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Abstract

Classic bond pricing links, i.e., centralizes, bond valuation across all maturities by specifying the

dynamics of the short-term interest rate. This paper develops a decentralized theory that prices

each bond based purely on the near-term behavior of the bond’s own yield. The theory levers

the domain expertise of an investor on a particular bond and allows the investor to make pricing

and investment analysis on the bond without the shackles of an ambitious centralizing mandate.

The theory decomposes the short-term return on a bond with respect to the variation of its own

yield. Imposing no dynamic arbitrage on the return decomposition leads to a simple pricing equa-

tion relating the bond yield to the market pricing and conditional mean and variance forecasts of

the yield’s near-term change. The paper illustrates the theory’s applications in decentralized in-

vestment of a single bond and in the construction and investment of decentralized butterfly bond

portfolios.
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1. Introduction

Classic bond pricing centralizes bond valuation across all maturities by specifying the full dynam-

ics of the short-term interest rate (e.g., Duffie and Kan (1996)). This centralization has played

important roles in practical applications such as information consolidation, dimension reduction,

and identifying relative value opportunities along the yield curve. In this paper, we develop a de-

centralized theory that deliberately circumvents the classic centralizing link between the pricing of

a bond and the dynamics and pricing of the short rate. Instead, the theory values each bond on its

own, based purely on the current market pricing assumption and the conditional mean and variance

forecasts on the near-term changes of the yield of this particular bond.

Compared to classic centralizing efforts, the decentralized theory focuses on a much smaller

task, but strives to lever the domain expertise of an investor on a particular bond to generate sharper

pricing insights on that bond. In principle, it is much easier to forecast the near-term behavior of

the yield of a particular bond that the investor has been tracking, than to predict how an unob-

servable short rate moves over the next few decades. As with the new trend of decentralization in

technology, finance, and other areas, the decentralized bond pricing theory provides a framework

for investors to make much more focused pricing analysis and investment decisions on a particular

bond without the burden and the shackles of an ambitious centralizing mandate.

Under the classic centralizing framework, the values of bonds across all maturities are made to

vary with a common set of interest-rate factors. By comparison, the decentralized theory summa-

rizes the risk of each bond through the near-term variation of its own yield to maturity. It captures

the bond’s risk exposures through classic duration and convexity definitions with respect to its own

yield. The theory decomposes the investment return on a bond into three terms, all linked to the

yield of this particular bond. The first term is the carry effect. The investor earns the yield to ma-

turity over the next instant if the yield does not change over time. The second term is the duration

effect capturing the return contribution due to the linear change of the yield. The last term is the

convexity effect capturing the return contribution due to the nonlinear change in the yield.

The bond return decomposition is completely decentralized to its own yield to maturity, with
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no direct linkages to the short rate dynamics or the dynamics of any common interest-rate factors.

Taking expectation on this decentralized return decomposition under the risk-neutral measure and

imposing the condition of no dynamic arbitrage leads to a simple pricing relation on the bond’s

yield. The pricing relation decomposes the bond yield spread over the short rate into three compo-

nents, driven respectively by the risk premium, the conditional mean, and the conditional variance

forecasts of the near-term changes of the yield. The three components rely on three conditional

forecasts of the yield’s near-term behavior. The pricing of the bond at any given point in time is

determined by these three conditional forecasts at that time.

Since the yield on each bond can be analyzed on its own, there is no pricing error contagion

effect from one bond to another, which can happen when estimating a centralized model. Since

the current pricing of the bond yield depends on the current mean, variance, and market pricing

forecasts on its own near-term change, one does not need to forecast beyond the near term, or

to make any assumptions on the long-run dynamics of this yield or any other interest-rate series.

Since the sources and dynamics of the conditional forecasts have no bearing on the pricing, one

can obtain these forecasts either from separate statistical model estimation or outside expert sur-

vey, greatly facilitating cross-platform collaboration across teams with different domain expertise.

Investors can also update these forecasts over time in whichever way they see fit. Revising the

forecasts, or the underlying forecasting model, does not bring any consistency issue experienced

in the recalibration of centralized models.

