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Abstract
We price and replicate a variety of claims written on
the log price 𝑋 and quadratic variation [𝑋] of a risky
asset, modeled as a positive semimartingale, subject to
stochastic volatility and jumps. The pricing and hedg-
ing formulas do not depend on the dynamics of volatil-
ity process, aside from integrability and independence
assumptions; in particular, the volatility process may be
non-Markovian and exhibit jumps of unknown distribu-
tion. The jump risk may be driven by any finite activity
Poisson random measure with bounded jump sizes. As
hedging instruments, we use the underlying risky asset,
a zero-coupon bond, and European calls and puts with
the same maturity as the claim to be hedged. Examples
of contracts thatweprice include variance swaps, volatil-
ity swaps, a claim that pays the realized Sharpe ratio, and
a call on a leveraged exchange traded fund.
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1 INTRODUCTION

Consider an underlying risky asset, which exhibits both stochastic volatility and independent
jumps. In this setting, we show how to value claims on the log price of the asset and its quadratic
variation relative to vanilla European puts and calls. Under an additional assumption that jump
sizes of the log price of the risky asset are restricted to a discrete finite set, we showhow to replicate
claims on the log price of the asset and its quadratic variation by dynamically trading zero-coupon
bonds, shares of the underlying and a portfolio of European puts and calls.
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The class of models we consider in this paper is semi-parametric in a sense we now describe.
The distribution and arrival rate of jumps of the risky assetmust be specified parametrically. How-
ever, we do not specify a particular volatility process. Rather, we simply require that the volatil-
ity process be an adapted right-continuous process that evolves independently of the Brownian
motion and Poisson random measure that drive the price process of the risky asset. In particular,
the volatility process may be non-Markovian and it may experience jumps. Because we need not
specify a particular volatility process, our pricing formula and replication strategies are robust to
misspecification of the volatility process.
This paper is the updated version of theworking paper Carr and Lee (2009), which showed how

to price and replicate claims on the quadratic variation of the log price of a risky asset without
jumps. That work was extended in Carr et al. (2015) where the authors show how to value and
replicate a variety of barrier-style claims on the log price and quadratic variation of a risky asset
without jumps. In both papers, the underlying is assumed to have continuous sample paths and
an independent volatility-driving process. These assumptions imply a symmetric model-induced
implied volatility smile. Symmetric smiles are observed in certainmarkets (e.g., FX), but generally
are not observed for options on equity, where smiles typically exhibit downward sloping at-the-
money skews.
Matching the skew of implied volatility is important both for pricing and hedging, and there

are a number of ways this can be achieved. One method of matching skew is to use Dupire’s for-
mula Dupire (1994) to find the local volatility model that is consistent the market’s quoted call
and put prices. Another means of matching skew is to consider a stochastic volatility model such
Heston Heston (1993) or SABR Hagan et al. (2002). In these models, the correlation between the
log price and volatility processes can be adjusted in order to match the observed implied volatility
skew. A third means of matching the skew is the approach taken in this paper: to consider models
that allow the underlying risky asset to experience jumps; asymmetric jumps induce asymmetric
smiles. While both local volatility and jump models can match quoted option prices, the corre-
sponding delta hedges differ significantly. The delta computed from the local volatility model typ-
ically falls below the Black–Scholes delta (as computed using a given option’s implied volatility),
whereas the delta computed from the model with jumps typically falls above the Black–Scholes
delta. As, empirically, delta is above the Black–Scholes delta (for options on SPX), this is motiva-
tion for matching the skew of implied volatility with jumps rather than local volatility. Another
reason for considering models with jumps is that, consistent with empirical observations, these
models induce an explosion of the at-the-money skew as time to maturity approaches zero. By
contrast, the implied volatility skews induced by stochastic volatility models such as Heston and
SABR remain bounded as time to maturity approaches zero.
The rest of this paper proceeds as follows. In Section 2 we describe a market for a risky asset

and state our modeling assumptions. In Section 3 we show how to price power-exponential-
style claims on log price and its quadratic variation and in Section 4 we show these claims can
be replicated. Lastly, in Section 5, we price a variety of claims that do not fall into the power-
exponential category.

2 MODEL AND ASSUMPTIONS

We fix a finite time horizon 𝑇 < ∞ and consider a frictionless market, defined on a filtered prob-
ability space (Ω,ℱ, 𝔽, ℙ) satisfying the usual conditions, such that the prices of all assets are
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martingales with respect to (𝔽, ℙ). The probabilitymeasureℙ represents themarket’s chosen pric-
ing measure and the filtration 𝔽 = (ℱ𝑡)0≤𝑡≤𝑇 represents this history of the market.
Assume 𝔽 = 𝔾 ∨ ℍwhere𝔾 = (𝒢𝑡)0≤𝑡≤𝑇 andℍ = (ℋ𝑡)0≤𝑡≤𝑇 are independent filtrations, let𝑊

be a 𝔾-Brownian motion, let 𝜎 be a 𝔾-adapted right-continuous process independent of𝑊, and
let 𝑁 be a Poisson random measure with respect to ℍ, with intensity measure 𝜈(d𝑧)d𝑢 for some
Lévy measure 𝜈.
Let 𝐵𝑡 be the price of a zero-coupon bond paying one unit of currency at time 𝑇. Assuming zero

interest rates, or that all prices are expressed as 𝑇-forward prices, we have 𝐵𝑡 = 1 for all 𝑡 ∈ [0, 𝑇].
Let 𝑆𝑡 be the price of a risky asset, which pays no dividends. Suppose 𝑆 is strictly positive and has
dynamics of the form

d𝑆𝑡 = 𝜎𝑡𝑆𝑡d𝑊𝑡 + ∫
ℝ

(e𝑧 − 1)𝑆𝑡−𝑁̃(d𝑡, d𝑧), 𝑁̃(d𝑡, d𝑧) = 𝑁(d𝑡, d𝑧) − 𝜈(d𝑧)d𝑡, (1)

where𝑊 is a Brownian motion and 𝑁̃ is the compensated Poisson randommeasure with respect
to (𝔽, ℙ). We refer the reader to (Øksendal and Sulem, 2005, Ch. 1) for an overview of Lévy-Itô pro-
cesses.Wewill not specify dynamics for the volatility process 𝜎. Note that 𝜎may be non-Markovian
and may experience jumps. However, we have required that 𝜎 evolve independently of𝑊 and𝑁.
For simplicity, we further assume there exist constants 𝑏, 𝑐 < ∞ such that

∫
𝑇

0

𝜎2𝑡 d𝑡 < 𝑏, 𝜈(ℝ) < ∞, 𝜈(|𝑧| > 𝑐) = 0. (2)

For certain claims, conditions (2) can be relaxed, as described in (Carr and Lee, 2009, Section 8).
However, our aim is not to provide here the most general conditions under which our pricing and
hedging methodology can be applied. Rather, we aim to provide simple conditions, which allow
us to clearly illustrate our pricing and hedging methods without complicating the presentation
with numerous technicalities.
The log price of the risky asset 𝑋𝑡 ∶= log 𝑆𝑡 therefore has dynamics

d𝑋𝑡 = −
1

2
𝜎2𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡 − ∫

ℝ

(e𝑧 − 1 − 𝑧)𝜈(d𝑧)d𝑡 + ∫
ℝ

𝑧𝑁̃(d𝑡, d𝑧). (3)

Let 𝑃𝑡(𝐾) and 𝐶𝑡(𝐾) be the time-𝑡 prices of, respectively, a European put and European call
written on 𝑆, maturing at time 𝑇 with strike 𝐾. Under the assumptions above,

𝑃𝑡(𝐾) = 𝔼𝑡(𝐾 − 𝑆𝑇)
+, 𝐶𝑡(𝐾) = 𝔼𝑡(𝑆𝑇 − 𝐾)

+, 𝑡 ∈ [0, 𝑇], 𝐾 ≥ 0, (4)

where the notation 𝔼𝑡 ⋅ ∶= 𝔼[ ⋅ |ℱ𝑡] denotes conditional expectation. As 𝑆 = e𝑋 , we may refer to
claims written on 𝑆 or 𝑋 interchangeably, with the understanding that these are the same thing.
Our payoff decompositions will assume a European put or call trades at every strike 𝐾 > 0. As
Breeden and Litzenberger (1978) show, this assumption is equivalent to knowing the distribution
of 𝑆𝑇 under ℙ. Additionally, Carr and Madan (1998) show that this assumption allows general
𝑇-expiry European claims on 𝑆𝑇 to be perfectly replicated with a static portfolio of bonds, puts,
and calls; for general function 𝑓 that can be expressed as the difference of convex functions, the
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resulting pricing formula, under integrability conditions, is

𝔼𝑡𝑓(𝑆𝑇) = 𝑓(𝑆𝑡)𝐵𝑡 + ∫
𝑆𝑡

0

𝑓′′(𝐾)𝑃𝑡(𝐾)d𝐾 + ∫
∞

𝑆𝑡

𝑓′′(𝐾)𝐶𝑡(𝐾)d𝐾, (5)

where 𝑓′ is the left-derivative of 𝑓 and 𝑓′′ is the second derivative, which exists as a generalized
function. While in reality calls and puts trade at only finitely many strikes, this can be addressed
following techniques described in Leung and Lorig (2015), who show how to optimally adjust
static hedges when calls and puts are traded at only discrete strikes in a finite interval.

Remark 2.1 (Limitations of our modeling framework). Our modeling framework has certain lim-
itations, which we describe here. First, because we have assumed that 𝜎 evolves independently
of𝑊 and 𝑁, the class of models we consider cannot capture correlation between instantaneous
volatility and price. Nevertheless, the errors that would result from using the pricing and repli-
cation strategies developed in this paper in a setting in which 𝜎 and𝑊 are correlated can, to an
extent, be minimized using a correlation immunization strategy, which is described in (Carr and
Lee, 2009, Section 4). ExtensiveMonteCarlo testing of the correlation immunization strategy have
been carried out Lin and Lorig (2019). Second, the assumptions in (2) exclude most traditional
stochastic volatilitymodels and exponential Lévymodels because the former do not typically have
bounded integrated variance and the latter do not typically have bounded jump sizes. However,
this assumption can be relaxed, as discussed after (2). Moreover, our aim is not to consider a class
of models that includes all other models. Rather, our aim is to consider a class of models that cap-
tures the dynamics of the market, and we are not aware of any empirical evidence that the market
is better described by a traditional SVmodel than by SV dynamics in which integrated variance is
capped at, for instance, 10100.

Remark 2.2 (Relation to other work). The present paper initiated a line of work in the general area
of robust pricing and replication of claims on realized variance. An earlier version of this paper,
the unpublished working paper Carr and Lee (2009), developed pricing and replication strategies
for claims on 𝑋 and [𝑋] under an assumption that 𝑋 experiences no jumps. In Carr et al. (2015),
the results of Carr and Lee (2009) are extended to knock-in, knock-out and rebate claims written
on 𝑋 and [𝑋]. And in Carr et al. (2011) and Carr et al. (2015), variance swaps are robustly priced
when 𝑋 is a time-changed Lévy process and time-changed Markov process, respectively.

3 PRICING POWER-EXPONENTIAL CLAIMS

Let [𝑋] denote the quadratic variation of the 𝑋 process. By (3), we have

d[𝑋]𝑡 = 𝜎2𝑡 d𝑡 + ∫
ℝ

𝑧2𝑁(d𝑡, d𝑧). (6)

This section will price and replicate the real and imaginary parts of a power-exponential claim,
which we define as any claim whose payoff has the form

Power-exponential Claim Payoff ∶ 𝑋𝑛𝑇[𝑋]
𝑚
𝑇 e

𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 , 𝑛,𝑚 ∈ {0} ∪ ℕ, 𝜔, 𝜂 ∈ ℂ. (7)
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These power-exponential claims will be used as building blocks to construct more general claims.

Remark 3.1. The various processes and random variables discussed in this section and Section 4
are ℂ-valued. The pricing and hedging results given below should be understood to hold for the
real and imaginary components. For example, when we say “the price of 𝑍” we mean “the price
of the real and imaginary parts of 𝑍,” and when we say “to replicate 𝑍” we mean “to replicate the
real and imaginary parts of 𝑍.”

