Our modeling framework has certain lim-
itations, which we describe here. First, because we have assumed that o evolves independently
of W and N, the class of models we consider cannot capture correlation between instantaneous
volatility and price. Nevertheless, the errors that would result from using the pricing and repli-
cation strategies developed in this paper in a setting in which ¢ and W are correlated can, to an
extent, be minimized using a correlation immunization strategy, which is described in (Carr and
Lee, 2009, Section 4). Extensive Monte Carlo testing of the correlation immunization strategy have
been carried out Lin and Lorig (2019). Second, the assumptions in (2) exclude most traditional
stochastic volatility models and exponential Lévy models because the former do not typically have
bounded integrated variance and the latter do not typically have bounded jump sizes. However,
this assumption can be relaxed, as discussed after (2). Moreover, our aim is not to consider a class
of models that includes all other models. Rather, our aim is to consider a class of models that cap-
tures the dynamics of the market, and we are not aware of any empirical evidence that the market
is better described by a traditional SV model than by SV dynamics in which integrated variance is
capped at, for instance, 10'%.

Remark 2.2 (Relation to other work). The present paper initiated a line of work in the general area
of robust pricing and replication of claims on realized variance. An earlier version of this paper,
the unpublished working paper Carr and Lee (2009), developed pricing and replication strategies
for claims on X and [X] under an assumption that X experiences no jumps. In Carr et al. (2015),
the results of Carr and Lee (2009) are extended to knock-in, knock-out and rebate claims written
on X and [X]. And in Carr et al. (2011) and Carr et al. (2015), variance swaps are robustly priced
when X is a time-changed Lévy process and time-changed Markov process, respectively.

3 | PRICING POWER-EXPONENTIAL CLAIMS

Let [X] denote the quadratic variation of the X process. By (3), we have

d[X], = o2dt + / z?N(dt,dz). (6)
R

This section will price and replicate the real and imaginary parts of a power-exponential claim,
which we define as any claim whose payoff has the form

Power-exponential Claim Payoff :  XP[X|lel*Xr+inlXlr - n m e {0}uN, wpeC. (7)
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These power-exponential claims will be used as building blocks to construct more general claims.
Remark 3.1. The various processes and random variables discussed in this section and Section 4
are C-valued. The pricing and hedging results given below should be understood to hold for the
real and imaginary components. For example, when we say “the price of Z” we mean “the price
of the real and imaginary parts of Z,” and when we say “to replicate Z” we mean “to replicate the

real and imaginary parts of Z.”

‘We have the decomposition
X, =X +X], ®)

where the dynamics of the continuous component X¢ and the jump component X/ are given by

dx¢ = —%cfdt + o, dW,, dX[J =— /(ez —1—2z)v(dz)dt + / zZN(dt, dz). ©)
R R

t

Likewise, the quadratic variation process [X] also separates into a continuous component [X¢]
and an independent jump component [X/]:

(X1, = [X°], + [X],, d[X¢], = o}dt, d[x/], = / z’N(dt,dz),  (10)
R

Proposition 3.3 will relate the joint &,-conditional characteristic function of (X7, [X]7) to the %F,-
conditional characteristic function of X7. Its proof will use the following lemma.

Lemma 3.2. Defineu : C? — C by either of the following:

u(w,n) 1= i(—% + \/i —w?—iw+ 2117> = u,(w,n). (11)

Then forall w,n € C,
[Eteiw(X%—Xf)Hn([XC]T—[XCL) — [Eteiu(w,n)(X%—Xf)_ 12)
Proof. See Appendix A.1 O

Proposition 3.3. Definey : C*> — C by
P(w,n) = / (ei“’z+i’7z2 —1—iw(e? — 1))v(dz). (13)
R

Then (X7, [X]7) has F,-conditional joint characteristic function

_ e(T_Z)¢(w,n)+i(w—u(w,ﬂ))xt+i’7[XJt [Eteiu(cu,n)XT , (14)

[E iCUXT+i}‘][X]T
e TP (u@),0)
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whereu : C?> — C is defined in (11).
Proof. See Appendix A.2. O

Corollary 3.4. Fixw,n € C and n,m € {0} UN. Assume i —iw+2in — w? # 0. Then

E XJ[X|eieXr+inlXlr (15)

"~y e ke(T—L)w(w,r))ﬂ(w—u(w,n))Xt+in[le 2 Naej ke i )X

= _ —_ (= —J(—1 - ” T

=F, ) (j)(k)( id,)/(—18,) T (=19,)"/(=19,)""e - (16)
=0 k=

where u and Y are defined in (11) and (13), respectively.
Proof. See Appendix A.3. O

Corollary 3.4 relates the price of a (path-dependent) power-exponential claim to the price of a
(path-independent) European claim written on X7. Specifically,

EXFIX]pereXr il = Eg(Xri Xy, [X]0), (17)
where the function g(-;X,,[X];) is given by the right-hand side of (16) (keep in mind that
X, [X]; € F,). In turn, the price E,g(X7;X;, [X];) of the European claim can be related to value

of a portfolio consisting of vanilla European puts and calls and zero-coupon bonds, which are
market observables, by setting f(Sr) = g(log St; X, [X];) in (5).

Remark 3.5. We describe equations of the form Ep(X7, [X]r) = Eg(X7) by saying that the function
g prices the claim with payoff (X7, [X]7). For any given ¢, the function g will not be unique. For
example, the right-hand-side of (16) will depend on whether we choose u = u,  oru =u_.