We illustrate applications of the new theory from the perspective of making short-run invest-

ment decisions, first on a single par bond and then on a butterfly bond portfolio. To predict the

excess return on a par bond, we apply the decentralized theory to the yield to maturity of this par

bond. As the theory decomposes the bond yield into a risk premium component and the contri-

butions from the conditional mean and variance forecasts of the yield change, we can apply the

theory to extract the bond’s risk premium if we can obtain conditional mean and variance forecasts

on its yield change. For illustration, we make simplifying assumptions to obtain the conditional

forecasts and examine the predictive power of the extracted risk premium on future excess returns

of the par bond. Historical analysis of US long-term swap rates, which we treat as the coupon rates
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for par bonds, shows that the risk premium extracted from each long-term par bond according to

the decentralized theory can be used to generate robust out-of-sample predictions on the bond’s

future excess return.

Investors often combine bonds of different maturities to hedge away systematic interest-rate

movements. Constructing butterfly portfolios with three bonds has been a staple trade in the fixed

income market for this purpose. By hedging away major movements in interest rate levels and

possibly slope changes, a well-constructed butterfly portfolio can become very stable, allowing

investors to achieve targeted exposures to the curvature of the yield curve and potential temporary

mispricings on the particular bonds. Historically, dynamic term structure models have been used

to construct butterfly portfolios for statistical arbitrage trading based on model pricing errors (e.g.,

Duarte, Longstaff, and Yu (2007) and Bali, Heidari, and Wu (2009)). Based on the new decen-

tralized theory, we propose to construct decentralized butterfly portfolios with bonds of nearby

maturities, and we propose new investment strategies for these decentralized butterflies based on

classic risk-return tradeoff analysis of the bond portfolio’s excess returns. We show that a combi-

nation of shrewd maturity choice for the butterfly portfolio construction and careful mean-variance

analysis on the portfolio returns leads to robust investment performance.

Representing the relative value of a bond in terms of its yield to maturity and measuring its

risk exposures via the bond’s duration and convexity have long been the industry standard (e.g.,

Christensen and Sorensen (1994) and Chance and Jordan (1996)) and also the starting point of

most fixed income textbooks. This paper builds a new pricing theory on a classic foundation by

deriving the pricing implications from classic bond return attribution analysis with respect to its

own yield to maturity. The new theory integrates no-arbitrage pricing naturally into classic risk

management, return attribution, and risk-return investment analysis.

The remainder of the paper is organized as follows. Section 2 develops the new pricing theory.

Section 3 illustrates its application in a decentralized investment analysis of a par bond. Sec-

tion 4 illustrates its application in the construction and investment of decentralized butterfly bond

portfolios. Section 5 concludes. An online appendix discusses our data choice for the empirical

analysis, reports the summary behaviors of the US swap rates, and performs comparative analysis
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with stripped US Treasury par yields.

2. A Decentralized Theory of Bond Yields

We consider an infinite-horizon continuous-time economy. Uncertainty is represented by a filtered

probability space {Ω,F ,P,(Ft)t≥0}, where P is the physical measure. We assume the usual condi-

tions of right continuity and completeness with respect to the null sets of P. We further assume the

existence of a money market account associated with an instantaneous interest rate (or “short rate”

for short) rt ≥ 0. The assumption of no dynamic arbitrage implies the existence of an equivalent

martingale measure Q, often labeled as the risk-neutral measure, associated to this money market

account as the numeraire.

Let Bt denote the time-t value of a riskfree bond with a stream of N cash payments {C j}N
j=1

at times {t + τ j} ≥ t for j = 1,2, · · · ,N, with τ j denoting the time to maturity of the jth payment.

Classic dynamic term structure models start by modeling the dynamics of the short rate rt and

value the bond via the following expectation operations over the horizon of the cash flows,

Bt =
N

∑
j=1

C jEP
t

[(
dQ
dP

)
e−

∫ t+τ j
t rudu

]
=

N

∑
j=1

C jEQ
t

[
e−

∫ t+τ j
t rudu

]
. (1)

where EP
t [·] and EQ

t [·] denote the expectation operator conditional on time-t filtration Ft under

the physical measure P and the risk-neutral measure Q, respectively, and dQ
dP defines the measure

change from P to Q via the specification of the market pricing of risks. Through the expectation

operation, bonds with cash flows at all times are chained together via either the centralized mod-

eling of the short rate dynamics and its market pricing of risk, or directly the risk-neutral short

rate dynamics. In particular, valuing a long-dated bond necessitates projections of the short rate

dynamics and its pricing over the long horizon of the bond’s cash flows.
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2.1 Decentralized Carry-Duration-Convexity Bond Return Decomposition