We have the decomposition

𝑋𝑡 = 𝑋𝑐𝑡 + 𝑋
𝑗
𝑡 , (8)

where the dynamics of the continuous component 𝑋𝑐 and the jump component 𝑋𝑗 are given by

d𝑋𝑐𝑡 = −
1

2
𝜎2𝑡 d𝑡 + 𝜎𝑡d𝑊𝑡, d𝑋

𝑗
𝑡 = −∫

ℝ

(e𝑧 − 1 − 𝑧)𝜈(d𝑧)d𝑡 + ∫
ℝ

𝑧𝑁̃(d𝑡, d𝑧). (9)

Likewise, the quadratic variation process [𝑋] also separates into a continuous component [𝑋𝑐]
and an independent jump component [𝑋𝑗]:

[𝑋]𝑡 = [𝑋𝑐]𝑡 + [𝑋
𝑗]𝑡, d[𝑋𝑐]𝑡 = 𝜎2𝑡 d𝑡, d[𝑋𝑗]𝑡 = ∫

ℝ

𝑧2𝑁(d𝑡, d𝑧), (10)

Proposition 3.3 will relate the jointℱ𝑡-conditional characteristic function of (𝑋𝑇, [𝑋]𝑇) to theℱ𝑡-
conditional characteristic function of 𝑋𝑇 . Its proof will use the following lemma.

Lemma 3.2. Define 𝑢 ∶ ℂ2 → ℂ by either of the following:

𝑢(𝜔, 𝜂) ∶= 𝚒

(
−
1

2
±

√
1

4
− 𝜔2 − 𝚒𝜔 + 2𝚒𝜂

)
=∶ 𝑢±(𝜔, 𝜂). (11)

Then for all 𝜔, 𝜂 ∈ ℂ,

𝔼𝑡e
𝚒𝜔(𝑋𝑐

𝑇
−𝑋𝑐𝑡 )+𝚒𝜂([𝑋

𝑐]𝑇−[𝑋
𝑐]𝑡) = 𝔼𝑡e

𝚒𝑢(𝜔,𝜂)(𝑋𝑐
𝑇
−𝑋𝑐𝑡 ). (12)

Proof. See Appendix A.1 □

Proposition 3.3. Define 𝜓 ∶ ℂ2 → ℂ by

𝜓(𝜔, 𝜂) ∶= ∫
ℝ

(
e𝚒𝜔𝑧+𝚒𝜂𝑧

2
− 1 − 𝚒𝜔(e𝑧 − 1)

)
𝜈(d𝑧). (13)

Then (𝑋𝑇, [𝑋]𝑇) hasℱ𝑡-conditional joint characteristic function

𝔼𝑡e
𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 =

e(𝑇−𝑡)𝜓(𝜔,𝜂)+𝚒(𝜔−𝑢(𝜔,𝜂))𝑋𝑡+𝚒𝜂[𝑋]𝑡

e(𝑇−𝑡)𝜓(𝑢(𝜔,𝜂),0)
𝔼𝑡e

𝚒𝑢(𝜔,𝜂)𝑋𝑇 , (14)
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where 𝑢 ∶ ℂ2 → ℂ is defined in (11).

Proof. See Appendix A.2. □

Corollary 3.4. Fix 𝜔, 𝜂 ∈ ℂ and 𝑛,𝑚 ∈ {0} ∪ ℕ. Assume 1
4
− 𝚒𝜔 + 2𝚒𝜂 − 𝜔2 ≠ 0. Then

𝔼𝑡𝑋
𝑛
𝑇[𝑋]

𝑚
𝑇 e

𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 (15)

= 𝔼𝑡

𝑛∑
𝑗=0

𝑚∑
𝑘=0

((𝑛
𝑗

)(𝑚
𝑘

)
(−𝚒𝜕𝜔)

𝑗(−𝚒𝜕𝜂)
𝑘 e

(𝑇−𝑡)𝜓(𝜔,𝜂)+𝚒(𝜔−𝑢(𝜔,𝜂))𝑋𝑡+𝚒𝜂[𝑋]𝑡

e(𝑇−𝑡)𝜓(𝑢(𝜔,𝜂),0)
⋅ (−𝚒𝜕𝜔)

𝑛−𝑗(−𝚒𝜕𝜂)
𝑚−𝑘e𝚒𝑢(𝜔,𝜂)𝑋𝑇

)
. (16)

where 𝑢 and 𝜓 are defined in (11) and (13), respectively.

Proof. See Appendix A.3. □

Corollary 3.4 relates the price of a (path-dependent) power-exponential claim to the price of a
(path-independent) European claim written on 𝑋𝑇 . Specifically,

𝔼𝑡𝑋
𝑛
𝑇[𝑋]

𝑚
𝑇 e

𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 = 𝔼𝑡𝑔(𝑋𝑇; 𝑋𝑡, [𝑋]𝑡), (17)

where the function 𝑔( ⋅ ; 𝑋𝑡, [𝑋]𝑡) is given by the right-hand side of (16) (keep in mind that
𝑋𝑡, [𝑋]𝑡 ∈ ℱ𝑡). In turn, the price 𝔼𝑡𝑔(𝑋𝑇; 𝑋𝑡, [𝑋]𝑡) of the European claim can be related to value
of a portfolio consisting of vanilla European puts and calls and zero-coupon bonds, which are
market observables, by setting 𝑓(𝑆𝑇) = 𝑔(log 𝑆𝑇; 𝑋𝑡, [𝑋]𝑡) in (5).

Remark 3.5. We describe equations of the form𝔼𝜑(𝑋𝑇, [𝑋]𝑇) = 𝔼𝑔(𝑋𝑇) by saying that the function
𝑔 prices the claim with payoff 𝜑(𝑋𝑇, [𝑋]𝑇). For any given 𝜑, the function 𝑔 will not be unique. For
example, the right-hand-side of (16) will depend on whether we choose 𝑢 = 𝑢+ or 𝑢 = 𝑢−.

In order to apply Corollary 3.4 to price a power-exponential claim, we require an expression for
the Lévy exponent 𝜓, which can be computed explicitly for a variety of Lévy measures 𝜈, such as
the following:

Dirac sum ∶ 𝜈 =
∑
𝑗

𝜆𝑗𝛿𝑚𝑗
, (18)

Uniform ∶ 𝜈(d𝑧) = 𝜆𝟙{𝑚1<𝑧<𝑚2}d𝑧, (19)

Trunc. Exp. ∶ 𝜈(d𝑧) = 𝜆𝟙{|𝑧|<𝑚}e−𝛼|𝑧|d𝑧, (20)



Carr et al. 7

where 𝜆, 𝜆𝑗, 𝛼,𝑚 > 0 and𝑚1 < 𝑚2. From (13), we compute

Dirac sum ∶ 𝜓(𝜔, 𝜂) =
∑
𝑗

𝜆𝑗

(
e
𝚒𝜔𝑚𝑗+𝚒𝜂𝑚

2
𝑗 − 1 − 𝚒𝜔(e𝑚𝑗 − 1)

)
, (21)

Uniform ∶ 𝜓(𝜔, 𝜂) = 𝜆

√
𝚒𝜋

4𝜂
e
−
𝚒𝜔2

4𝜂

(
erf

(
𝜂(2𝜂𝑚1 + 𝜔)

2(−𝚒𝜂)3∕2

)
− erf

(
𝜂(2𝜂𝑚2 + 𝜔)

2(−𝚒𝜂)3∕2

))
(22)

+ 𝜆((𝚒𝜔 − 1)(𝑚2 − 𝑚1) − (𝑚2 − 𝑚1)), (23)

Trunc. Exp. ∶ 𝜓(𝜔, 𝜂) = 𝜆

√
𝚒𝜋

4𝜂
e
𝚒(𝛼+𝚒𝜔)2

4𝜂

(
erf

(
𝛼 + 𝚒𝜔 + 2𝚒𝜂𝑚

2
√
−𝚒𝜂

)
− erf

(
𝛼 + 𝚒𝜔

2
√
−𝚒𝜂

))
(24)

+ 𝜆

√
𝚒𝜋

4𝜂
e
𝚒(𝛼−𝚒𝜔)2

4𝜂

(
erf

(
𝛼 − 𝚒𝜔 + 2𝚒𝜂𝑚

2
√
−𝚒𝜂

)
− erf

(
𝛼 − 𝚒𝜔

2
√
−𝚒𝜂

))
(25)

+
2𝜆(e−𝛼𝑚 − 1)

𝛼
−
2𝜆𝚒𝜔e−𝛼𝑚

𝛼(𝛼2 − 1)

(
𝛼2 − 𝛼2 cosh𝑚 + e𝛼𝑚 − 𝛼 sinh𝑚 − 1

)
, (26)

where erf denotes the error function defined by erf(𝑥) ∶= (2∕
√
𝜋) ∫ 𝑥

0
e−𝑧

2∕2d𝑧.

Example 3.6 (Variance Swap). Consider the floating leg of a (continuously monitored) vari-
ance swap, which pays [𝑋]𝑇 to the long side at time 𝑇. For simplicity, let 𝑋0 = 0. Then setting
(𝑛,𝑚, 𝜔, 𝜂) = (0, 1, 0, 0) in (16) we obtain 𝔼[𝑋]𝑇 = 𝔼𝑔(𝑋𝑇; 0, 0) where

𝑔(𝑥; 0, 0) = −2𝑥 + 𝑇
(
−2⟨eΔ𝑋⟩ + ⟨Δ𝑋2⟩ + 2⟨Δ𝑋⟩ + 2⟨1⟩), (for 𝑢 = 𝑢+) (27)

𝑔(𝑥; 0, 0) = 2𝑥e𝑥 + 𝑇e𝑥
(
−2⟨Δ𝑋eΔ𝑋⟩ + 2⟨eΔ𝑋⟩ + ⟨Δ𝑋2⟩ − 2⟨1⟩), (for 𝑢 = 𝑢−) (28)

where ⟨𝑓(Δ𝑋)⟩ ∶= ∫
ℝ
𝑓(𝑧)𝜈(d𝑧). In Figure 1 we plot 𝑔(log 𝑆𝑇; 0, 0) as a function of 𝑆𝑇 for both 𝑢+

and 𝑢− and for various jump distributions and intensities.

Remark 3.7. The function 𝑔 in (27) and (28) depends on the time to maturity 𝑇. This is in contrast
to the results of Carr et al. (2011) where, in a time-changed Lévy setting, the authors find that the
variance swap has the same value as a European-style log contract, whose payoff function has
no dependence on time-to-maturity. As empirical evidence from Carr et al. (2011) indicates the
European-style payoff function that prices the variance swap does depend on time to maturity,
this is motivation to consider the models presented in present paper rather than those considered
in Carr et al. (2011).
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F IGURE 1 We consider a Dirac Lévy measure 𝜈(d𝑧) = 𝜆𝛿𝑚(𝑧)d𝑧, a variance swap payoff [𝑋]𝑇 and plot the
function 𝑔(log 𝑆𝑇; 0, 0) that prices the variance swap as a function of 𝑆𝑇 . Left: We examine the effect of the jump
size𝑚 when 𝑔 is computed using both 𝑢 = 𝑢+ and 𝑢 = 𝑢−. The jump intensity is fixed at 𝜆 = 1.0 and we vary
𝑚 = {−2.0, 0.0, 2.0} corresponding to the dotted, dashed and solid lines, respectively. Note that negative jumps
(dotted line,𝑚 = −2.0) raises the value of 𝑔 at all points relative to no jumps (dashed line,𝑚 = 0.0), whereas
positive jumps (solid line,𝑚 = 2.0) lowers the value of 𝑔 relative to no jumps. Right: We examine the effect of the
jump intensity 𝜆 when 𝑔 is computed using both 𝑢 = 𝑢+ and 𝑢 = 𝑢−. The jump size is fixed at𝑚 = −2.0 and we
vary 𝜆 = {1.0, 2.0, 3.0} corresponding to the dotted, dashed and solid lines, respectively. As the jump intensity
increases, so does the value of 𝑔 at all points. Had jumps been upward, we would have seen 𝑔 decreasing as the
jump intensity increased. In all four plots the time to maturity is fixed at 𝑇 = 0.25 years

4 REPLICATING EXPONENTIAL CLAIMS

Define a complex-valued self-financing portfolio with respect to a ℂ𝐽-valued semimartingale Υ to
be a ℂ𝐽-valued locally bounded predictable process Ξ such that

dΠ𝑡 =
∑
𝑗

Ξ
(𝑗)
𝑡 dΥ

(𝑗)
𝑡 where Π𝑡 ∶=

∑
𝑗

Ξ
(𝑗)
𝑡 Υ

(𝑗)
𝑡 . (29)

In particular, ifΞ(𝑗) andΥ(𝑗) are real-valued for all 𝑗, then expression (29) corresponds to the usual
notion of a self-financing portfolio. The dynamics of the real and imaginary parts of Π are given
by

d(ReΠ𝑡) =
∑
𝑗

(ReΞ
(𝑗)
𝑡− )d(ReΥ

(𝑗)
𝑡 ) −

∑
𝑗

(ImΞ
(𝑗)
𝑡− )d(ImΥ

(𝑗)
𝑡 ), (30)



Carr et al. 9

d(ImΠ𝑡) =
∑
𝑗

(ReΞ
(𝑗)
𝑡− )d(ImΥ

(𝑗)
𝑡 ) +

∑
𝑗

(ImΞ
(𝑗)
𝑡− )d(ReΥ

(𝑗)
𝑡 ). (31)

respectively. Thus, expression (29) should be seen as a concise way to state both (30) and (31).