In order to apply Corollary 3.4 to price a power-exponential claim, we require an expression for
the Lévy exponent ¢, which can be computed explicitly for a variety of Lévy measures v, such as

the following:

Dirac sum : V= Z/ljc?mj, (18)
J

Uniform : v(dz) = Ay, <zemy}dz, (19)

Trunc. Exp. : v(dz) = Al e ?ldz, (20)
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where 4,4;,a,m > 0 and m; < m,. From (13), we compute

. s 2
Dirac sum : P(w,n) = Z/lj (elwmf+1'7m.i —1—iw(e™ — 1)>, (21)
J

. ) _, [im —% n(2nm; + w) n(2nm, + w)
Uniform @ $(w,n) =14/ ol <erf<2(T;)3/2> - erf<2(T727)3/2>> (22)

+ (1w — D)(my — my) — (my —my)), (23)
. i(at+iw)? . 23 .
Trunc. Exp. :  ¢(w,n) =1 e erf /L erf[ & +i0 (24)
4n 24/—in 24/—1n

- i(ot—icu)2 s 2i s
+4 " erf| g-ietiigm) _ erf[ £—2% (25)
V 47 24/—in 24/—in

2A(e™*™ —1)  21iwe %™
+ p—
a a(a? —-1)

(a? —a’coshm + e —asinhm —1),  (26)

where erf denotes the error function defined by erf(x) : = (2/4/7) /Ox e~7'/24z.

Example 3.6 (Variance Swap). Consider the floating leg of a (continuously monitored) vari-
ance swap, which pays [X]; to the long side at time T. For simplicity, let X, = 0. Then setting
(n,m,w,n) =(0,1,0,0) in (16) we obtain E[X ]| = Eg(X7;0,0) where

g(x;0,0) = —2x + T(—2(e®¥) + (AX?) + 2(AX) + 2(1)), (foru =u,) 27

g(x;0,0) = 2xe* + Te¥ (—2(AXe”X) + 2(e”X) + (AX?) — 2(1)), (foru=u_) (28)

where (f(AX)) := fR f(2)v(dz). In Figure 1 we plot g(log St; 0, 0) as a function of St for both u,
and u_ and for various jump distributions and intensities.

Remark 3.7. The function g in (27) and (28) depends on the time to maturity T. This is in contrast
to the results of Carr et al. (2011) where, in a time-changed Lévy setting, the authors find that the
variance swap has the same value as a European-style log contract, whose payoff function has
no dependence on time-to-maturity. As empirical evidence from Carr et al. (2011) indicates the
European-style payoff function that prices the variance swap does depend on time to maturity,
this is motivation to consider the models presented in present paper rather than those considered
in Carr et al. (2011).
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Effect of jump size Effect of jump intensity

FIGURE 1 We consider a Dirac Lévy measure v(dz) = 16,,(z)dz, a variance swap payoff [ X ] and plot the
function g(log S7; 0, 0) that prices the variance swap as a function of S;. Left: We examine the effect of the jump
size m when g is computed using both u = u, and u = u_. The jump intensity is fixed at A = 1.0 and we vary

m = {=2.0, 0.0, 2.0} corresponding to the dotted, dashed and solid lines, respectively. Note that negative jumps
(dotted line, m = —2.0) raises the value of g at all points relative to no jumps (dashed line, m = 0.0), whereas
positive jumps (solid line, m = 2.0) lowers the value of g relative to no jumps. Right: We examine the effect of the
jump intensity A when g is computed using both u = u, and u = u_. The jump size is fixed at m = —2.0 and we
vary A = {1.0, 2.0, 3.0} corresponding to the dotted, dashed and solid lines, respectively. As the jump intensity
increases, so does the value of g at all points. Had jumps been upward, we would have seen g decreasing as the
jump intensity increased. In all four plots the time to maturity is fixed at T = 0.25 years

4 | REPLICATING EXPONENTIAL CLAIMS

Define a complex-valued self-financing portfolio with respect to a C’-valued semimartingale Y to
be a C’/-valued locally bounded predictable process Z such that

ar, = ¥ 2Vay? where II, := Y 2. (29)
] ]

In particular, if 200 and Y\ are real-valued for all j, then expression (29) corresponds to the usual
notion of a self-financing portfolio. The dynamics of the real and imaginary parts of IT are given

by

dReIT) = Y ReEM)dRe YY) - ¥ (tmE)d(Im YD), (30)
] ]
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dImI) = Y (ReE)dIm YY) + Y (tm E)dRe ). (31)
J 7

respectively. Thus, expression (29) should be seen as a concise way to state both (30) and (31).

Assumption 4.1. Throughout Section 4, the constants w,? € C are fixed and u = u(w, 1) is given
by (11).

At any time ¢ < T, by (14), the claim on the exponential payoff e!*Xr+17XIr has value
|Eteia“XT+i77[X]T — A[qu)’ (32)

where we have defined

(T=0%(@n)

. _ allw—uw)X;+in[X]
Aci=e O T e

Eq) .= E,ete¥r, qeC. (33)

Theorem 4.4 will show that AQ®™ is the value process of a self-financing portfolio, which gives a
trading strategy to replicate the exponential claim because ATQ(T“) = eleXr+inlX]r
Theorem 4.4 uses Lemmas 4.2 and 4.3, presented below, and the standard notation
AH[ ::Ht_H[— :Ht_].imHS, (34)
s/t

for the jump in H at time ¢, where H is any process with left limits.
Lemma 4.2. Forany q € C, let Y@ and Z(9 be (the cadlag versions of) the martingales

Y@ = Eele¥T, 79 =l 0<t<T (35)

Then, under the assumptions of Section 2, we have

AAAQY = AA(YDAZD), (36)
@D A @ _ A@ iqz _
Y PAZP =Q [ (e 1)N(dt, dz). 37)
R
Proof. See Appendix A.4. Ul

Lemma 4.3. Foranyq € Candt € [0,T], define
qu) = e 10X HT-P(-1-¢,0) (38)
with 1 given in (13). Then

@@ _ p(=i—q) H(=i—q)
R7Q7 =R ¢ ) (39)
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Proof. See Appendix A.5. O

Theorem 4.4. Let q € C. Define processes AT = (AFE“))OQST and AQ@ = (AQEq))Ogth by

AT 1= QWAA, —i(w—u) SEZ) AS; + AA, (YW az™) (40)