An investor can invest in a very long-dated bond for a very short period of time. In this case, the

investor worries more about the short-term value fluctuation of the bond in question than about

long-term projections of the short rate. Even for investors with a long investment horizon, man-

aging the daily return fluctuation remains vitally important. Given these practical considerations,

our new pricing theory does not rely on the long-term projection of a short rate, but builds on the

short-term return attribution of the particular bond investment.

To decentralize the return attribution, we represent the bond value not as a function of the short

rate or some common interest-rate factors, but in terms the bond’s own yield to maturity. Given

the price of a particular bond Bt , its yield to maturity yt is defined via the following equality,

Bt ≡
N

∑
j=1

exp
(
−ytτ j

)
C j. (2)

The yield to maturity is decentralized in the sense that it is unique to the bond in question. Given

the set of cash flows for the bond, the yield to maturity of the bond has a unique and monotone

mapping with the price of the bond. Indeed, it has become standard industry practice to quote the

price of a bond in terms of its yield to maturity.

With the decentralized yield to maturity as defined in (2) to summarize a bond’s risk exposure,

we attribute the short-term return of the bond investment with respect to the variation of its own

yield to maturity as,

dBt

Bt
=

∂Bt

Bt∂t
dt +

∂Bt

Bt∂yt
dyt +

1
2

∂2Bt

Bt∂y2
t
(dyt)

2 +o(dt), (3)

where o(dt) denotes higher-order terms of dt when the yield moves diffusively. When the yield can

jump randomly, the jump can induce more significant higher-order terms. We henceforth assume

that the next move for the yield is continuous, and attribute the return solely to the time effect and

the first and second-order effects from the yield movement. Since the attribution focuses on the

bond return over the next instant, the continuity assumption applies only for the next instant. The
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results hold even if the yield can jump at any other times.

From the yield to maturity definition in (2), we can derive the three sensitivity terms in (3) as

∂Bt

Bt∂t
= yt , − ∂Bt

Bt∂yt
=

N

∑
j=1

w jτ j,
∂2Bt

Bt∂y2
t
=

N

∑
j=1

w jτ
2
j , (4)

where the weight w j on each cash flow j reflects its present value as a fraction of the total value,

w j =
exp
(
−ytτ j

)
C j

∑
N
i=1 exp(−ytτi)Ci

. (5)

The first term of the bond return decomposition in (3) measures the carry effect of the investment:

Carrying the bond makes yt per year if the yield stays constant. The second term measures the di-

rectional exposure of the bond investment to the yield to maturity variation. Bond price declines as

the yield to maturity increases and the sensitivity is determined by the weighted average maturity,

or duration, of the bond. The third term captures the nonlinearity, or convexity, of the price-yield

relation. The positively convex relation increases the bond return when the yield varies more. We

use D and C to denote the duration and convexity of the bond, respectively,

D ≡
N

∑
j=1

w jτ j, C ≡
N

∑
j=1

w jτ
2
j . (6)

For a zero-coupon bond, the thus-defined duration is equal to the time to maturity of the bond τ,

and the convexity is equal to the squared maturity τ2. For coupon bonds, the duration and convexity

are the value-weighted averages of the maturities and squared maturities, respectively.

Theorem 1 (Decentralized Carry-Duration-Convexity Bond Return Decomposition). Under the

assumption of diffusive yield moves over the next instant and with the decentralized definition

of duration and convexity in (6) with respect to the bond’s own yield to maturity, the short-term

return of a bond investment can be decomposed into carry, duration, and convexity exposures,

respectively,

dBt

Bt
= ytdt−Ddyt +

1
2

C (dyt)
2. (7)
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Taking expectation on (7) under the statistical measure P and dividing both sides by the time

interval dt attributes the annualized expected bond investment return to three sources,

1
dt
EP

t

[
dBt

Bt

]
= yt−µtD +

1
2

σ
2
t C , (8)

where µt =EP
t [dyt ]/dt denotes the time-t expected rate of change on the yield, and σ2

t =Et
[
(dy)2]/dt

denotes the time-t conditional variance rate of the yield change. The first term captures the ex-

pected return from carry. Bonds with a higher yield generate higher returns on average due to

carry. Second, due to the negative bond-yield relation, an expected increase in yield reduces the

expected bond return. Third, higher volatility on the yield movements leads to higher expected

bond return due to the positive convexity effect.