Assumption 4.1. Throughout Section 4, the constants𝜔, 𝜂 ∈ ℂ are fixed and 𝑢 ≡ 𝑢(𝜔, 𝜂) is given
by (11).

At any time 𝑡 ≤ 𝑇, by (14), the claim on the exponential payoff e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 has value

𝔼𝑡e
𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 = 𝐴𝑡𝑄

(𝑢)
𝑡 , (32)

where we have defined

𝐴𝑡 ∶= e𝚒(𝜔−𝑢)𝑋𝑡+𝚒𝜂[𝑋]𝑡
e(𝑇−𝑡)𝜓(𝜔,𝜂)

e(𝑇−𝑡)𝜓(𝑢,0)
, 𝑄

(𝑞)
𝑡 ∶= 𝔼𝑡e

𝚒𝑞𝑋𝑇 , 𝑞 ∈ ℂ. (33)

Theorem 4.4 will show that 𝐴𝑄(𝑢) is the value process of a self-financing portfolio, which gives a
trading strategy to replicate the exponential claim because 𝐴𝑇𝑄

(𝑢)
𝑇 = e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 .

Theorem 4.4 uses Lemmas 4.2 and 4.3, presented below, and the standard notation

Δ𝐻𝑡 ∶= 𝐻𝑡 − 𝐻𝑡− = 𝐻𝑡 − lim
𝑠↗𝑡

𝐻𝑠, (34)

for the jump in𝐻 at time 𝑡, where𝐻 is any process with left limits.

Lemma 4.2. For any 𝑞 ∈ ℂ, let 𝑌(𝑞) and 𝑍(𝑞) be (the càdlàg versions of) the martingales

𝑌
(𝑞)
𝑡 ∶= 𝔼𝑡e

𝚒𝑞𝑋𝑐
𝑇 , 𝑍

(𝑞)
𝑡 ∶= 𝔼𝑡e

𝚒𝑞𝑋
𝑗
𝑇 , 0 ≤ 𝑡 ≤ 𝑇 (35)

Then, under the assumptions of Section 2, we have

Δ𝐴𝑡Δ𝑄
(𝑞)
𝑡 = Δ𝐴𝑡(𝑌

(𝑞)
𝑡− Δ𝑍

(𝑞)
𝑡 ), (36)

𝑌
(𝑞)
𝑡− Δ𝑍

(𝑞)
𝑡 = 𝑄

(𝑞)
𝑡− ∫

ℝ

(
e𝚒𝑞𝑧 − 1

)
𝑁(d𝑡, d𝑧). (37)

Proof. See Appendix A.4. □

Lemma 4.3. For any 𝑞 ∈ ℂ and 𝑡 ∈ [0, 𝑇], define

𝑅
(𝑞)
𝑡 = e−𝚒𝑞𝑋𝑡+(𝑇−𝑡)𝜓(−𝚒−𝑞,0), (38)

with 𝜓 given in (13). Then

𝑅
(𝑞)
𝑡 𝑄

(𝑞)
𝑡 = 𝑅

(−𝚒−𝑞)
𝑡 𝑄

(−𝚒−𝑞)
𝑡 , (39)
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with 𝑄(𝑞) given in (33).

Proof. See Appendix A.5. □

Theorem 4.4. Let 𝑞 ∈ ℂ. Define processes ΔΓ(𝑢) = (ΔΓ
(𝑢)
𝑡 )0≤𝑡≤𝑇 and ΔΩ(𝑞) = (ΔΩ

(𝑞)
𝑡 )0≤𝑡≤𝑇 by

ΔΓ
(𝑢)
𝑡 ∶= 𝑄

(𝑢)
𝑡− Δ𝐴𝑡 − 𝚒(𝜔 − 𝑢)

𝐴𝑡−𝑄
(𝑢)
𝑡−

𝑆𝑡−
Δ𝑆𝑡 + Δ𝐴𝑡(𝑌

(𝑢)
𝑡− Δ𝑍

(𝑢)
𝑡 ) (40)

= 𝐴𝑡−𝑄
(𝑢)
𝑡− ∫

ℝ

(
e𝚒𝜔𝑧+𝚒𝜂𝑧

2
− e𝚒𝑢𝑧 − 𝚒(𝜔 − 𝑢)(e𝑧 − 1)

)
𝑁(d𝑡, d𝑧), (41)

ΔΩ
(𝑞)
𝑡 ∶= 𝑄

(𝑞)
𝑡− Δ𝑅

(𝑞)
𝑡 + 𝚒𝑞

𝑅
(𝑞)
𝑡− 𝑄

(𝑞)
𝑡−

𝑆𝑡−
Δ𝑆𝑡 + Δ𝑅

(𝑞)
𝑡 (𝑌

(𝑞)
𝑡− Δ𝑍

(𝑞)
𝑡 ) (42)

= 𝑅
(𝑞)
𝑡− 𝑄

(𝑞)
𝑡− ∫

ℝ

(
−e𝚒𝑞𝑧 + 1 + 𝚒𝑞(e𝑧 − 1)

)
𝑁(d𝑡, d𝑧). (43)

Let (𝑞1, 𝑞2, … , 𝑞𝑚) ∈ ℂ𝑚. Suppose there exists an𝑚-dimensional predictable process𝐻 = (𝐻𝑡)0≤𝑡≤𝑇
with components𝐻(𝑗) = (𝐻

(𝑗)
𝑡 )0≤𝑡≤𝑇 satisfying

0 = ΔΓ
(𝑢)
𝑡 +

𝑚∑
𝑗=1

𝐻
(𝑗)
𝑡

(
ΔΩ

(𝑞𝑗)

𝑡 − ΔΩ
(−𝚒−𝑞𝑗)

𝑡

)
, (44)

Then

d(𝐴𝑡𝑄
(𝑢)
𝑡 ) = 𝐴𝑡−d𝑄

(𝑢)
𝑡 + 𝚒(𝜔 − 𝑢)

𝐴𝑡−𝑄
(𝑢)
𝑡−

𝑆𝑡−
d𝑆𝑡 (45)

+

𝑚∑
𝑗=1

𝐻
(𝑗)
𝑡−

⎛⎜⎜⎝𝑅
(𝑞𝑗)

𝑡− d𝑄
(𝑞𝑗)

𝑡 − 𝑅
(−𝚒−𝑞𝑗)

𝑡− d𝑄
(−𝚒−𝑞𝑗)

𝑡 + (1 − 2𝚒𝑞𝑗)
𝑅
(𝑞𝑗)

𝑡− 𝑄
(𝑞𝑗)

𝑡−

𝑆𝑡−
d𝑆𝑡

⎞⎟⎟⎠, (46)

where the processes 𝐴, 𝑄(𝑞) and 𝑅(𝑞) are as given in (33) and (38).

Proof. See Appendix A.6. □

Remark 4.5. By (46), the following self-financing portfolio replicates the exponential claim
e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 : at all times 𝑡 < 𝑇 one should

∙ hold 𝐴𝑡− European claims with payoff e𝚒𝑢𝑋𝑇 ,
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∙ hold (𝚒(𝜔 − 𝑢)𝐴𝑡−𝑄
(𝑢)
𝑡−

𝑆𝑡−
+
∑𝑚

𝑗=1
𝐻
(𝑗)
𝑡− (1 − 2𝚒𝑞𝑗)

𝑅
(𝑞𝑗)

𝑡− 𝑄
(𝑞𝑗)

𝑡−

𝑆𝑡−
) shares of 𝑆,

∙ for 𝑗 = 1, 2, … ,𝑚, hold𝐻(𝑗)
𝑡− 𝑅

(𝑞𝑗)

𝑡− European claims with payoff e𝚒𝑞𝑗𝑋𝑇 ,
∙ for 𝑗 = 1, 2, … ,𝑚, hold −𝐻(𝑗)

𝑡− 𝑅
(−𝚒−𝑞𝑗)

𝑡− European claims with payoff e𝚒(−𝚒−𝑞𝑗)𝑋𝑇 ,
∙ lend and borrow zero coupon bonds 𝐵 from the bank as needed.

This portfolio’s net position in European claims, which has value

𝐴𝑡−𝔼𝑡e
𝚒𝑢𝑋𝑇 +

𝑚∑
𝑗=1

𝐻
(𝑗)
𝑡−

(
𝑅
(𝑞𝑗)

𝑡− 𝔼𝑡e
𝚒𝑞𝑗𝑋𝑇 − 𝑅

(−𝚒−𝑞𝑗)

𝑡− 𝔼𝑡e
𝚒(−𝚒−𝑞𝑗)𝑋𝑇

)
, (47)

can be constructed from a portfolio of European calls 𝐶𝑡(𝐾) and puts 𝑃𝑡(𝐾) for 𝐾 ≥ 0, using (5).

Remark 4.6. The intuition of condition (44) is that the pricing relation𝔼𝑡e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 = 𝐴𝑡𝔼𝑡e
𝚒𝑞𝑋𝑇

is valid in the presence of jump risk; however, the naive candidate for a hedging portfolio, namely
𝐴𝑡− contracts on e𝚒𝑞𝑋𝑇 , isnot a valid replication of e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 , because this naive portfolio fails to
self-finance at jump times. So we augment the naive portfolio with “zero-cost collars”, specifically
𝐻(𝑗) units of the “collar” that combines the claims on payouts e𝚒𝑞𝑗𝑋𝑇 and e𝚒(−𝚒−𝑞𝑗)𝑋𝑇 . At jump
times these collars have a combined profit/loss which provides the needed financing to offset the
“tracking error” ΔΓ(𝑢)𝑡 of the naive hedge, if (44) holds. This leads us to ask, whether there exist
𝐻(𝑗) satisfying (44) – in otherwords, do the collars span the tracking error? The answerwill involve
(naturally, in this spanning context) a full rank condition (50) on the collars.
To be specific: in order to hedge an exponential claimwith payoff e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 , what remains is

to find a predictable process 𝐻 = (𝐻𝑡)0≤𝑡≤𝑇 with components 𝐻(𝑗) = (𝐻
(𝑗)
𝑡 )0≤𝑡≤𝑇 satisfying (44).

This is the subject of the next proposition.