=A,_Q"Y /R (eiwmﬂzz — e — (e — u)(e® — 1)>N(dt dz), (41)
RDo@

A0\ 1= QWARY + g5 AS + AR (Y@ az @) (42)

= RWQ\? /R (—e*% + 1+ ig(e® — 1))N(dt, dz). (43)

Let(q1,q, ---»qm) € C™. Suppose there exists an m-dimensional predictable process H = (H;)o<i<r
with components HY) = (H t(J ))Ostg satisfying

0=ar® 4 Z HY (a0 - a0 ™), (44)
Jj=1
Then
(w)
A Q.
d(4,Q™) = A,_dQ™ + i(w — u) = s, (45)
t—
(g) ~@))
ZHU’ RPdQ" - K- de T + (1 - 21g)—==ds, | (46)
j=1 =
where the processes A, QD and R are as given in (33) and (38).
Proof. See Appendix A.6. O

Remark 4.5. By (46), the following self-financing portfolio replicates the exponential claim
et@Xr+inlXlr: at all times t < T one should

* hold A,_ European claims with payoff e'X7,
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(W) (q]) (aj)
* hold (1(w-u)ﬂ+z HY( — 2108 Q,_

(q;)

) shares of S,

» for j =1,2,..,m, hold H(J )R European clalms with payoff e*4/xT,
* forj=1,2,..,m, hold —Ht(J_)Rf_ ~4) European claims with payoff e'(~3=9)Xr

* lend and borrow zero coupon bonds B from the bank as needed.

This portfolio’s net position in European claims, which has value

m
A B+ Y HD (R E 0% - R TV e, (47)
=i

can be constructed from a portfolio of European calls C;(K) and puts P;(K) for K > 0, using (5).

Remark 4.6. The intuition of condition (44) is that the pricing relation E,e'®Xr+inlXlr = 4 [ etdXr
is valid in the presence of jump risk; however, the naive candidate for a hedging portfolio, namely
A,_ contracts on e*9XT  is not a valid replication of e:®X7+17[XIr ‘because this naive portfolio fails to
self-finance at jump times. So we augment the naive portfolio with “zero-cost collars”, specifically
HY units of the “collar” that combines the claims on payouts e*%*T and et 1=g)Xr At jump
times these collars have a combined profit/loss which provides the needed financing to offset the
“tracking error” Al“g”) of the naive hedge, if (44) holds. This leads us to ask, whether there exist
HY) satisfying (44) - in other words, do the collars span the tracking error? The answer will involve
(naturally, in this spanning context) a full rank condition (50) on the collars.

To be specific: in order to hedge an exponential claim with payoff e!*Xr+17[Xlr what remains is
to find a predictable process H = (H;)o<;<r With components H U =H t(j ))OSlST satisfying (44).
This is the subject of the next proposition.

Proposition 4.7. Suppose the Lévy measure v has the form
n
v= Y A4, (48)
i=1
for some (AI,AZT ., An) € R} and some (zy,z,, ...,2,) € R". Define an n x 1 stochastic column
matrixK; = (Kz(l)) with entries

K = A4, Q" F (), F(z) 1= @97 e 3o —u)(e? ~1).  (49)

Suppose there exists (q1,q, .- » @) € C™ With m > n such that the n X m stochastic matrix L, =
(L?’J )), with entries

(g;) (q}

I = R0, 6(z;; q)), G(z;q) := —e9? 4+ 17102 _ (1 — 2ig)(e? — 1), (50)

has rank n for all t € [0, T). Then there exists an m-dimensional predictable process H with compo-
nents HU) that satisfies (44); it solves

K, = L,H,. (51)
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In particular, if m = n then H, = L7'K,.
Proof. See Appendix A.7. O

Corollaw 4'8.' Suppose v = 4,6, + A,8,,, where z,2,(z, — z,) # 0. Then the exponential claim
paying e**Xt+10lXIr js replicated by the hedging strategy of Remark 4.5, with

-1
leD] _ lRqu)Qg?)G(zl;ql) REq—Z)QEZ)G(Zl;QZ)] lAt_Qﬁf)F(Zl)] (52)

HY | |RMQM6Ea) RPQP6(z30)|  |AQYF(E)

t t—

where, given (z1, z,), the (q1, q,) are chosen such that for all t the inverse exists. The existence of such
(q1,q>) is a conclusion of this Corollary, not an assumption.

Proof. See Appendix A.8. O

5 | PRICING OTHER PAYOFFS

This section applies the results of Section 3 to price some contracts with payoffs (X, [X]r) that
are not of the power-exponential form. Generally speaking, our results shall take the form

Ee(Xr, [X]r) = Eg(X7), X0 =0, (53)
where Eg(Xt) can be computed relative to traded European calls/puts via (5). Note, by the spatial
homogenity of the X process, there is no loss in generality in assuming X, = 0.

5.1 | Fractional powers and ratios

Proposition 5.1 (Fractional powers of quadratic variation). Consider a fractional power claim,
whose payoff function is of the form

p(x,v) =0", 0<r<l1. (54)
Then
. r . 1 iu(0,0)x eT¢(0,iz) iu(0,iz)x
glx) := Ta—n /0 s} <e - —ew(u(o,iz)’o)e dz. (55)

satisfies (53) and hence prices the fractional power claim.
Proof. See Appendix A.9. O
Example 5.2 (Volatility Swap). Consider the floating leg of a (continuously monitored) volatility

swap, which pays 1/[X]r to the long side at time T. The payoff function ¢(x,v) = \/; can be
obtained as a special case of (54) by setting r = 1/2. In Figure 2 we plot g(log St) as a function of
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Effect of jump size Effect of jump intensity

FIGURE 2 We consider a Dirac Lévy measure v(dz) = 16,,(z)dz, a volatility swap payoff m and plot
the function g(log Sy) the prices the volatility swap as a function of S;. Left: We examine the effect of the jump
size m both for u = u, and for u_. The jump intensity is fixed at A = 1.0 and we vary m = {—1.25,0.00, 1.25}
corresponding to the dotted, dashed and solid lines, respectively. Right: We examine the effect of the jump
intensity A both for u = u, and for u = u_. The jump size is fixed at m = —1.25 and vary 1 = {1.00, 2.00, 3.00}
corresponding to the dotted, dashed and solid lines, respectively. In all four plots the time to maturity is fixed at
T = 0.25 years

St for various jump distributions and intensities, where g is given by (55).