2.2 Decentralized No-arbitrage Pricing and Yield Decomposition

To generate pricing implications, we take expectation under the risk-neutral measure Q on the bond

return attribution in (7) and divide both sides by dt,

1
dt
EQ

t

[
dBt

Bt

]
= yt−µQt D +

1
2

σ
2
t C , (9)

where µQt = EQ
t [dyt ]/dt denotes the time-t expected rate of yield change under the risk-neutral

measure. If we use λt to denote the market pricing per unit of the bond risk,1 under the locally

diffusive movement assumption, we can link the risk-neutral expected rate of yield change µQt to

its statistical counterpart µt by

µQt = λtσt +µt . (10)

The market price is positive λt > 0 if bond returns are expected to contain a positive risk premium.

The absence of dynamic arbitrage between this particular bond under consideration and the

money market account dictates that the risk-neutral expected rate of return on the bond is equal to

1Given the inverse price-yield relation, the market price of yield risk takes the opposite sign of the market price of
bond risk.
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the short ate rt . Applying this condition of no dynamic arbitrage to the risk-neutral expectation in

(9) leads to a simple pricing relation for the bond under consideration.

Theorem 2 (Decentralized Yield Decomposition). If the yield of a bond is moving continuously

over the next instant, no dynamic arbitrage between this bond and the money market account

dictates that the fair spread of this bond yield over the short rate is linked to the market pricing of

this bond’s risk (λt), the expected rate of the yield change (µt), and its variance rate (σ2
t ) through

the bond’s duration D and convexity C exposures by

yt− rt = λtσtD +µtD−
1
2

σ
2
t C . (11)

The pricing relation in (11) is highly decentralized. The fair value of the bond’s yield spread

(yt − rt) is determined by the market pricing of this particular bond (λt) and the conditional mean

(µt) and variance (σ2
t ) forecasts on the next movement of the bond’s own yield. The valuation

has no direct dependence on the short rate dynamics or the dynamics of any other yields. Indeed,

there should be an indexing i on (yt ,D,C ,λt ,µt ,σ
2
t ) to emphasize that they are all specific to the

particular bond i under consideration. The valuations of two different bonds, e.g., i and j, are based

on two separate sets of market pricing assumptions and conditional mean and variance forecasts.

We omit this indexing to reduce notation cluttering when no confusion shall occur.

Even for the particular bond under consideration, the time-t pricing of the bond does not rely on

the full dynamics of its own yield, but only depends on the three point-in-time conditional forecasts

at that time (µt ,σt ,λt). The three conditional forecasts can change over time, but how they change,

or where the forecasts come from, does not enter the pricing of the current yield spread. One can

bring in the forecasts from any outside sources and directly examine their pricing implications

under this decentralized theory.
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2.3 Comparison with Centralized Term Structure Modeling

The pricing relation in (11) is obtained by attributing the bond return to variations in its own yield.

Retaining the partial derivatives in the return attribution, we can write the pricing equation as a

partial differential equation,

rt =
∂Bt

Bt∂t
+

∂Bt

Bt∂y
µQt +

1
2

∂2Bt

Bt∂y2 σ
2
t , (12)

which is the result of imposing the no dynamic arbitrage condition that the risk-neutral expected

rate of return on the bond investment is equal to the short rate rt .