Proposition 4.7. Suppose the Lévy measure 𝜈 has the form

𝜈 =

𝑛∑
𝑖=1

𝜆𝑖𝛿𝑧𝑖 , (48)

for some (𝜆1, 𝜆2, … , 𝜆𝑛) ∈ ℝ𝑛+ and some (𝑧1, 𝑧2, … , 𝑧𝑛) ∈ ℝ𝑛. Define an 𝑛 × 1 stochastic column
matrix 𝐾𝑡 = (𝐾

(𝑖)
𝑡 ) with entries

𝐾
(𝑖)
𝑡 = 𝐴𝑡−𝑄

(𝑢)
𝑡− 𝐹(𝑧𝑖), 𝐹(𝑧) ∶= e𝚒𝜔𝑧+𝚒𝜂𝑧

2
− e𝚒𝑢𝑧 − 𝚒(𝜔 − 𝑢)(e𝑧 − 1). (49)

Suppose there exists (𝑞1, 𝑞2, … , 𝑞𝑚) ∈ ℂ𝑚 with 𝑚 ≥ 𝑛 such that the 𝑛 × 𝑚 stochastic matrix 𝐿𝑡 =
(𝐿
(𝑖,𝑗)
𝑡 ), with entries

𝐿
(𝑖,𝑗)
𝑡 = 𝑅

(𝑞𝑗)

𝑡− 𝑄
(𝑞𝑗)

𝑡− 𝐺(𝑧𝑖; 𝑞𝑗), 𝐺(𝑧; 𝑞) ∶= −e𝚒𝑞𝑧 + e(1−𝚒𝑞)𝑧 − (1 − 2𝚒𝑞)(e𝑧 − 1), (50)

has rank 𝑛 for all 𝑡 ∈ [0, 𝑇). Then there exists an𝑚-dimensional predictable process𝐻 with compo-
nents𝐻(𝑗) that satisfies (44); it solves

𝐾𝑡 = 𝐿𝑡𝐻𝑡. (51)
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In particular, if𝑚 = 𝑛 then𝐻𝑡 = 𝐿−1𝑡 𝐾𝑡 .

Proof. See Appendix A.7. □

Corollary 4.8. Suppose 𝜈 = 𝜆1𝛿𝑧1 + 𝜆2𝛿𝑧2 , where 𝑧1𝑧2(𝑧1 − 𝑧2) ≠ 0. Then the exponential claim
paying e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 is replicated by the hedging strategy of Remark 4.5, with

[
𝐻
(1)
𝑡

𝐻
(2)
𝑡

]
=

[
𝑅
(𝑞1)
𝑡− 𝑄

(𝑞1)
𝑡− 𝐺(𝑧1; 𝑞1) 𝑅

(𝑞2)
𝑡− 𝑄

(𝑞2)
𝑡− 𝐺(𝑧1; 𝑞2)

𝑅
(𝑞1)
𝑡− 𝑄

(𝑞1)
𝑡− 𝐺(𝑧2; 𝑞1) 𝑅

(𝑞2)
𝑡− 𝑄

(𝑞2)
𝑡− 𝐺(𝑧2; 𝑞2)

]−1[
𝐴𝑡−𝑄

(𝑢)
𝑡− 𝐹(𝑧1)

𝐴𝑡−𝑄
(𝑢)
𝑡− 𝐹(𝑧2)

]
. (52)

where, given (𝑧1, 𝑧2), the (𝑞1, 𝑞2) are chosen such that for all 𝑡 the inverse exists. The existence of such
(𝑞1, 𝑞2) is a conclusion of this Corollary, not an assumption.

Proof. See Appendix A.8. □

5 PRICING OTHER PAYOFFS

This section applies the results of Section 3 to price some contracts with payoffs 𝜑(𝑋𝑇, [𝑋]𝑇) that
are not of the power-exponential form. Generally speaking, our results shall take the form

𝔼𝜑(𝑋𝑇, [𝑋]𝑇) = 𝔼𝑔(𝑋𝑇), 𝑋0 = 0, (53)

where 𝔼𝑔(𝑋𝑇) can be computed relative to traded European calls/puts via (5). Note, by the spatial
homogenity of the 𝑋 process, there is no loss in generality in assuming 𝑋0 = 0.

5.1 Fractional powers and ratios

Proposition 5.1 (Fractional powers of quadratic variation). Consider a fractional power claim,
whose payoff function is of the form

𝜑(𝑥, 𝑣) = 𝑣𝑟, 0 < 𝑟 < 1. (54)

Then

𝑔(𝑥) ∶=
𝑟

Γ(1 − 𝑟) ∫
∞

0

1

𝑧𝑟+1

(
e𝚒𝑢(0,0)𝑥 −

e𝑇𝜓(0,𝚒𝑧)

e𝑇𝜓(𝑢(0,𝚒𝑧),0)
e𝚒𝑢(0,𝚒𝑧)𝑥

)
d𝑧. (55)

satisfies (53) and hence prices the fractional power claim.

Proof. See Appendix A.9. □

Example 5.2 (Volatility Swap). Consider the floating leg of a (continuously monitored) volatility
swap, which pays

√
[𝑋]𝑇 to the long side at time 𝑇. The payoff function 𝜑(𝑥, 𝑣) =

√
𝑣 can be

obtained as a special case of (54) by setting 𝑟 = 1∕2. In Figure 2 we plot 𝑔(log 𝑆𝑇) as a function of
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F IGURE 2 We consider a Dirac Lévy measure 𝜈(d𝑧) = 𝜆𝛿𝑚(𝑧)d𝑧, a volatility swap payoff
√
[𝑋]𝑇 and plot

the function 𝑔(log 𝑆𝑇) the prices the volatility swap as a function of 𝑆𝑇 . Left: We examine the effect of the jump
size𝑚 both for 𝑢 = 𝑢+ and for 𝑢−. The jump intensity is fixed at 𝜆 = 1.0 and we vary𝑚 = {−1.25, 0.00, 1.25}

corresponding to the dotted, dashed and solid lines, respectively. Right: We examine the effect of the jump
intensity 𝜆 both for 𝑢 = 𝑢+ and for 𝑢 = 𝑢−. The jump size is fixed at𝑚 = −1.25 and vary 𝜆 = {1.00, 2.00, 3.00}

corresponding to the dotted, dashed and solid lines, respectively. In all four plots the time to maturity is fixed at
𝑇 = 0.25 years

𝑆𝑇 for various jump distributions and intensities, where 𝑔 is given by (55).

Proposition 5.3 (Ratio claims (I)). Consider a ratio claim, whose payoff function has the form

𝜑(𝑥, 𝑣) =
𝑥e𝚒𝑝𝑥

(𝑣 + 𝜀)𝑟
, where 𝑝 ∈ ℂ, 𝑟 ∈ (0, 1), and 𝜀 > 0. (56)

Then

𝑔(𝑥) ∶=
1

𝑟Γ(𝑟) ∫
∞

0

(−𝚒𝜕𝑝)
e𝑇𝜓(𝑝,𝚒𝑧

1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑥−𝑧1∕𝑟𝜀 d𝑧. (57)

satisfies (53) and hence prices the ratio claim.

Proof. See Appendix A.10. □

Example 5.4 (Realized Sharpe ratio). The Sharpe ratio was introduced in Sharpe (1966) as a
simple way to measure the performance of an investment while adjusting for its risk. Define the
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F IGURE 3 We consider a Dirac Lévy measure 𝜈(d𝑧) = 𝜆𝛿𝑚(𝑧)d𝑧, an approximate realized Sharpe ratio
payoff 𝑋𝑇∕

√
[𝑋]𝑇 + 𝜀 and plot the function 𝑔(log 𝑆𝑇) that prices this claim as a function of 𝑆𝑇 . In all four plots the

time to maturity is fixed at 𝑇 = 0.25 years. The parameter 𝜀 = 0.001 is fixed and we compute 𝑔 using 𝑢 = 𝑢+

realized Sharpe ratio

Λ𝑇 ∶=
𝑋𝑇 − 𝑋0√
[𝑋]𝑇 − [𝑋]0

. (58)

Consider a claim that pays the realized Sharpe ratio. With 𝑋0 = [𝑋]0 = 0 we have 𝜑(𝑋𝑇, [𝑋]𝑇) =
𝑋𝑇∕

√
[𝑋]𝑇 . The payoff function 𝜑(𝑥, 𝑣) = 𝑥∕

√
𝑣 can be approximated with arbitrary accuracy

by setting 𝑟 = 1∕2 in Proposition 5.3 and choosing 𝜀 small enough. Figure 3 plots 𝑔(log 𝑆𝑇) as a
function of 𝑆𝑇, where 𝑔 is given by (57).

Proposition 5.5 (Ratio claims (II)). Consider a ratio claim whose payoff function has the form

𝜑(𝑥, 𝑣) =
e𝚒𝑝𝑥

(𝑣 + 𝜀)𝑟
, 𝑟, 𝜀>0, 𝑝 ∈ ℂ. (59)

Then

𝑔(𝑥) ∶=
1

𝑟Γ(𝑟) ∫
∞

0

e𝑇𝜓(𝑝,𝚒𝑧
1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑥−𝑧1∕𝑟𝜀d𝑧 (60)

satisfies (53) and hence prices the ratio claim.

Proof. See Appensix A.11. □
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Remark 5.6. Throughout this section we have used the fact that a large class of payoffs of the form
𝜑(𝑋𝑇, [𝑋]𝑇) can be written as derivatives, sums and/or integrals of exponential basis functions
e𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 . By linearity, one can in principle combine the replication strategies developed in
Section 4 in order to replicate a further expanded class of payoffs of the form 𝜑(𝑋𝑇, [𝑋]𝑇).

5.2 Options on levered exchange traded funds

A growing class of exchange-traded funds (ETFs) are the leveraged exchanged traded funds
(LETFs). In an ideal setting (i.e., no management fees), the relationship between an LETF 𝐿 =
(𝐿𝑡)0≤𝑡≤𝑇 and the underlying ETF 𝑆 = (𝑆𝑡)0≤𝑡≤𝑇 is

d𝐿𝑡
𝐿𝑡−

= 𝛽
d𝑆𝑡
𝑆𝑡−

, (61)

where 𝛽 is a fixed constant known as the leverage ratio. Typical values of 𝛽 are {−3, −2, −1, 2, 3}.
As Avellaneda and Zhang (2010) point out, the value of 𝐿𝑇 depends on the entire path of 𝑆 over the
interval [0, 𝑇]. This is most readily seen by looking at (𝑌𝑡)0≤𝑡≤𝑇, the log LETF process:𝑌𝑡 = log 𝐿𝑡.
With the dynamics of 𝑋 = log 𝑆 given by (3), a simple application of the Itô formula yields

d𝑌𝑡 = d𝑌𝑐𝑡 + d𝑌
𝑗
𝑡 , (62)

d𝑌𝑐𝑡 = 𝛽d𝑋𝑐𝑡 +
1

2
𝛽(1 − 𝛽)d[𝑋𝑐]𝑡, (63)

d𝑌
𝑗
𝑡 = −∫

ℝ

(𝛽(e𝑧 − 1) − log (𝛽(e𝑧 − 1) + 1))𝜈(d𝑧)d𝑡 + ∫
ℝ

log (𝛽(e𝑧 − 1) + 1)𝑁̃(d𝑡, d𝑧), (64)

where we assume that the constant 𝑐 appearing in (2) satisfies

𝛽(e𝑧 − 1) + 1>0, ∀ 𝑧 ∈ [−𝑐, 𝑐], (65)

which guarantees that, when the ETF 𝑆 jumps, the LETF 𝐿 jumps to a strictly positive value.
Observe that d𝑌𝑡 depends not only on d𝑋𝑐𝑡 but also on d[𝑋

𝑐]𝑡 and on a nontrivial integral with
respect to the Poisson randommeasure 𝑁̃(d𝑡, d𝑧). Because of the intricate path-dependent behav-
ior, there has been significant interest in relating option prices/implied volatilities on 𝑋 to option
prices/implied volatilities written on 𝑌; see, for example, Ahn et al. (2013); Leung and Sircar
(2015); Leung et al. (2016); Lee and Wang (2015). Although 𝑌𝑇 cannot be written as a function of
𝑋𝑇 and [𝑋]𝑇 only, our framework allows us to value a claim written on 𝑌𝑇 (which can be viewed
as a claim on the path of 𝑋) relative to a European (i.e., path-independent) claim written on 𝑋𝑇 .
The following proposition relates the characteristic function of (𝑌𝑇 − 𝑌𝑡), conditional on ℱ𝑡,

to the characteristic function of (𝑋𝑇 − 𝑋𝑡), also conditional onℱ𝑡.
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Proposition 5.7. Let𝑋 and 𝑌 have dynamics given by (3) and (62), respectively. Define 𝜒 ∶ ℂ → ℂ

by

𝜒(𝑞) ∶= ∫
ℝ

(
(𝛽(e𝑧 − 1) + 1)

𝚒𝑞
− 1 − 𝚒𝑞𝛽(e𝑧 − 1)

)
𝜈(d𝑧). (66)

Then the characteristic function of (𝑌𝑇 − 𝑌𝑡), conditional onℱ𝑡 , is given by

𝔼𝑡e
𝚒𝑞(𝑌𝑇−𝑌𝑡) =

e(𝑇−𝑡)𝜒(𝑞)

e
(𝑇−𝑡)𝜓(𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽)),0)

𝔼𝑡e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑋𝑇−𝑋𝑡)

, (67)

where 𝑢 and 𝜓 are given by (11) and (13), respectively.