Proposition 5.3 (Ratio claims (I)). Consider a ratio claim, whose payoff function has the form

xeipx
p(x,v) = m, wherepe C, re(0,1), and £>0. (56)
Then
eT¥(p,iz!/")
. iu(p,izt/Mx—z""e
80x) 1= rI(r) / (- eT¢(u(p THp iz /N0) dz. 7

satisfies (53) and hence prices the ratio claim.
Proof. See Appendix A.10. [l

Example 5.4 (Realized Sharpe ratio). The Sharpe ratio was introduced in Sharpe (1966) as a
simple way to measure the performance of an investment while adjusting for its risk. Define the
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FIGURE 3 We consider a Dirac Lévy measure v(dz) = 45,,(z)dz, an approximate realized Sharpe ratio
payoff X /+/[X]r + € and plot the function g(log S;) that prices this claim as a function of S;. In all four plots the
time to maturity is fixed at T = 0.25 years. The parameter ¢ = 0.001 is fixed and we compute g using u = u,

realized Sharpe ratio

Xp — X,
Ap 1= —L 20 (58)

VIXIr = [X]o

Consider a claim that pays the realized Sharpe ratio. With X, = [X], = 0 we have o(Xr, [X]1) =
Xr/V/[X]7. The payoff function ¢(x,v) = x/ \/5 can be approximated with arbitrary accuracy
by setting r = 1/2 in Proposition 5.3 and choosing ¢ small enough. Figure 3 plots g(log St) as a
function of Sy, where g is given by (57).

Proposition 5.5 (Ratio claims (I)). Consider a ratio claim whose payoff function has the form
ipx

PR ,e>0, pe C. 59
(v+e)y neeh P (59)

p(x,v) =

Then

0o s 1/r
g(x) 1= 1 elv(pazh) eiu(p,izl/’)x—zl/"zdz (60)
") Jy  eTd(p,iz'/1),0)

satisfies (53) and hence prices the ratio claim.

Proof. See Appensix A.11. O
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Remark 5.6. Throughout this section we have used the fact that a large class of payoffs of the form
@(Xr,[X]r) can be written as derivatives, sums and/or integrals of exponential basis functions
et@Xr+lXlr By linearity, one can in principle combine the replication strategies developed in
Section 4 in order to replicate a further expanded class of payoffs of the form ¢(Xr, [X]7).

5.2 | Options on levered exchange traded funds

A growing class of exchange-traded funds (ETFs) are the leveraged exchanged traded funds
(LETFs). In an ideal setting (i.e., no management fees), the relationship between an LETF L =
(L¢)o<t<r and the underlying ETF S = (S;)o<¢<7 is

- Pso e
where 3 is a fixed constant known as the leverage ratio. Typical values of § are {—3, -2, -1, 2, 3}.
As Avellaneda and Zhang (2010) point out, the value of L depends on the entire path of S over the
interval [0, T]. This is most readily seen by looking at (Y )o<,<7, the log LETF process: Y, = logL,.
With the dynamics of X = log S given by (3), a simple application of the It6 formula yields

dY, = dy¢ +dv?, (62)

dy§ = BdX; + -B(1 — B)A[X°],, (63)

de =— /R (B(e? — 1) —log(B(e” — 1) + 1))v(dz)dt + /R log (B(e — 1) + 1)N(dt,dz), (64)

where we assume that the constant ¢ appearing in (2) satisfies
B(eZ —1) + 1>0, Vze|[—c,c], (65)

which guarantees that, when the ETF S jumps, the LETF L jumps to a strictly positive value.
Observe that dY; depends not only on dX; but also on d[X‘]; and on a nontrivial integral with
respect to the Poisson random measure N(dt, dz). Because of the intricate path-dependent behav-
ior, there has been significant interest in relating option prices/implied volatilities on X to option
prices/implied volatilities written on Y; see, for example, Ahn et al. (2013); Leung and Sircar
(2015); Leung et al. (2016); Lee and Wang (2015). Although Y cannot be written as a function of
Xt and [X]r only, our framework allows us to value a claim written on Y7 (which can be viewed
as a claim on the path of X) relative to a European (i.e., path-independent) claim written on X7.

The following proposition relates the characteristic function of (Y — Y;), conditional on %;,
to the characteristic function of (X7 — X,), also conditional on ¥,.
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Proposition 5.7. Let X and Y have dynamics given by (3) and (62), respectively. Define y : C - C
by

1@ = [ (e -1+ 1 -1~ 168 - 1)) (66)
R

Then the characteristic function of (Yt — Y,), conditional on F,, is given by

(T-0x(q) - Lm0,
E,cia0r—Y) e Xl q E o @95 AA=PIT—X0). 7
(T-0p(u(qB.q=B(1—-F)).0)
e 2
where u and 1 are given by (11) and (13), respectively.
Proof. See Appendix A.12. [l

Using Proposition 5.7, we can relate the value of a claim written on Y to the value of a European
claim written on X.

Theorem 5.8. Let & be the generalized (one-dimensional) Fourier transform of ¢ : R — R. We
have

30 = 5 [ o, gec. (69)
27 Jn
Define q, := Req and q; : = Im q. Assume the inverse Fourier transform of ¢ is ¢
o) = [ v gtaa, (69)
R

Assume further that (- + 1q;) has no singularities and satisfies

18] = 6(lg,1779) as |g,| — oo, (70)
for some ¢ > 0. Then, with X and Y given by (3) and (62), respectively, we have

Eip(Yr) = E;g(X1; X, YY), (71)

e HT0X@  su@Baspu-p)-xX,)
(&

g0 X, Y,) = / ) dg,. (72)

R (T—t)lﬁ(u(fJﬁ,qlﬁ(l—ﬁ)),O)
e 2
where u, P and y are given by (11), (13) and (66), respectively.