Dynamic term structure models value bonds by imposing the same no dynamic arbitrage con-

dition; however, the centralized modeling approach does not attribute bond returns with respect

to its own yield to maturity, but rather with respect to a set of common factors Xt that determine

the dynamics of the short rate rt . Assuming diffusive dynamics for the common factor Xt with

µX
t denoting its risk-neutral drift vector and ΣX

t its covariance matrix, we can express the same no

dynamic arbitrage condition via an analogous partial differential equation,

r(Xt) =
∂Bt

Bt∂t
+

[
∂Bt

Bt∂Xt

]>
µX

t +
1
2

tr
[

∂2Bt

Bt∂XX>
·ΣX

t

]
. (13)

The two partial differential equations in (12) and (13) are similar in form and represent the

same no dynamic arbitrage condition, but they have crucially different implications. First, the

relation between the bond price and its own yield is explicit and definitional. As a result, the

partial derivatives in (12) are known ex ante. Plugging in these partial derivatives yields the simple

algebraic pricing relation in (11). By contrast, the bond price as a function of the common factor

vector, B(Xt), is unknown ex ante. The partial differential equation in (13) is used to solve for this

pricing relation, starting with the boundary conditions at the cash payments dates of the bond.

Second, to solve the partial differential equation in (13) backward starting at a bond’s payment

date T , one must necessarily fully specify the common factor dynamics (µX
s ,Σ

X
s ) across all times

from today t to the payment date T . By comparison, the decentralized pricing relation only needs
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the current mean and variance forecasts of its yield change for its current pricing, without the need

to know its future dynamics.

Finally, since the short rate is represented as a function of the common factors in (13), once

the common factor dynamics are specified, the values of bonds of all maturities are set, true to

the centralizing nature of the modeling approach. By contrast, knowing the conditional mean and

variance forecasts of the yield changes for one bond at time t determines the time-t valuation of the

yield for this particular bond, but it does not pin down the pricing of the bond at any other times,

nor the pricing of any other bonds, true to the decentralized nature of the new pricing approach.

Therefore, the partial differential equation in (12) only represents a decentralized and point-in-time

no arbitrage condition at a particular time t between the particular bond under consideration and

the money market account, whereas the partial different equation in (13) represents a centralized

no arbitrage condition between all bonds and the money market account at any time t.

In principle, one can centralize the new pricing relation by centralizing the mean and vari-

ance forecasts on yield changes across different maturities via a common factor structure, but a

dynamic term structure model provides a more natural way of achieving this centralization. On

the other hand, bond valuation derived from a dynamic term structure model naturally satisfies the

new pricing relation. The model-implied yield level must be consistent with the model-implied

conditional mean and variance of the corresponding yield change. Nevertheless, under the new

decentralized theory, investors can directly make assumptions and/or statistical estimates on the

conditional mean and variance of a yield change, and derive implications on the fair valuation of

the particular bond, without the need to make assumptions on any long-run dynamics of the short

rate. Therefore, the two modeling approaches do not directly compete, but rather complement each

other by starting from different perspectives.

Through centralization, dynamic term structure models can readily achieve its main objective

of imposing cross-sectional consistency on the valuation of different bonds. The consistency is

achieved by using the same set of common factor dynamics to price bonds of all maturities. The

achievement, however, does not come for free. First, it is not easy to specify one common dynamics

that matches the behavior of all bonds. As one considers the pricing of more bonds across a wider
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spectrum of maturities, one is often forced to expand the dimensionality of the common factor

structure to accommodate the wider range of behaviors. A model that looks sufficient for a subset

of data can generate gross mispricing when the data set is expanded. Second, centralization is good

for information consolidation, dimension reduction, and noisy reduction, but it can also generate

error contagion across all bonds with the introduction of a data error on a single bond.

Through decentralization, the new pricing theory cannot tell us much about cross-sectional

consistency. Each bond is priced to be consistent with its own mean and variance forecasts, but

there is no direct way of checking whether the forecasts on one bond are consistent with the fore-

casts on another bond. On the other hand, the decentralization allows investors to better lever one’s

domain expertise on a particular set of bonds to generate better pricing on these bonds based on

more narrowly-focused but potentially more insightful forecasts. Jack of all trades, master of none.

As one is unlikely to become the master of everything, the decentralized theory allows one to aim

small and miss small.