Proof. See Appendix A.12. □

Using Proposition 5.7, we can relate the value of a claimwritten on𝑌 to the value of a European
claim written on 𝑋.

Theorem 5.8. Let 𝜑 be the generalized (one-dimensional) Fourier transform of 𝜑 ∶ ℝ → ℝ. We
have

𝜑(𝑞) =
1

2𝜋 ∫
ℝ

e−𝚒𝑞𝑥𝜑(𝑥)d𝑥, 𝑞 ∈ ℂ. (68)

Define 𝑞𝑟 ∶= Re 𝑞 and 𝑞𝑖 ∶= Im𝑞. Assume the inverse Fourier transform of 𝜑 is 𝜑

𝜑(𝑥) = ∫
ℝ

e𝚒𝑞𝑥𝜑(𝑞)d𝑞𝑟. (69)

Assume further that 𝜑(⋅ + 𝚒𝑞𝑖) has no singularities and satisfies

|𝜑(𝑞)| = 𝒪(|𝑞𝑟|−1−𝜀) as |𝑞𝑟|→∞, (70)

for some 𝜀 > 0. Then, with 𝑋 and 𝑌 given by (3) and (62), respectively, we have

𝔼𝑡𝜑(𝑌𝑇) = 𝔼𝑡𝑔(𝑋𝑇; 𝑋𝑡, 𝑌𝑡), (71)

𝑔(𝑥; 𝑋𝑡, 𝑌𝑡) = ∫
ℝ

𝜑(𝑞)
e𝚒𝑞𝑌𝑡+(𝑇−𝑡)𝜒(𝑞)

e
(𝑇−𝑡)𝜓(𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽)),0)

e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑥−𝑋𝑡)

d𝑞𝑟, (72)

where 𝑢, 𝜓 and 𝜒 are given by (11), (13) and (66), respectively.

Proof. See Appendix A.13. □
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F IGURE 4 We consider a Dirac Lévy measure 𝜈(d𝑧) = 𝜆𝛿𝑚(𝑧)d𝑧, an approximate realized Sharpe ratio
payoff 𝑋𝑇∕

√
[𝑋]𝑇 + 𝜀 and plot the function 𝑔(log 𝑆𝑇) that prices this claim as a function of 𝑆𝑇 . In all four plots the

time to maturity is fixed at 𝑇 = 0.25 years. The parameter 𝜀 = 0.001 is fixed and we compute 𝑔 using 𝑢 = 𝑢−

Example 5.9 (LETFCall option). Consider a call optionwritten on the LETF. The payoff function
𝜑(𝑦) ∶= (e𝑦 − e𝑘)+ has a generalized Fourier transform

𝜑(𝑞) =
−e𝑘−𝚒𝑘𝑞

2𝜋(𝑞2 + 𝚒𝑞)
, 𝑞𝑖 ∶= Im𝑞< − 1. (73)

Observe that |𝜑(𝑞)| = 𝒪(|𝑞𝑟|−2) as |𝑞𝑟|→∞, where 𝑞𝑟 ∶= Re 𝑞. Moreover, with 𝑞𝑖 < −1 fixed, the
function 𝜑(⋅ + 𝚒𝑞𝑖) ∶ ℝ → ℂ has no singularities. Thus, 𝜑 satisfies the conditions of Theorem 5.8.
In Figure 6we plot the function 𝑔(log 𝑆𝑇; 𝑋𝑡, 𝑌𝑡)with 𝑔 given by (72) as a function of 𝑆𝑇 for various
leverage ratios 𝛽 and for both 𝑢 = 𝑢+ and 𝑢 = 𝑢−.

6 CONCLUSION

In this paper we consider a variety of claims written on the log price 𝑋 and quadratic variation
[𝑋] of a risky asset 𝑆 = e𝑋 . The asset 𝑆 is modeled as a positive semimartingale with finite activ-
ity jumps and independent unspecified (possibly non-Markovian) volatility. In this setting, we
show how to price various path-dependent claims relative to path-independent calls and puts
on 𝑆. We also show how some of these path-dependent claims can be replicated by trading the
underlying 𝑆, a bond 𝐵, and calls and puts on 𝑆. A number of examples are provided in which we
explicitly compute a payoff function 𝑔 of a European claim whose value equals the value of the
path-dependent claim.
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F IGURE 5 We consider a Lévy measure that is identically zero 𝜈 ≡ 0, an approximate realized Sharpe ratio
payoff 𝑋𝑇∕

√
[𝑋]𝑇 + 𝜀 and plot the function 𝑔(log 𝑆𝑇) that prices this claim as a function of 𝑆𝑇 . In both plots the

time to maturity is fixed at 𝑇 = 0.25 years. The parameter 𝜀 = 0.001 is fixed

F IGURE 6 Consider a call option written on an LETF 𝐿 = e𝑌 . In Theorem 5.8, we provide an expression
(72) for a function 𝑔 that satisfies 𝔼𝑡(𝐿𝑇 − e𝑘)+ = 𝔼𝑡𝑔 log 𝑆𝑇; 𝑋𝑡, 𝑌𝑡), where 𝑆 = e𝑋 is the underlying ETF. In the
plots above, we consider a Dirac Lévy measure 𝜈(d𝑧) = 𝜆𝛿𝑚(𝑧)d𝑧, and plot 𝑔0(log 𝑆𝑇; 𝑋𝑡, 𝑌𝑡) as a function of 𝑆𝑇 .
Left: For both 𝑢 = 𝑢+ and 𝑢 = 𝑢−, we consider positive leverage ratios 𝛽 = {1, 2, 3}, corresponding to the solid,
dashed, and dotted lines, respectively. Right: For both 𝑢 = 𝑢+ and 𝑢 = 𝑢−, we consider negative leverage ratios
𝛽 = {−1,−2, −3}, corresponding to the solid, dashed, and dotted lines, respectively. In all four plots the following
parameters are fixed 𝑇 = 0.25 years, 𝑋0 = 0, 𝑌0 = 0,𝑚 = −0.4, 𝜆 = 2.0 and 𝑘 = 0. With𝑚 as given, inequality
(65) is satisfied for all six values of 𝛽. Note that when 𝛽 = 1, we have 𝐿 = 𝑆. Not surprisingly, when 𝑢 = 𝑢−, it
appears that 𝑔(log 𝑆𝑇; 𝑋𝑡, 𝑌𝑡) = (𝑆𝑇 − e

𝑘)+ (solid line in the lower left plot)
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APPENDIX A
A.1 Proof of lemma 3.2
Recall the characteristic function of a normal random variable

𝔼e𝚒𝜔𝑍 = e
𝚒𝑚𝜔−

1

2
𝑎2𝜔2

, 𝑍 ∼ 𝒩(𝑚, 𝑎2). (A.1)

Letℱ𝜎
𝑇 denote the sigma-algebra generated by (𝜎𝑡)0≤𝑡≤𝑇 . Then ([𝑋𝑐]𝑇 − [𝑋𝑐]𝑡) ∈ ℱ𝜎

𝑇 and

𝑋𝑐𝑇 − 𝑋
𝑐
𝑡 |ℱ𝜎

𝑇 ∼ 𝒩(𝑚, 𝑎2), 𝑚 = −
1

2
([𝑋𝑐]𝑇 − [𝑋

𝑐]𝑡), 𝑎2 = [𝑋𝑐]𝑇 − [𝑋
𝑐]𝑡. (A.2)

Using (A.1) and (A.2),

𝔼𝑡e
𝚒𝜔(𝑋𝑐

𝑇
−𝑋𝑐𝑡 )+𝚒𝜂([𝑋

𝑐]𝑇−[𝑋
𝑐]𝑡) = 𝔼𝑡e

𝚒𝜂([𝑋𝑐]𝑇−[𝑋
𝑐]𝑡)𝔼𝑡[e

𝚒𝜔(𝑋𝑐
𝑇
−𝑋𝑐𝑡 )|ℱ𝜎

𝑇]

= 𝔼𝑡𝔼𝑡[e
(𝚒𝜂−(𝜔2+𝚒𝜔)∕2)([𝑋𝑐]𝑇−[𝑋

𝑐]𝑡)|ℱ𝜎
𝑇] (by (A.1) and (A.2))

= 𝔼𝑡𝔼𝑡[e
(−(𝑢2(𝜔,𝜂)+𝚒𝑢(𝜔,𝜂))∕2)([𝑋𝑐]𝑇−[𝑋

𝑐]𝑡)|ℱ𝜎
𝑇] (by (11))

= 𝔼𝑡𝔼𝑡[e
𝚒𝑢(𝜔,𝜂)(𝑋𝑐

𝑇
−𝑋𝑐𝑡 )|ℱ𝜎

𝑇] (by (A.1) and (A.2))

= 𝔼𝑡e
𝚒𝑢(𝜔,𝜂)(𝑋𝑐

𝑇
−𝑋𝑐𝑡 ),

which establishes (12).

A.2 Proof of Proposition 3.3
Because 𝑋𝑐 is 𝔾-adapted and 𝑋𝑗 is ℍ-adapted and 𝔽 = 𝔾 ∨ ℍ where 𝔾 and ℍ are independent,

𝔼𝑡e
𝚒𝑢(𝜔,𝜂)(𝑋𝑇−𝑋𝑡) = 𝔼𝑡e

𝚒𝑢(𝜔,𝜂)(𝑋𝑐
𝑇
−𝑋𝑐𝑡 )𝔼𝑡e

𝚒𝑢(𝜔,𝜂)(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡 )

= 𝔼𝑡e
𝚒𝜔(𝑋𝑐

𝑇
−𝑋𝑐𝑡 )+𝚒𝜂([𝑋

𝑐]𝑇−[𝑋
𝑐]𝑡)𝔼𝑡e

𝚒𝑢(𝜔,𝜂)(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡 ), (A.3)

where the second equality uses (12). Similarly,

𝔼𝑡e
𝚒𝜔(𝑋𝑇−𝑋𝑡)+𝚒𝜂([𝑋]𝑇−[𝑋]𝑡) = 𝔼𝑡e

𝚒𝜔(𝑋𝑐
𝑇
−𝑋𝑐𝑡 )+𝚒𝜂([𝑋

𝑐]𝑇−[𝑋
𝑐]𝑡)𝔼𝑡e

𝚒𝜔(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡 )+𝚒𝜂([𝑋

𝑗]𝑇−[𝑋
𝑗]𝑡)

= 𝔼𝑡e
𝚒𝑢(𝜔,𝜂)(𝑋𝑇−𝑋𝑡)

𝔼𝑡e
𝚒𝜔(𝑋

𝑗
𝑇
−𝑋

𝑗
𝑡 )+𝚒𝜂([𝑋

𝑗]𝑇−[𝑋
𝑗]𝑡)

𝔼𝑡e
𝚒𝑢(𝜔,𝜂)(𝑋

𝑗
𝑇
−𝑋

𝑗
𝑡 )

.