Proof. See Appendix A.13. [l
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FIGURE 4 We consider a Dirac Lévy measure v(dz) = 16,,(z)dz, an approximate realized Sharpe ratio
payoff X /4/[X]r + € and plot the function g(log S;) that prices this claim as a function of S;. In all four plots the
time to maturity is fixed at T = 0.25 years. The parameter ¢ = 0.001 is fixed and we compute g using u = u_

Example 5.9 (LETF Call option). Consider a call option written on the LETF. The payoff function
@(¥) := (¥ — eX)* has a generalized Fourier transform
_ek—ikq

—, i c=Img<—1. 73
(@ 1 10) g :=Imgq (73)

P(q) =

Observe that |@(q)| = 0(|g,|7%) as |g,| = co, where g, := Re g. Moreover, with g; < —1 fixed, the
function &(- + iq;) : R — C has no singularities. Thus, ¢ satisfies the conditions of Theorem 5.8.
In Figure 6 we plot the function g(log St; X;, Y,) with g given by (72) as a function of Sy for various
leverage ratios 5 and for bothu = u, and u = u_.

6 | CONCLUSION

In this paper we consider a variety of claims written on the log price X and quadratic variation
[X] of a risky asset S = eX. The asset S is modeled as a positive semimartingale with finite activ-
ity jumps and independent unspecified (possibly non-Markovian) volatility. In this setting, we
show how to price various path-dependent claims relative to path-independent calls and puts
on S. We also show how some of these path-dependent claims can be replicated by trading the
underlying S, a bond B, and calls and puts on S. A number of examples are provided in which we
explicitly compute a payoff function g of a European claim whose value equals the value of the
path-dependent claim.
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15 2.0 25 3.0 05

-1.0F

U+ U—
FIGURE 5 We consider a Lévy measure that is identically zero v = 0, an approximate realized Sharpe ratio

payoff X /1/[X]r + € and plot the function g(log S;) that prices this claim as a function of S;. In both plots the
time to maturity is fixed at T = 0.25 years. The parameter ¢ = 0.001 is fixed

B>0 B <0

FIGURE 6 Consider a call option written on an LETF L = e¥. In Theorem 5.8, we provide an expression
(72) for a function g that satisfies E,(Ly — €*)* = E,glog S; X,,Y,), where S = eX is the underlying ETF. In the
plots above, we consider a Dirac Lévy measure v(dz) = A8,,(z)dz, and plot gy(log S7; X,,Y,) as a function of Sy.
Left: For both u = u, and u = u_, we consider positive leverage ratios § = {1, 2, 3}, corresponding to the solid,
dashed, and dotted lines, respectively. Right: For both u = u, and u = u_, we consider negative leverage ratios

B = {-1,-2, -3}, corresponding to the solid, dashed, and dotted lines, respectively. In all four plots the following
parameters are fixed T = 0.25 years, X, = 0, Y, = 0, m = —0.4, 1 = 2.0 and k = 0. With m as given, inequality
(65) is satisfied for all six values of 8. Note that when 8 = 1, we have L = S. Not surprisingly, when u = u_, it
appears that g(log Sy; X,, Y;) = (Sy — e*)* (solid line in the lower left plot)
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APPENDIX A
A.1 | Proofoflemma 3.2
Recall the characteristic function of a normal random variable

1
imco—zazw2

Eel®? =¢ , Z~N(m,a?). (A1)

Let ¥ denote the sigma-algebra generated by (0,)o<;<r- Then ([X¢]; — [X€];) € F7 and
1
X§ = X{|F] ~ N (m, a?), m = ——([X]r = [X“])), a’ = [X“lr — [X°];. (A2)
Using (A.1) and (A.2),
E, el —XD+in(X =X — E[ein([XC]T_[XC]t)ﬂEt[eim(X;—Xtc)|g:%]
= [E[[E[[e(in—(w2+iw)/2)([XC]T—[X”]z)g%] (by (A.1) and (A.2))
= E,E, [e@ @n+iu@n)/2(X r-[X1) %] (by (11))
= EE [e@PE T XD|%2]  (by (A1) and (A.2))
— [Eteiu(cu,n)(Xg—Xf)’
which establishes (12).

A.2 | Proof of Proposition 3.3
Because X¢ is G-adapted and X/ is H-adapted and F = G v H where G and H are independent,

F,eiu@mXr—X;) — [Eteiu(w,n)(xg-xf)[Eteiu(w,n)(X;-X{)
= E, et XD +n(X I - X I, gt -X)) (A3)
where the second equality uses (12). Similarly,
E,elo(r=X0+1n(XIr-[X]) = [,ele G -XD+n(X l ~X D gto®—XD+in(x lr~1x71)

E, eiu(@n)x X)[E[eiw(XJf—th)+i>7([Xf]T—[XJ‘][)
=€ ’ T—A¢

[Eteiu(w,n)(X%—X{)

e(T—l)Qb(wJ?)

= F,elwlomr-X)_~ =~
€ e(T—)p(u(w,n),0)

(A.4)

by (A.3) and applying the Lévy-Khintchine formula to the two-dimensional Lévy process
(X7, [X7]), whose characteristic exponent ¢, given by (13), is well-defined for all (w,7) € C? due
to (2). Rearranging (A.4) produces (14).



CARR ET AL.