The different perspectives also lead to different starting points and accordingly different as-

sumptions. To do centralized pricing according to (13), one must specify the full dynamics of the

short rate. Since our knowledge about the far distant future is limited, researchers often rely on

stationarity assumptions to generate limiting behaviors in the long run. Seemingly innocuous sta-

tionarity assumptions, however, can generate grossly violated extrapolation results. For example,

based on stationarity assumptions, Dybvig, Ingersoll, and Ross (1996) make the bold prediction

that long-run forward rates can never fall in the limit. While the prediction is consistent with the

assumption and the limit can always be set longer than any observation, the reality is that the ob-

served ultra long-dated interest rates up to 50 years vary as much as rates at shorter maturities.

Forward rates at these observable ultra long maturities tend to fall lower than forward rates at

intermediate maturities.

In a comparative analysis across several markets, Giglio and Kelly (2018) show that mean-

reverting dynamics calibrated to short-dated securities often generate variations that are too small

for long-dated securities. As bonds of increasingly long maturities are becoming available, re-

searchers are becoming increasingly aware of the practical constraints of the long-run stationarity
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assumptions and have been working hard to find remedies (Bauer and Rudebusch (2020)). The

decentralized theory does not require one to reconcile the current behavior of long-dated yields

with any long-run assumptions of the short rate dynamics. Instead, investors can take the recent

observed behaviors of the bond’s yield as the starting point and take the recent volatility estimates

on a bond’s yield changes as direct inputs to make pricing analysis and investment decisions under

the decentralized theory.

3. Decentralized Investment in A Single Bond

The decentralized theory in (11) decomposes the yield spread on a particular bond at any given

point in time (yt − rt) into contributions from the market pricing of this bond’s risk (λt) and the

conditional mean (µt) and variance (σ2
t ) forecasts on the next movement of the bond’s yield. Re-

arrange the pricing relation, we can represent the market pricing of the bond’s risk in terms of the

observed yield spread and the conditional mean and variance forecasts,

λt =
yt− rt−µtD + 1

2σ2
t C

σtD
. (14)

The pricing of a bond as represented by its yield spread yt−rt can vary either because of variations

in the conditional mean and variance forecasts of the yield change (µt ,σ
2
t ), or because of variations

in the market pricing of risk (λt). With the risk exposures (D,C ) fixed, when the expectations do

not change, the variation of the bond price (or equivalently its yield) purely reflects variation in the

market pricing of risk.

Therefore, once an investor can formulate the conditional mean and variance forecasts on the

yield change of a bond to fix the expectation, the investor will be able to determine the market

pricing of the bond’s risk based on the observed yield spread on the bond and the bond’s duration

and convexity estimates. The market pricing of the bond’s risk, combined with the risk forecast

(σt), determines the expected excess return, or risk premium, that the investor expects to earn from

the bond investment. In this section, we illustrate how an investor can apply the theory to extract
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the market pricing of a bond’s risk based on the observed yield of the bond and a set of conditional

mean and variance forecasts on its yield change.

3.1 Extracting Market Price of Bond Risk from its Own Yield Behavior

To extract the market price of a bond’s risk, the theory requires as inputs the conditional mean

and variance forecasts on the change of the bond’s yield. As an illustration, we make stylized

assumptions to obtain the conditional forecasts and extract the market price of bond price based

on these forecasts. We discuss potential extensions to generate enhanced conditional forecasts in a

later subsection.

To construct the conditional mean forecast µt , we note that long-term constant-maturity floating

interest-rate series are highly persistent and changes in these floating series are extremely difficult

to predict. We take this difficult-to-predict nature of long-term floating rates as our starting point.

Specifically, by assuming that the expected rate of change of the constant-maturity yield at τ= T−t

is zero, we can predict the expected rate of change of the yield on the bond with fixed expiry T

based on the yield’s sliding effect along the yield curve,

µt =−st , (15)

with st denoting the local slope of the yield curve around the bond’s time to maturity τ. Intuitively,

if the yield curve is upward sloping and is not expected to change over time, as time t passes by, the

time to maturity τ = T − t of the bond with a fixed expiry T will shrink, and the bond’s yield will

become lower as it slides down the upward sloping yield curve with declining time to maturity.

The rate of decline on the bond yield is determined by the local slope of the yield curve around

the bond’s maturity. We propose to estimate the local slope of the yield curve around the bond’s

maturity with a local linear regression and construct the conditional mean forecast based on the

local slope estimate ŝt .