= 𝔼𝑡e
𝚒𝑢(𝜔,𝜂)(𝑋𝑇−𝑋𝑡)

e(𝑇−𝑡)𝜓(𝜔,𝜂)

e(𝑇−𝑡)𝜓(𝑢(𝜔,𝜂),0)
. (A.4)

by (A.3) and applying the Lévy–Khintchine formula to the two-dimensional Lévy process
(𝑋𝑗, [𝑋𝑗]), whose characteristic exponent 𝜓, given by (13), is well-defined for all (𝜔, 𝜂) ∈ ℂ2 due
to (2). Rearranging (A.4) produces (14).
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A.3 Proof of Corollary 3.4
By Proposition 3.3,

𝔼𝑡𝑋
𝑛
𝑇[𝑋]

𝑚
𝑇 e

𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇 = (−𝚒𝜕𝜔)
𝑛(−𝚒𝜕𝜂)

𝑚𝔼𝑡e
𝚒𝜔𝑋𝑇+𝚒𝜂[𝑋]𝑇

= (−𝚒𝜕𝜔)
𝑛(−𝚒𝜕𝜂)

𝑚 e
(𝑇−𝑡)𝜓(𝜔,𝜂)+𝚒(𝜔−𝑢(𝜔,𝜂))𝑋𝑡+𝚒𝜂[𝑋]𝑡

e(𝑇−𝑡)𝜓(𝑢(𝜔,𝜂),0)
𝔼𝑡e

𝚒𝑢(𝜔,𝜂)𝑋𝑇

= R.H.S. of (16),

where the interchanges of differentiation and expectation in the first and last equalities are justi-
fied since, for any 𝑛,𝑚 ∈ {0} ∪ ℕ and 𝜔, 𝜂 ∈ ℂ, there exists a constant 𝑐1 > 0 such that

|||𝜕𝑛𝜔𝜕𝑚𝜂 e𝚒𝜔𝑥+𝚒𝜂𝑣||| < 𝑐1e
𝑐1(|𝑥|+|𝑣|), 𝔼0𝑐1e

𝑐1(|𝑋𝑇|+[𝑋]𝑇) < ∞,

where the finiteness of the expectation follows from (2).

A.4 Proof of Lemma 4.2
By independence of 𝔾 and ℍ,

𝑄
(𝑞)
𝑡 = 𝑌

(𝑞)
𝑡 𝑍

(𝑞)
𝑡 .

By iterated expectations and the countability of 𝒥 ∶= {𝑡 ∶ Δ𝑌
(𝑞)
𝑡 ≠ 0},

ℙ(𝑁 and 𝑌(𝑞) have a common jump time) = 𝔼
∑
𝑡∈𝒥

ℙ(Δ𝑁𝑡 ≠ 0 | 𝑌(𝑞)) = 0,

where the last step is because 𝑁 is still Poisson given 𝑌(𝑞), by independence. Moreover, all jump
times of𝐴 are jump times of𝑁, hence jump times of𝐴 are not jump times of𝑌(𝑞), and (36) follows.
Next, we have

Δ𝑍
(𝑞)
𝑡 = 𝑍

(𝑞)
𝑡 − 𝑍

(𝑞)
𝑡−

= e𝚒𝑞𝑋
𝑗
𝑡 𝔼𝑡e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡 ) − e𝚒𝑞𝑋

𝑗
𝑡−𝔼𝑡−e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡−)

= e𝚒𝑞(𝑋
𝑗
𝑡−+Δ𝑋

𝑗
𝑡 )𝔼𝑡e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡 ) − e𝚒𝑞𝑋𝑡−𝔼𝑡−e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡−)

= e𝚒𝑞(𝑋
𝑗
𝑡−+Δ𝑋

𝑗
𝑡 )𝔼𝑡−e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡−) − e𝚒𝑞𝑋

𝑗
𝑡−𝔼𝑡−e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡−)

= e𝚒𝑞Δ𝑋
𝑗
𝑡 𝔼𝑡−e

𝚒𝑞𝑋
𝑗
𝑇 − 𝔼𝑡−e

𝚒𝑞𝑋
𝑗
𝑇

= (e𝚒𝑞Δ𝑋
𝑗
𝑡 − 1)𝔼𝑡−e

𝚒𝑞𝑋
𝑗
𝑇

= 𝑍
(𝑞)
𝑡− ∫

ℝ

(e𝚒𝑞𝑧 − 1)𝑁(d𝑡, d𝑧).

Multiplying by 𝑌(𝑞)𝑡− produces (37).
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A.5 Proof of Lemma 4.3
By independence of 𝔾 and ℍ, we have

𝔼𝑡e
𝚒𝑞(𝑋𝑇−𝑋𝑡) = 𝔼𝑡e

𝚒𝑞(𝑋𝑐
𝑇
−𝑋𝑐𝑡 )𝔼𝑡e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡 )

= 𝔼𝑡𝔼𝑡[e
𝚒𝑞(𝑋𝑐

𝑇
−𝑋𝑐𝑡 )|ℱ𝜎

𝑇]𝔼𝑡e
𝚒𝑞(𝑋

𝑗
𝑇
−𝑋

𝑗
𝑡 )

= 𝔼𝑡e

1

2
(−𝑞2−𝚒𝑞)([𝑋𝑐]𝑇−[𝑋

𝑐]𝑡)
𝔼𝑡e

𝚒𝑞(𝑋
𝑗
𝑇
−𝑋

𝑗
𝑡 ), (A.5)

where the third equality uses (A.1) and (A.2). Next, noting that with ℎ(𝑞) ∶= 𝑞2 + 𝚒𝑞 we have
ℎ(𝑞) = ℎ(−𝚒 − 𝑞), it follows from (A.5) that

𝔼𝑡e
𝚒𝑞(𝑋𝑇−𝑋𝑡)

𝔼𝑡e
𝚒𝑞(𝑋

𝑗
𝑇
−𝑋

𝑗
𝑡 )
=
𝔼𝑡e

𝚒(−𝚒−𝑞)(𝑋𝑇−𝑋𝑡)

𝔼𝑡e
𝚒(−𝚒−𝑞)(𝑋

𝑗
𝑇
−𝑋

𝑗
𝑡 )

(A.6)

(unless either denominator is zero, but in that case, (39) holds because 𝑄(𝑞)𝑡 = 𝑄
(−𝚒−𝑞)
𝑡 = 0).

Expression (39) follows from (A.4) and (A.6).

A.6 Proof of Theorem 4.4
We compute

d𝐴𝑡 = (…)d𝑡 + 𝚒(𝜔 − 𝑢)
𝐴𝑡−
𝑆𝑡−

d𝑆𝑡 + Δ𝐴𝑡 − 𝚒(𝜔 − 𝑢)
𝐴𝑡−
𝑆𝑡−

Δ𝑆𝑡, (A.7)

Δ𝐴𝑡 = 𝐴𝑡− ∫
ℝ

(
e𝚒(𝜔−𝑢)𝑧+𝚒𝜂𝑧

2
− 1

)
𝑁(d𝑡, d𝑧), (A.8)

Δ𝑆𝑡 = 𝑆𝑡− ∫
ℝ

(e𝑧 − 1)𝑁(d𝑡, d𝑧), (A.9)

where, as we shall see, the (…)d𝑡 terms will play no role. Next, we have from Lemma 4.2 that

d[𝐴,𝑄(𝑢)]𝑡 = (…)d𝑡 + Δ𝐴𝑡Δ𝑄
(𝑢)
𝑡 = (…)d𝑡 + Δ𝐴𝑡(𝑌

(𝑢)
𝑡− Δ𝑍

(𝑢)
𝑡 ). (A.10)

Now, using (36), (A.7), (A.8), (A.9) and (A.10), we have

d(𝐴𝑡𝑄
(𝑢)
𝑡 ) = 𝐴𝑡−d𝑄

(𝑢)
𝑡 + 𝑄

(𝑢)
𝑡− d𝐴𝑡 + d[𝐴,𝑄

(𝑢)]𝑡

= (…)d𝑡 + 𝐴𝑡−d𝑄
(𝑢)
𝑡 + 𝚒(𝜔 − 𝑢)

𝐴𝑡−𝑄
(𝑢)
𝑡−

𝑆𝑡−
d𝑆𝑡 + ΔΓ

(𝑢)
𝑡 , (A.11)
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where ΔΓ(𝑢)𝑡 is defined in (41). Likewise,

d𝑅
(𝑞)
𝑡 = (…)d𝑡 − 𝚒𝑞

𝑅
(𝑞)
𝑡−

𝑆𝑡−
d𝑆𝑡 + Δ𝑅

(𝑞)
𝑡 + 𝚒𝑞

𝑅
(𝑞)
𝑡−

𝑆𝑡−
Δ𝑆𝑡,

Δ𝑅
(𝑞)
𝑡 = 𝑅

(𝑞)
𝑡− ∫

ℝ

(
e−𝚒𝑞𝑧 − 1

)
𝑁(d𝑡, d𝑧),

from which

d(𝑅
(𝑞)
𝑡 𝑄

(𝑞)
𝑡 ) = (…)d𝑡 + 𝑅

(𝑞)
𝑡− d𝑄

(𝑞)
𝑡 − 𝚒𝑞

𝑅
(𝑞)
𝑡− 𝑄

(𝑞)
𝑡−

𝑆𝑡−
d𝑆𝑡 + ΔΩ

(𝑞)
𝑡 , (A.12)

where ΔΩ(𝑞)𝑡 is defined in (43). Note that we have used Δ𝑅(𝑞)𝑡 Δ𝑄
(𝑞)
𝑡 = Δ𝑅

(𝑞)
𝑡 (𝑌

(𝑞)
𝑡− Δ𝑍

(𝑞)
𝑡 ), which

follows by replacing 𝐴 with 𝑅(𝑞) in Lemma 4.2 and its proof. Next, from (39) and (A.12) we have

0 = d(𝑅
(𝑞)
𝑡 𝑄

(𝑞)
𝑡 ) − d(𝑅

(−𝚒−𝑞)
𝑡 𝑄

(−𝚒−𝑞)
𝑡 )

= (…)d𝑡 + 𝑅
(𝑞)
𝑡− d𝑄

(𝑞)
𝑡 − 𝑅

(−𝚒−𝑞)
𝑡− d𝑄

(−𝚒−𝑞)
𝑡 + (1 − 2𝚒𝑞)

𝑅
(𝑞)
𝑡− 𝑄

(𝑞)
𝑡−

𝑆𝑡−
d𝑆𝑡 + ΔΩ

(𝑞)
𝑡 − ΔΩ

(−𝚒−𝑞)
𝑡 . (A.13)

Finally, combining (44), (A.11) and (A.13),

d(𝐴𝑡𝑄
(𝑢)
𝑡 ) = 𝐴𝑡−d𝑄

(𝑢)
𝑡 + 𝚒(𝜔 − 𝑢)

𝐴𝑡−𝑄
(𝑢)
𝑡−

𝑆𝑡−
d𝑆𝑡

+

𝑚∑
𝑗=1

𝐻
(𝑗)
𝑡−

⎛⎜⎜⎝𝑅
(𝑞𝑗)

𝑡− d𝑄
(𝑞𝑗)

𝑡 − 𝑅
(−𝚒−𝑞𝑗)

𝑡− d𝑄
(−𝚒−𝑞𝑗)

𝑡 + (1 − 2𝚒𝑞𝑗)
𝑅
(𝑞𝑗)

𝑡− 𝑄
(𝑞𝑗)

𝑡−

𝑆𝑡−
d𝑆𝑡

⎞⎟⎟⎠,
where the (…)d𝑡 terms must vanish since the processes 𝐴𝑄(𝑢), 𝑆 and 𝑄(𝑞) are martingales.

A.7 Proof of Proposition 4.7
From (41) and (43) we observe that

ΔΓ𝑡 = 𝐴𝑡−𝑄
(𝑢)
𝑡− ∫

ℝ

𝐹(𝑧)𝑁(d𝑡, d𝑧),

ΔΩ
(𝑞)
𝑡 − ΔΩ

(−𝚒−𝑞)
𝑡 = 𝑅

(𝑞)
𝑡− 𝑄

(𝑞)
𝑡− ∫

ℝ

𝐺(𝑧; 𝑞)𝑁(d𝑡, d𝑧).

From (48), we see that𝑁(d𝑡,ℝ) ∈ {0} ∪ {𝑧1, 𝑧2, … 𝑧𝑛}. Thus, in order for (44) to hold, wemust have

𝐴𝑡−𝑄
(𝑢)
𝑡− 𝐹(𝑧𝑖) =

𝑚∑
𝑗=1

𝐻
(𝑗)
𝑡 𝑅

(𝑞𝑗)

𝑡− 𝑄
(𝑞𝑗)

𝑡− 𝐺(𝑧𝑖; 𝑞𝑗), 𝑖 = 1, 2, … , 𝑛. (A.14)

From (49) and (50), we see that (A.14) is given in matrix notation by (51).
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A.8 Proof of Corollary 4.8
Let 𝚒ℝ ⊂ ℂ denote the imaginary axis. By Proposition 4.7, given 𝑧1, 𝑧2, we need only verify the
existence of 𝑞1, 𝑞2. It suffices to choose 𝑞1 ∈ 𝚒ℝ ⧵ {0, −𝚒∕2, −𝚒} arbitrarily, and to choose 𝑞2 ∈ 𝚒ℝ

such that𝐷(𝑞2) ≠ 0where𝐷(𝑞) ∶= 𝐺(𝑧1; 𝑞1)𝐺(𝑧2; 𝑞) − 𝐺(𝑧1; 𝑞)𝐺(𝑧2; 𝑞1); the existence of such 𝑞2
is clear because |𝐷(𝑞)|→∞ as 𝑞 → ±𝚒∞. Moreover, for 𝑞1, 𝑞2 ∈ 𝚒ℝ, the 𝑅𝑄 factors in (52) never
vanish, hence the invertibility condition holds.