WILEY -2

A.3 | Proof of Corollary 3.4
By Proposition 3.3,

[EtX¥ [X]IrzleinT+i77[X]T — (_iaw)n(_ian)m [EteinT+i77[X]T

e(T—0p(@n)+ilw—ulwn)X+in[X],

[E iu(wJ?)XT
S T—DP(u@,0) 1€

= (—10,)"(—=10,)"
= R.H.S. of (16),

where the interchanges of differentiation and expectation in the first and last equalities are justi-
fied since, for any n,m € {0} UN and w, 7 € C, there exists a constant ¢; > 0 such that

agarr]neiwx+inv < Clecl(lxl"'lvl), [Eoclec1(|XT|+[X]T) < o,
where the finiteness of the expectation follows from (2).

A.4 | Proofof Lemma 4.2
By independence of G and H,

@ _ @@
o =Y 2

By iterated expectations and the countability of ¥ := {t : AYt(Q) # 0},

P(N and Y@ have a common jump time) = E Z P(AN; #0|Y@) =0,
tef

where the last step is because N is still Poisson given Y(%), by independence. Moreover, all jump
times of A are jump times of N, hence jump times of A are not jump times of Y(9), and (36) follows.
Next, we have
@ _ @ (@)
AZY =27 -2~
_ einf[Eteiq(XJT—X{) _ elaX) [Et_eiq(X]T—th_)
— ela(X]_+ax] E, e1a—X)) _ gigX, F,_ ela—x])
- eiq(X'i_+AX'tj)[Et_eiq(X%—X{_) _ elaX) F,_eldX7—X1)
_ iqAXj inj inj
=e tE_e™r —E,_etr

iaax! Lox)
= (9% — 1)E,_e*T

=79 / (€197 — 1)N(dt, dz).
R

Multiplying by Yﬁi’ produces (37).
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A.5 | Proofof Lemma 4.3
By independence of G and H, we have

E,etdr—X0) = Eteiq(xg—xf)[Eteiq(x;—x{')
e e T
= E/E, [0 |F ] |E, 10T —X0)

1 : ¢ c i i
o3 CTIDXTr1X W elatch—x)),

=E, (A.5)

where the third equality uses (A.1) and (A.2). Next, noting that with h(q) := g*> + iq we have
h(q) = h(—1i — q), it follows from (A.5) that

ﬂzteiQ(XT_Xt) ﬂztei(_i_Q)(XT_Xt)

J vy J_vi (A.6)
[Etei‘J(XT‘Xr) [Etei(‘i‘quT‘Xr)

(unless either denominator is zero, but in that case, (39) holds because ng) = Qg_i_q) =0).
Expression (39) follows from (A.4) and (A.6).

A.6 | Proof of Theorem 4.4

We compute

: A . A
dA; = (.)dt + i(w — u)S—dSt +AA; — i(w— u)S—ASl, (A7)

t— t—
AA, = A, / (ei<w-“)z+i'7z2 - 1>N(dt, dz), (A8)

R
AS; = S;_ / (e —1)N(dt,dz), (A9)
R

where, as we shall see, the (...)dt terms will play no role. Next, we have from Lemma 4.2 that
d[A,QW], = (.)dt + AA,AQ™ = (.)dt + AA, (YW az™). (A.10)
Now, using (36), (A.7), (A.8), (A.9) and (A.10), we have
d(4,Qi") = A,_dQ[" + Q{dA, +d[4,Q")],

A,_Q"Y

= (.)de + A,_dQ™ + i(w — w) —dSi + AT, (A1)
t_
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where AFE”) is defined in (41). Likewise,

(@ R(q)

R
dR'? = (.)dt — 1gg—ds; + AR 4 1g5—AS,,
t— t

AR = R / (e7192 — 1)N(dt, dz),
R

from which
R(q)Q(q)
dRPQ?) = (.)dt + RPAQY — 1g—=ds, + 2Q)?, (A12)

t—

where AQ(q) is defined in (43). Note that we have used AR(q)AQ(q) = AREq)(YEZ)AZ[(q)), which
follows by replacmg A with R@ in Lemma 4.2 and its proof. Next, from (39) and (A.12) we have
_ A (D@ _
= (.)dt + R9dQ? — R PdQ ™y (1 - 2iq)——=ds, + AQY — AQTT? (A13)

t—

Finally, combining (44), (A.11) and (A.13),

A,_Q™

t—

d(4,Q™) = A,_dQ™ + i(w — u) ds,

(g;) ~(a))

Ldst ,

;) ; ~(a;) ( qj) § ~(—i=q;) .
+2H(]) R J dQ J i— Jj dQ i— J (l_zlqj) Sl_

j=1
where the (...)dt terms must vanish since the processes AQW, S and QD are martingales.

A.7 | Proof of Proposition 4.7
From (41) and (43) we observe that

ATy = A, (”) / F(z)N(dt,dz),
R
AQ® — AQ = 0@ / G(z: ON(dt. dz),
R
From (48), we see that N(dt, R) € {0} U {z, z,, ... z,,}. Thus, in order for (44) to hold, we must have

A,_QYMF(z) = ZH(])R(q’) “96(z5q;), i=1,2,..,n (A14)
j=1

From (49) and (50), we see that (A.14) is given in matrix notation by (51).
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A.8 | Proofof Corollary 4.8

Let iR c C denote the imaginary axis. By Proposition 4.7, given z;, z,, we need only verify the
existence of gy, q,. It suffices to choose q; € iR \ {0, —i/2, —i} arbitrarily, and to choose g, € iR
such that D(q,) # 0 where D(q) := G(z1;q1)G(22; q) — G(z1; )G(22; q1); the existence of such g,
is clear because |D(q)| — o0 as ¢ — +ioco. Moreover, for q;, ¢, € iR, the RQ factors in (52) never
vanish, hence the invertibility condition holds.