To construct the conditional variance forecast on the bond’s yield, we assume that the yield’s

risk behavior will be similar to the recent historical behavior of the yields at similar maturities.
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Accordingly, we propose to construct a historical variance estimator on the yield changes σ̂2
t and

use the estimator as the conditional variance forecast .

Combining the observed yield spread yt − rt , its duration D and convexity C exposures, the

local yield curve slope estimate ŝt , and the historical variance estimator σ̂2
t , we can infer the market

price of the bond’s risk.

Proposition 1. Assuming no-predictability on long-term constant-maturity yields and using his-

torical variance estimator as a simple variance forecast, one can estimate the time-t market price

of the risk on a long-term bond, λt , from the time-t observed yield spread yt−rt , its duration D and

convexity C exposures, the local yield curve slope estimate ŝt , and the historical variance estimator

σ̂2
t of the yield change on this bond as,

λ̂t =
yt− rt + ŝtD + 1

2 σ̂2
t C

σ̂tD
. (16)

We perform empirical analysis on the Proposition using US swap rates. We treat the swap rates

as the coupon rates of par bonds and use the financing leg of the swap contract (LIBOR) as the

short rate rt . We obtain the LIBOR and swap rate data from Bloomberg weekly every Wednesday

from January 4th, 1995 to December 26, 2018, for 1,252 weeks. The data include nine swap

maturities at 2, 3, 4, 5, 7, 10, 15, 20, and 30 years. An online appendix discusses the data choice,

the summary behaviors of the swap rates, and a comparative analysis on stripped US Treasury par

yields.

We estimate the local swap rate curve slope ŝt at each maturity using a local linear regression

of the swap rates against the time to maturity. We construct historical volatility estimators on

weekly changes of each swap rate series with a one-year rolling window, and we further smooth

out noises in the individual variance estimators by performing a local linear smoothing regression

of the estimators across maturity. We estimate the duration and convexity of each par bond as

the value-weighted maturity and squared maturity of the bond’s coupons and principals. We strip

the swap rate curve by assuming piece-wise constant forward rates and value the coupons and

principals based on the stripped discount rate curve.
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Figure 1 plots the time series of the market price of bond risk (̂λt) extracted from selected long-

term swap rate series. The market prices of bond risk extracted from different long-dated swap rate

series are similar in magnitude and move closely together. The cross-correlation estimates between

the different λ̂t series with maturities 10 years and longer average at 99.7%. Similar to findings in

Cochrane and Piazzesi (2005), our evidence supports the existence of a common market price of

risk factor for bonds across different maturities.

[Figure 1 about here.]

On average, the market price of bond risk estimates are positive. Nevertheless, the estimates

vary strongly over time. In particular, the estimates went below zero right before the start of the two

recessions in 2000 and 2007, respectively. At the end of our sample in December 2018, the market

price estimates dip below zero again, foretelling the possible incoming of another recession.

3.2 Predicting Bond Excess Returns with Bond Risk Premium Estimators

Given the extracted market price of risk λ̂i,t on each long-term par bond i and the corresponding

volatility estimator σ̂i,t , we can construct a bond risk premium estimator as

ĈW i,t = λ̂i,t σ̂i,t . (17)

In theory, the annualized expected instantaneous excess return on the par bond is proportional to

the bond risk premium and the bond’s duration,

1
dt
EP

t

[
dBi,t

Bi,t

]
− rt = λi,tσi,tDi,t . (18)

We test this theoretical implication by examining whether our bond risk premium estimator (ĈW i,t)

has any actual predictive power on the future bond excess returns. We compute six-month ahead

excess return on each par bond based on the stripped discount curve six months later. The choice

of the half-year horizon matches the semi-annual coupon payment and the financing rate horizon.
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Since the volatility of yield changes is similar across maturities, the variation of the bond

excess returns increases with the bond duration Di,t . We annualized the excess return on each par

bond and divide it by the bond duration to make the magnitude of the scaled excess returns more

comparable across maturities. We examine the predictability of the bond risk premium via the

following proportional forecasting regression,

ERi,t+h = ci ĈW i,t + ei,t+h, (19)

where ERi,t+h denotes the annualized and duration-scaled excess return on the ith par bond over the

half-year future horizon. The regression allows a proportional coefficient to accommodate scaling

differences between the risk premium estimator ĈW i,t and the bond excess return ERi,t+h, but it

does not include an intercept term, essentially imposing the constraint that when the risk premium

estimator is zero, so will be the expected bond excess return.