A.9 Proof of Proposition 5.1
We have from (Schürger, 2002, equation (1.2.3)) that

𝑣𝑟 =
𝑟

Γ(1 − 𝑟) ∫
∞

0

1

𝑧𝑟+1
(1 − e−𝑧𝑣)d𝑧, 0 < 𝑟 < 1. (A.15)

Thus

𝔼[𝑋]𝑟𝑇 =
𝑟

Γ(1 − 𝑟) ∫
∞

0

1

𝑧𝑟+1
𝔼
(
1 − e−𝑧[𝑋]𝑇

)
d𝑧 (by (A.15) and Tonelli)

=
𝑟

Γ(1 − 𝑟) ∫
∞

0

1

𝑧𝑟+1
𝔼

(
e𝚒𝑢(0,0)𝑋𝑇 −

e𝑇𝜓(0,𝚒𝑧)

e𝑇𝜓(𝑢(0,𝚒𝑧),0)
e𝚒𝑢(0,𝚒𝑧)𝑋𝑇

)
d𝑧 (by (14))

=
𝑟

Γ(1 − 𝑟)
𝔼∫

∞

0

1

𝑧𝑟+1

(
e𝚒𝑢(0,0)𝑋𝑇 −

e𝑇𝜓(0,𝚒𝑧)

e𝑇𝜓(𝑢(0,𝚒𝑧),0)
e𝚒𝑢(0,𝚒𝑧)𝑋𝑇

)
d𝑧 (by Fubini)

= 𝔼𝑔(𝑋𝑇), (by (55))

where the use of Fubini is justified as follows. Define

𝑍(𝜂) ∶= 𝑇(𝜓(0, 𝚒𝜂) − 𝜓(𝑢(0, 𝚒𝜂), 0)) + 𝚒𝑢(0, 𝚒𝜂)𝑋𝑇. (A.16)

Consider the case 𝑢 = 𝑢+; the case 𝑢 = 𝑢− is analogous. Using 𝑢+(0, 0) = 0 and (A.16),

𝔼
|||e𝚒𝑢(0,0)𝑋𝑇 − e𝑇𝜓(0,𝚒𝜂)

e𝑇𝜓(𝑢(0,𝚒𝜂),0)
e𝚒𝑢(0,𝚒𝜂)𝑋𝑇

||| = 𝔼
|||1 − e𝑍(𝜂)|||. (A.17)

Observe that

(
𝔼||1 − e𝑍(𝜂)||)2 ≤ 𝔼

|||1 − e𝑍(𝜂)|||2 = 𝔼
(
1 + e2Re𝑍(𝜂) − eRe𝑍(𝜂)2 cos Im𝑍(𝜂)

)
. (A.18)

By (11) and (13),

𝚒𝑢(0, 𝚒𝜂) =
1

2
−

√
1

4
− 2𝜂,

𝜓(0, 𝚒𝜂) − 𝜓(𝑢(0, 𝚒𝜂), 0) = ∫
ℝ

(
e−𝜂𝑧

2
− e𝚒𝑢(0,𝚒𝜂)𝑧 − 𝚒𝑢(0, 𝚒𝜂)(e𝑧 − 1)

)
𝜈(d𝑧).
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Noting that 0 ≤ Re(𝚒𝑢(0, 𝚒𝜂)) ≤ 1 and recalling from (2) that 𝜈(ℝ) < ∞ and 𝜈(|𝑧| > 𝑐) = 0, we
have

sup
𝜂∈ℝ+

Re (𝜓(0, 𝚒𝜂) − 𝜓(𝑢(0, 𝚒𝜂), 0)) ≤ ∫
ℝ

(1 + e𝑐 + |e𝑐 − 1|)𝜈(d𝑧) = 𝜈(ℝ)(1 + e𝑐 + |e𝑐 − 1|),
inf
𝜂∈ℝ+

Re (𝜓(0, 𝚒𝜂) − 𝜓(𝑢(0, 𝚒𝜂), 0)) ≥ ∫
ℝ

(−e𝑐 − |e𝑐 − 1|)𝜈(d𝑧) = 𝜈(ℝ)(−e𝑐 − |e𝑐 − 1|).
Thus, from (A.16), we conclude that Re𝑍(𝜂) is bounded uniformly in 𝜂. Combining the uniform
bound of Re𝑍(𝜂) with (A.17) and (A.18), it follows that

𝔼
|||e𝚒𝑢(0,0)𝑋𝑇 − e𝑇𝜓(0,𝚒𝜂)

e𝑇𝜓(𝑢(0,𝚒𝜂),0)
e𝚒𝑢(0,𝚒𝜂)𝑋𝑇

||| = 𝒪(1), as 𝜂 → ∞. (A.19)

On the other hand, for 𝜂 small enough, we have 𝚒𝑢(0, 𝚒𝜂) ∈ ℝ, hence

(
𝔼|1 − e𝑍(𝜂)|)2 ≤ 𝔼

|||1 − e𝑍(𝜂)|||2 = 𝔼
(
1 + e2𝑍(𝜂) − 2e𝑍(𝜂)

)
. (for 𝜂 small enough) (A.20)

Next, observe that

𝔼e𝑍(𝜂) = e𝑇(𝜓(0,𝚒𝜂)−𝜓(𝑢(0,𝚒𝜂),0))𝔼e𝚒𝑢(0,𝚒𝜂)𝑋𝑇

= e𝑇(𝜓(0,𝚒𝜂)−𝜓(𝑢(0,𝚒𝜂),0))𝔼e𝚒𝑢(0,𝚒𝜂)𝑋
𝑗
𝑇𝔼e𝚒𝑢(0,𝚒𝜂)𝑋

𝑐
𝑇

= e𝑇(𝜓(0,𝚒𝜂)−𝜓(𝑢(0,𝚒𝜂),0))e𝑇𝜓(𝑢(0,𝚒𝜂),0)𝔼e−𝜂[𝑋
𝑐]𝑇

= e𝑇𝜓(0,𝚒𝜂)𝔼e−𝜂[𝑋
𝑐]𝑇

= 1 −
(
𝑀′(0) + ⟨Δ𝑋2⟩)𝜂 + 𝒪(𝜂2), as 𝜂 → 0, (A.21)

where 𝑀(𝑡) ∶= 𝔼e𝑡[𝑋
𝑐]𝑇 and ⟨𝑓(Δ𝑋)⟩ ∶= ∫

ℝ
𝑓(𝑧)𝜈(d𝑧). Here, we are using that 𝑀 is an entire

function, which follows from (2) and (Sato, 1999, Lemma 25.6). We also have

𝔼e2𝑍(𝜂) = e2𝑇(𝜓(0,𝚒𝜂)−𝜓(𝑢(0,𝚒𝜂),0))𝔼e2𝚒𝑢(0,𝚒𝜂)𝑋𝑇

= e2𝑇(𝜓(0,𝚒𝜂)−𝜓(𝑢(0,𝚒𝜂),0))𝔼e2𝚒𝑢(0,𝚒𝜂)𝑋
𝑗
𝑇𝔼e2𝚒𝑢(0,𝚒𝜂)𝑋

𝑐
𝑇

= e2𝑇(𝜓(0,𝚒𝜂)−𝜓(𝑢(0,𝚒𝜂),0))e𝑇𝜓(2𝑢(0,𝚒𝜂),0)𝔼e−𝑤(𝜂)[𝑋
𝑐]𝑇

= 1 − 2
(
𝑀′(0) + ⟨Δ𝑋2⟩)𝜂 + 𝒪(𝜂2) as 𝜂 → 0, (A.22)

where 𝑤(𝜂) = 1

2
(8𝜂 +

√
1 − 8𝜂 − 1) (for 𝑢 = 𝑢+) solves 𝚒𝑢(0, 𝚒𝑤(𝜂)) = 2𝚒𝑢(0, 𝚒𝜂) so that

𝔼e−𝑤(𝜂)[𝑋
𝑐]𝑇 = 𝔼e𝚒𝑢(0,𝚒𝑤(𝜂))𝑋

𝑐
𝑇 = 𝔼e2𝚒𝑢(0,𝚒𝑤(𝜂))𝑋

𝑐
𝑇 .

Inserting (A.21) and (A.22) into (A.20), we obtain (𝔼|1 − e𝑍(𝜂)|)2 = 𝒪(𝜂2) hence

𝔼||1 − e𝑍(𝜂)|| = 𝒪(𝜂), as 𝜂 → 0. (A.23)
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By (A.17), (A.19), and (A.23),

∫
∞

0

1

𝜂𝑟+1
𝔼
|||e𝚒𝑢(0,0)𝑋𝑇 − e𝑇𝜓(0,𝚒𝜂)

e𝑇𝜓(𝑢(0,𝚒𝜂),0)
e𝚒𝑢(0,𝚒𝜂)𝑋𝑇

|||d𝜂 < ∞,

justifying the use of Fubini.

A.10 Proof of Proposition 5.3
We have from (Schürger, 2002, equation (1.0.1)) that

𝑥e𝚒𝑝𝑥

(𝑣 + 𝜀)𝑟
=

1

𝑟Γ(𝑟) ∫
∞

0

𝑥e𝚒𝑝𝑥−𝑧
1∕𝑟(𝑣+𝜀) d𝑧, 𝑟 > 0. (A.24)

hence

𝔼
𝑋𝑇e

𝚒𝑝𝑋𝑇

([𝑋]𝑇 + 𝜀)𝑟
=

1

𝑟Γ(𝑟)
𝔼∫

∞

0

𝑋𝑇e
𝚒𝑝𝑋𝑇−𝑧

1∕𝑟([𝑋]𝑇+𝜀) d𝑧 (by (A.24))

=
1

𝑟Γ(𝑟) ∫
∞

0

𝔼𝑋𝑇e
𝚒𝑝𝑋𝑇−𝑧

1∕𝑟([𝑋]𝑇+𝜀) d𝑧 (by Fubini)

=
1

𝑟Γ(𝑟) ∫
∞

0

(−𝚒𝜕𝑝)𝔼e
𝚒𝑝𝑋𝑇−𝑧

1∕𝑟[𝑋]𝑇−𝑧
1∕𝑟𝜀 d𝑧 (by Leibniz)

=
1

𝑟Γ(𝑟) ∫
∞

0

(−𝚒𝜕𝑝)
e𝑇𝜓(𝑝,𝚒𝑧

1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

𝔼e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑋𝑇−𝑧

1∕𝑟𝜀 d𝑧 (by (14))

=
1

𝑟Γ(𝑟)
𝔼∫

∞

0

(−𝚒𝜕𝑝)
e𝑇𝜓(𝑝,𝚒𝑧

1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑋𝑇−𝑧

1∕𝑟𝜀 d𝑧 (by Fubini)

= 𝔼𝑔(𝑋𝑇). (by (57))

The use of the Leibniz has already been justified in the proof of Corollary 3.4. The first use of
Fubini’s Theorem is justified since 𝔼|𝑋𝑇e𝚒𝑝𝑋𝑇−𝑧1∕𝑟[𝑋]𝑇 | ≤ 𝔼|𝑋𝑇e𝚒𝑝𝑋𝑇 | < ∞, for all 𝑝 ∈ ℂ, and 𝑧 ≥
0, which implies

∫
∞

0

𝔼
|||𝑋𝑇e𝚒𝑝𝑋𝑇−𝑧1∕𝑟[𝑋]𝑇 |||e−𝑧1∕𝑟𝜀d𝑧<∞.