A.9 | Proof of Proposition 5.1
We have from (Schiirger, 2002, equation (1.2.3)) that

(o]
1
o = F(lr— 5 / —(—e ™)z, 0<r<l. (A.15)
0

r | .
E[X], = Ta—r /0 ) E(1- e_Z[X]T)dZ (by (A.15) and Tonelli)

0 1 ) T(0,iz) ) )
— F(lr_ r)/ Zr+1[E<e1u(0,O)XT _ € elu(O,lz)XT dz (by (14))
0

eT$(u(0,iz),0)
r [Se]
=—F
rd-r) /0

= Eg(X7), (by (55))

eTz/)(O,iz)
eT$(u(0,i2),0)

(ei“(O’O)XT - eiu(0,12)X7 ) dz (by Fubini)

1
zr+1
where the use of Fubini is justified as follows. Define

Z(n) :=T®(0,in) — (0, in),0)) + iu(0, in)Xr. (A16)

Consider the case u = u, ; the case u = u_ is analogous. Using u, (0,0) = 0 and (A.16),

T$(0,in)
wOOXr _ & 7 T au0anXr| = _oZ®
He eTw(u(o,ir;),o)e | [E’l € ‘ (A.17)
Observe that
2 2
(E|1 = Z®])” < [E|1 _ eZ(n)| = E(1+ €2ReZ0) _ eReZ0D2 cos Im Z(n)). (A18)
By (11) and (13),

. ) 1 /1
iu(0,1in) = S\ 27,

¥(0, in) — P(u(0, in),0) = /

(e"’z2 — 10z _ 3y(0,in)(e? — 1)>V(dZ).
R
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Noting that 0 < Re(iu(0, in)) < 1 and recalling from (2) that »(R) < oo and v(|z| > ¢) = 0, we
have

sup Re ($(0, i) — Y(u(0, in), 0)) < / (1+ ¢ + e — 1)u(dz) = v(R)(1 + €€ + [ — 1),
neR, R

inf Re (%(0,in) —$u(0,17),0)) > / (—e® — [e“ = 1))r(dz) = v(R)(—e® — | —1]).
neR, R

Thus, from (A.16), we conclude that Re Z(#) is bounded uniformly in 7. Combining the uniform
bound of Re Z(n) with (A.17) and (A.18), it follows that

eT$(0,i7)

eiu@Oxy _ & 7 T
eTH(0,17).0)

E

eiu(O,iﬂ)XT| =0(1), as7n — oo. (A19)
On the other hand, for 7 small enough, we have iu(0, i5) € R, hence

(E1 - eZ(’7)|)2 < [E|1 - eZ(’7)|2 =E(1+e*® —2¢?™).  (for 7y small enough)  (A.20)
Next, observe that
EeZ() = oT(O.1m)—$(u(0,in).0) o iu(0.im)Xy
— T, i) —$(u(0,17),0)) o iu(0.imX] Eoiu(0.inXs
— WO —P(u(0.17).0)TH(u(0,i7).0) Ee—nlX°1r
— IO Ee-nlXCr
=1— (M'(0) + (AX?))n + O(n?), asn — 0, (A.21)

where M(t) := Ee'Xlr and ( f(AX)) := /R f(2)v(dz). Here, we are using that M is an entire
function, which follows from (2) and (Sato, 1999, Lemma 25.6). We also have

Ee2Z) — o2T@(O,im—(u(0,17),0)[Ee2iu(0,in)Xy
— 2T (0,17~ (u(0,7).0) [ o21U(0, 17X [ 02100, im)X,
— 2T((0,1n)~(u(0,1).0))  TH(2u(0,17).0) Eo—wIXC]y
=1-2(M'(0)+(AX?))n+ O(n*)  asy—0, (A.22)

where w(n) = %(87} +4/1 —8n —1) (for u = u,) solves iu(0, iw(n)) = 2iu(0, in) so that

Ee-wIXlr = Feiu(OiwimXs _ Fe2iu(0iwi)Xs

Inserting (A.21) and (A.22) into (A.20), we obtain (E|1 — e“®|)? = 6(»?) hence

E|1 - e?™] = 6(n), as7n — 0. (A.23)



26 Wl L E Y CARR ET AL.

By (A.17), (A.19), and (A.23),

|
A nr+1[Ee

justifying the use of Fubini.

1u(0,00Xy _ e¥(in) 10X |dy < oo
eT$(u(0,17),0) ’

A.10 | Proof of Proposition 5.3
We have from (Schiirger, 2002, equation (1.0.1)) that

v+e ri{r
hence
XTeipXT 1/"
= / Xt eipXr—2 ([XIr+e) dz (by(A24))
(X]r +er rF(”
= T( )/ EXetpXr—2/"(IXIr+e) 4z (by Fubini)
rT(r
- rF(r)/ (= 13p)[Ee1pXT—z1/’[X]T-Z €dz (by Leibniz)
T 1/r
_ ( e ke g, (by (14))
rF(V) P i '

s 1/r
-1 ( 19 )Meiu(p,iz“’)xr—zl/’s dz  (by Fubini)
rr(r) PZ aTy(u(p,i21/7),0)

= Eg(X7y). (by (57))

The use of the Leibniz has already been justified in the proof of Corollary 3.4. The first use of
Fubini’s Theorem is justified since E|XpetPXr=2""XIr| < E|X;elPXT| < oo, for allpe C,andz >
0, which implies

[se]
/ [E|XTeiPXT_Zl/r[X]T e?"*dz<c0.
0

The second application of Fubini is justified as follows. Define

Y(p,n) :=T®(p,in) — pu(p, in),0)) + iu(p, in)Xr. (A.25)
Observe that

eTH(p.12V/7)

_ e 7 iu(piztmxy — Y(p,zt/") 1/r
id, esz(u(p,izl/’),o)e ie 9,Y(p,z'/"),
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eT¥(p.i2'/7)

iu(p,iz"/"NXr| — aReY(p,z/") .Y 1/r A26
eT¢(u<p,iz1/r),o>e ¢ 195Y (P, 2" (A.26)

(_iap)

From (11) and (13) we have

. . 1 1 .
1ui(p’17)) = E F \/Z _p2 —1ip— 2779

¥(p, in) — P(u(p, in), 0) = /

(eipz—ﬂz2 — Pz _ (1p — iu(p, in))(ez — D)u(dz).
R

=2 /243
Rea+ ib| = | CHIEHT

sup | Re u(p, in)|<e;, sup | Re ($(p, 1n) — p(u(p, n), 0))|<e1, (A.27)
neRy neR,

Noting that, for any a,b € R we have

[(a2 + p2)1/2
’Re Va+ ib| = W, which implies sup

a<a

it follows that there exists a constant ¢; such that

where the second inequality follows from (2), the uniform bound on | Re iu(p, in)| and

(e_piz_nzz cos(p,z) — eRe 1PNz cos(Im iu(p, in)z)) v(dz)

Re (¥(p,1in) — P(u(p, in),0)) = /

R

~ (=i - Reiu(p, in)) / (¢ — 1) v(d2).
R
Now, observe that

3,Y(p.n)=T /R (izeipz_’?ZZ — tUPNZ5 su(p, in)z — 1(e? — 1)) v(dz) + 18,u(p, inXr,

1-2ip
V—ap?—4ip-sp+1

apu(p, in) = (A.28)

from which

8, Y (I < T / (Izlep272" 4 eResueinz|g su(p, in)z| + 6 — 1] ) (d2) + 18,u(p, in)Xr .

R
(A.29)

Combining (A.25), (A.26), (A.27), (A.28) and (A.29),

TH(piz'/7)

E|(-id,) ——
(=10,) T (u(p.iz!/7),0)

e u(p12/Xr| = EeReY(2'|g, Y (p, 2/1)| = 0(1), asz — co. (A30)
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Next, foranya € C,r € (0,1) and € > 0,

dz<co. (A.31)

o) e—&Zl/r
-/0 ’ Va -z
By (A.30) and (A.31),

[e%) T i 1/r
/ [E|(—ia )ﬂeiu(P,izl/')XT|e—zz1/’dz<oo’
0 P eTy(u(p,i2'/7),0)

justifying the use of Fubini.

A1 | Proof of Proposition 5.5

The proof is completely analogous to the proof of Proposition 5.3. The only significant change in
the proofis that, since the operator 0,, does not appear in (60), one no longer needs to be concerned
about the singularity that appears in the expression (A.28) of d,u(p, in). As a result, expression
(60) holds for all r > 0.

A.12 | Proof of Proposition 5.7
First, we observe that Y/, given by (64), is a Lévy process with characteristic exponent y. We have

[EteiQ(Y;—Yf) = o(T-Dx(q), (A.32)
Next, we compute
E,etd(Yr=Y0) = [E[eiq(Y%_Yf)[E,eiq(Yé_Yf) (as Y 1L YY)
. ¢ Cyy 5 l _ C1.._[yC i i
_ [Ete1Q5(XT_X[)+1q25(1 BXCIr—[X ]t)[Eteiq(y%_yt/) (by (63))
. l _ c_y¢C . ; 3
_ [Etelu(qﬁ’q2ﬁ(1 BNXT Xt)[E[elq(Y%_Y{) (by (12))
1u(gB.g= FU-F)(Xr—X,) E,ela(7-Y)) -
=Ee 2 T — (asX¢ 1L X/)
[E[eiu(qﬁ,q5{:’(1—5))(X;—X{)
(T—f))((CI) i l 1— X+—X,
- Ee PP by (A4) and (A32))
(T—t)p(u(gB.q = B(1—p)),0)
e 2
Thus, we have established (67).
A.13 | Proof of Theorem 5.8
We compute
Ep(fr) =€ [ @' rdg, (by (69)
R



CARR ET AL. W I L E Y 29

=/@(Q)eiqy‘[Eteiq(YT_Y‘)dqr (by Parseval)
R

qut+(T_t)X(q) i 1 _ X=X,
_ / 3(q) S E elu(q5,q26(1 BNXr—X)
R

1 : dg,  (by(67)
e(T—t)lﬁ(u(qﬁ,qEﬁ(l—ﬁ)),o)

1Y, HT—0)x(q) - Len_ _
=E, / #lg)—— ¢ MAPAPUENCT=X) 40 (by Fubini)
R

(T—f)w(u(qﬁ’qlﬁ(l—ﬁ)),o)
e 2
= Eg(X1; X1, Yy). (by (72))

Parseval-style identity is allowed by (Titchmarsh, 1948, Theorem 39). The use of Fubini’s Theorem
is justified as follows. Without loss of generality, we may assume ¢ = 0 and take X, = Y, = 0. We
must show

1 1
o TO@)—$(u(@Ba3 BA-F)0)_1u(gBa3BA-FX
/ B 2 e 2 "|dg;
R

1 1

T(R -R ,4=B1-P).0) Reiu(gB.q=pA-L)X

_ / ‘cﬁ(q)'e (Re x(q)-Rep(u(gh.q7B1—F) 0))e eiu(gh.qZp1-R) "dg, < oo. (A33)
R

From (11) we have

Reiu.(gf,q5p(1—P) =5+ Va+ib, a=2+pAG +q—g). b=-B"Cqq +4).

1
2

Noting that, forany a, b € Rwe have | Re V/a + ib| = v/((a2 + b2)1/2 + a)/2, it follows that there
exists a constant ¢; < oo such that

sup |Re iu,(gB, q%ﬁ(l - 5))‘<c1. (A.34)
qr€R

Next, we note from (13) and (66) that

Re(u,0) = / (eRe24Z cos(Im iuz) — 1 — Re iu(e? — 1))v(dz), (A.35)
R

Re x(q) = / (e~@10eBE*=D+D) cos (g, log(B(e? — 1) + 1)) — 1 + g;B(e? — 1)) v(dz).  (A.36)
R
It follows from (2), (A.34), (A.35) and (A.36), that there exists a constant ¢, < oo such that

sup | Re9(u(gB, q581 — §)), 0)|<cz, sup |Re x(g)|<e.. (A.37)
4R ¢€R

Finally, from (70), (A.34) and (A.37) we conclude that inequality (A.33) holds, justifying the use
of Fubini’s Theorem.
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