The second application of Fubini is justified as follows. Define

𝑌(𝑝, 𝜂) ∶= 𝑇(𝜓(𝑝, 𝚒𝜂) − 𝜓(𝑢(𝑝, 𝚒𝜂), 0)) + 𝚒𝑢(𝑝, 𝚒𝜂)𝑋𝑇. (A.25)

Observe that

(−𝚒𝜕𝑝)
e𝑇𝜓(𝑝,𝚒𝑧

1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑋𝑇 = −𝚒e𝑌(𝑝,𝑧

1∕𝑟)𝜕𝑝𝑌(𝑝, 𝑧
1∕𝑟),
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|||(−𝚒𝜕𝑝) e𝑇𝜓(𝑝,𝚒𝑧
1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑋𝑇 ||| = eRe𝑌(𝑝,𝑧

1∕𝑟)||𝜕𝑝𝑌(𝑝, 𝑧1∕𝑟)||. (A.26)

From (11) and (13) we have

𝚒𝑢±(𝑝, 𝚒𝜂) =
1

2
∓

√
1

4
− 𝑝2 − 𝚒𝑝 − 2𝜂,

𝜓(𝑝, 𝚒𝜂) − 𝜓(𝑢(𝑝, 𝚒𝜂), 0) = ∫
ℝ

(
e𝚒𝑝𝑧−𝜂𝑧

2
− e𝚒𝑢(𝑝,𝚒𝜂)𝑧 − (𝚒𝑝 − 𝚒𝑢(𝑝, 𝚒𝜂)

)
(e𝑧 − 1))𝜈(d𝑧).

Noting that, for any 𝑎, 𝑏 ∈ ℝ we have

|||Re√𝑎 + 𝚒𝑏||| =
√
(𝑎2 + 𝑏2)1∕2 + 𝑎

2
, which implies sup

𝑎≤𝑎
|||Re√𝑎 + 𝚒𝑏||| =

√
(𝑎
2
+ 𝑏2)1∕2 + 𝑎

2
,

it follows that there exists a constant 𝑐1 such that

sup
𝜂∈ℝ+

|||Re 𝚒𝑢(𝑝, 𝚒𝜂)|||<𝑐1, sup
𝜂∈ℝ+

|||Re (𝜓(𝑝, 𝚒𝜂) − 𝜓(𝑢(𝑝, 𝚒𝜂), 0))|||<𝑐1, (A.27)

where the second inequality follows from (2), the uniform bound on |Re 𝚒𝑢(𝑝, 𝚒𝜂)| and
Re (𝜓(𝑝, 𝚒𝜂) − 𝜓(𝑢(𝑝, 𝚒𝜂), 0)) = ∫

ℝ

(
e−𝑝𝑖𝑧−𝜂𝑧

2
cos(𝑝𝑟𝑧) − e

Re𝚒𝑢(𝑝,𝚒𝜂)𝑧 cos(Im𝚒𝑢(𝑝, 𝚒𝜂)𝑧)
)
𝜈(d𝑧)

− (−𝑝𝑖 − Re 𝚒𝑢(𝑝, 𝚒𝜂))∫
ℝ

(e𝑧 − 1) 𝜈(d𝑧).

Now, observe that

𝜕𝑝𝑌(𝑝, 𝜂) = 𝑇 ∫
ℝ

(
𝚒𝑧e𝚒𝑝𝑧−𝜂𝑧

2
− e𝚒𝑢(𝑝,𝚒𝜂)𝑧𝜕𝑝𝚒𝑢(𝑝, 𝚒𝜂)𝑧 − 𝚒(e

𝑧 − 1)
)
𝜈(d𝑧) + 𝚒𝜕𝑝𝑢(𝑝, 𝚒𝜂)𝑋𝑇,

𝜕𝑝𝑢(𝑝, 𝚒𝜂) =
1 − 2𝚒𝑝√

−4𝑝2 − 4𝚒𝑝 − 8𝜂 + 1
, (A.28)

from which

|𝜕𝑝𝑌(𝑝, 𝜂)| ≤ 𝑇 ∫
ℝ

(|𝑧|e−𝑝𝑟𝑧−𝜂𝑧2 + eRe 𝚒𝑢(𝑝,𝚒𝜂)𝑧|𝜕𝑝𝚒𝑢(𝑝, 𝚒𝜂)𝑧| + |e𝑧 − 1|) 𝜈(d𝑧) + |𝜕𝑝𝑢(𝑝, 𝚒𝜂)𝑋𝑇|.
(A.29)

Combining (A.25), (A.26), (A.27), (A.28) and (A.29),

𝔼
|||(−𝚒𝜕𝑝) e𝑇𝜓(𝑝,𝚒𝑧

1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑋𝑇 ||| = 𝔼eRe𝑌(𝑝,𝑧

1∕𝑟)||𝜕𝑝𝑌(𝑝, 𝑧1∕𝑟)|| = 𝒪(1), as 𝑧 → ∞. (A.30)
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Next, for any 𝑎 ∈ ℂ, 𝑟 ∈ (0, 1) and 𝜀 > 0,

∫
∞

0

||| e−𝜀𝑧
1∕𝑟√

𝑎 − 𝑧1∕𝑟

|||d𝑧<∞. (A.31)

By (A.30) and (A.31),

∫
∞

0

𝔼
|||(−𝚒𝜕𝑝) e𝑇𝜓(𝑝,𝚒𝑧

1∕𝑟)

e𝑇𝜓(𝑢(𝑝,𝚒𝑧
1∕𝑟),0)

e𝚒𝑢(𝑝,𝚒𝑧
1∕𝑟)𝑋𝑇 |||e−𝜀𝑧1∕𝑟d𝑧<∞,

justifying the use of Fubini.

A.11 Proof of Proposition 5.5
The proof is completely analogous to the proof of Proposition 5.3. The only significant change in
the proof is that, since the operator 𝜕𝑝 does not appear in (60), one no longer needs to be concerned
about the singularity that appears in the expression (A.28) of 𝜕𝑝𝑢(𝑝, 𝚒𝜂). As a result, expression
(60) holds for all 𝑟 > 0.

A.12 Proof of Proposition 5.7
First, we observe that 𝑌𝑗 , given by (64), is a Lévy process with characteristic exponent 𝜒. We have

𝔼𝑡e
𝚒𝑞(𝑌

𝑗
𝑇
−𝑌

𝑗
𝑡 ) = e(𝑇−𝑡)𝜒(𝑞). (A.32)

Next, we compute

𝔼𝑡e
𝚒𝑞(𝑌𝑇−𝑌𝑡) = 𝔼𝑡e

𝚒𝑞(𝑌𝑐
𝑇
−𝑌𝑐𝑡 )𝔼𝑡e

𝚒𝑞(𝑌
𝑗
𝑇
−𝑌

𝑗
𝑡 ) (as 𝑌𝑐 ⟂⟂ 𝑌𝑗)

= 𝔼𝑡e
𝚒𝑞𝛽(𝑋𝑐

𝑇
−𝑋𝑐𝑡 )+𝚒𝑞

1

2
𝛽(1−𝛽)([𝑋𝑐]𝑇−[𝑋

𝑐]𝑡)
𝔼𝑡e

𝚒𝑞(𝑌
𝑗
𝑇
−𝑌

𝑗
𝑡 ) (by (63))

= 𝔼𝑡e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑋𝑐

𝑇
−𝑋𝑐𝑡 )𝔼𝑡e

𝚒𝑞(𝑌
𝑗
𝑇
−𝑌

𝑗
𝑡 ) (by (12))

= 𝔼𝑡e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑋𝑇−𝑋𝑡) 𝔼𝑡e

𝚒𝑞(𝑌
𝑗
𝑇
−𝑌

𝑗
𝑡 )

𝔼𝑡e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑋

𝑗
𝑇
−𝑋

𝑗
𝑡 )

(as 𝑋𝑐 ⟂⟂ 𝑋𝑗)

=
e(𝑇−𝑡)𝜒(𝑞)

e
(𝑇−𝑡)𝜓(𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽)),0)

𝔼𝑡e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑋𝑇−𝑋𝑡)

. (by (A.4) and (A.32))

Thus, we have established (67).

A.13 Proof of Theorem 5.8
We compute

𝔼𝑡𝜑(𝑌𝑇) = 𝔼𝑡 ∫
ℝ

𝜑(𝑞)e𝚒𝑞𝑌𝑇d𝑞𝑟 (by (69))
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= ∫
ℝ

𝜑(𝑞)e𝚒𝑞𝑌𝑡𝔼𝑡e
𝚒𝑞(𝑌𝑇−𝑌𝑡)d𝑞𝑟 (by Parseval)

= ∫
ℝ

𝜑(𝑞)
e𝚒𝑞𝑌𝑡+(𝑇−𝑡)𝜒(𝑞)

e
(𝑇−𝑡)𝜓(𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽)),0)

𝔼𝑡e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑋𝑇−𝑋𝑡)

d𝑞𝑟 (by (67))

= 𝔼𝑡 ∫
ℝ

𝜑(𝑞)
e𝚒𝑞𝑌𝑡+(𝑇−𝑡)𝜒(𝑞)

e
(𝑇−𝑡)𝜓(𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽)),0)

e
𝚒𝑢(𝑞𝛽,𝑞

1

2
𝛽(1−𝛽))(𝑋𝑇−𝑋𝑡)

d𝑞𝑟 (by Fubini)

= 𝔼𝑡𝑔(𝑋𝑇; 𝑋𝑡, 𝑌𝑡). (by (72))

Parseval-style identity is allowed by (Titchmarsh, 1948, Theorem 39). The use of Fubini’s Theorem
is justified as follows. Without loss of generality, we may assume 𝑡 = 0 and take 𝑋0 = 𝑌0 = 0. We
must show

∫
ℝ

|||𝜑(𝑞)e𝑇(𝜒(𝑞)−𝜓(𝑢(𝑞𝛽,𝑞 12 𝛽(1−𝛽)),0))e𝚒𝑢(𝑞𝛽,𝑞 12 𝛽(1−𝛽))𝑋𝑇 |||d𝑞𝑟
= ∫

ℝ

|||𝜑(𝑞)|||e𝑇(Re𝜒(𝑞)−Re𝜓(𝑢(𝑞𝛽,𝑞 12 𝛽(1−𝛽)),0))eRe 𝚒𝑢(𝑞𝛽,𝑞 12 𝛽(1−𝛽))𝑋𝑇d𝑞𝑟 < ∞. (A.33)

From (11) we have

Re 𝚒𝑢±(𝑞𝛽, 𝑞
1

2
𝛽(1 − 𝛽)) =

1

2
±
√
𝑎 + 𝚒𝑏, 𝑎 =

1

4
+ 𝛽2(𝑞2

𝑖
+ 𝑞𝑖 − 𝑞

2
𝑟 ), 𝑏 = −𝛽2(2𝑞𝑖𝑞𝑟 + 𝑞𝑟).

Noting that, for any𝑎, 𝑏 ∈ ℝwehave |Re√𝑎 + 𝚒𝑏| =√
((𝑎2 + 𝑏2)1∕2 + 𝑎)∕2, it follows that there

exists a constant 𝑐1 < ∞ such that

sup
𝑞𝑟∈ℝ

|||Re 𝚒𝑢±(𝑞𝛽, 𝑞 12𝛽(1 − 𝛽))|||<𝑐1. (A.34)

Next, we note from (13) and (66) that

Re𝜓(𝑢, 0) = ∫
ℝ

(
eRe 𝚒𝑢𝑧 cos(Im𝚒𝑢𝑧) − 1 − Re 𝚒𝑢(e𝑧 − 1)

)
𝜈(d𝑧), (A.35)

Re𝜒(𝑞) = ∫
ℝ

(
e−𝑞𝑖 log(𝛽(e

𝑧−1)+1) cos (𝑞𝑟 log(𝛽(e
𝑧 − 1) + 1)) − 1 + 𝑞𝑖𝛽(e

𝑧 − 1)
)
𝜈(d𝑧). (A.36)

It follows from (2), (A.34), (A.35) and (A.36), that there exists a constant 𝑐2 < ∞ such that

sup
𝑞𝑟∈ℝ

|||Re𝜓(𝑢(𝑞𝛽, 𝑞 12𝛽(1 − 𝛽)), 0)|||<𝑐2, sup
𝑞𝑟∈ℝ

|||Re𝜒(𝑞)|||<𝑐2. (A.37)

Finally, from (70), (A.34) and (A.37) we conclude that inequality (A.33) holds, justifying the use
of Fubini’s Theorem.
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