For comparison, we consider as a benchmark the bond risk premium estimator constructed by

Cochrane and Piazzesi (2005) with a portfolio of forward rates with maturities from 1 to 5 years.

To construct this alternative bond risk premium estimator, we strip the forward rate curve from

the observed swap rates, and estimate the weight on the forward rate portfolio by performing a

forecasting regression of the average future excess returns on the five forward rates,

AERt+h = β0 +
5

∑
j=1

β j f j
t + et+h, (20)

where AERt+h =
1
9 ∑

9
i=1 ERi,t+h denotes the average excess returns on the nine par bond series that

we have from maturities 2 to 30 years. The common bond risk premium factor is constructed from

the estimated relation as,

ĈPt = β̂0 +
5

∑
j=1

β̂ j f j
t . (21)

With the common risk premium estimator ĈPt , we forecast the excess return on each par bond via

an analogous proportional forecasting regression,

ERi,t+h = ci ĈPt + ei,t+h. (22)
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We examine the predictability of the two bond risk premium estimators through an out-of-

sample exercise. Starting from January 5, 2005, on each date t, we estimate the forecasting rela-

tions from (19) to (22) with a 10-year rolling window. We compute the out-of-sample forecasting

error on each date t as the difference between the future realized and the forecasted excess return,

ei,k,t+h = ERi,t+h− ÊRi,k,t , (23)

where ÊRi,k,t denotes the time-t out-of-sample forecast from predictor k on excess return ERi,t+h.

As in Welch and Goyal (2008), the forecasting error of each predictor is compared with the fore-

casting error using the 10-year rolling window historical average of the bond excess return up to

that point t,

ei,0,t+h = ERi,t+h−ERi,t , ERi,t =
1
L

t−h

∑
s=t−L−h

ERi,s+h, (24)

with L denoting the rolling window length. We measure the out-of-sample performance of each

predictor via an out-of-sample R2 measure as in Rapach and Zhou (2013),

R2
i,k = 1−

∑
M
t=1 e2

i,k,t+h

∑
M
t=1 e2

i,0,t+h
, (25)

with M denoting the number of out-of-sample observations. A positive R2 estimate indicates that

the predictor outperforms the historical average benchmark.

To test the statistical significance of the forecasting performance difference over the historical

average benchmark, we compute the Diebold and Mariano (1995) t-statistics (DM) on the squared

forecasting error difference, δk,t+h = e2
i,0,t+h− e2

i,k,t+h,

DMk =
µδ

σδ

(
M+1−2(h+1)+h(h+1)/M

M

)0.5

, (26)

where µδ denotes the sample mean of the difference, σδ denotes the Newey and West (1987) stan-

dard error estimate, computed with a lag equal to the forecasting horizon. The statistics adjust for

the small sample size bias according to Harvey, Leybourne, and Newbold (1997). Under the null

hypothesis that each rolling-window estimated model and the historical average benchmark have
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equal finite-sample forecast accuracy, Clark and McCracken (2012) find that the thus-computed

DM test statistic can be compared to standard normal critical values.

Table I reports the out-of-sample R2 estimates and the DM test statistics against the histor-

ical average benchmark for each par bond. Panel A reports the performance of the benchmark

Cochrane-Piazzesi (CP) bond risk premium estimator constructed with a portfolio of forward rates.

Panel B reports the performance of our (CW) bond risk premium estimators based on a simple

implementation of our decentralized theory. The out-of-sample statistics are computed over 704

weekly observations from January 5th, 2005 to Jun 27th, 2018 for excess returns over the next six

months.

[Table I about here.]

Our no-predictability assumption on floating interest rates in generating the conditional mean

forecast is likely to hold better for long-term swap rates than for short-term swap rates, the move-

ments of which can in principle be predicted by the slope of the interest-rate term structure. On

the other hand, the Cochrane and Piazzesi (2005) forward-rate portfolio was originally constructed

for predicting excess returns on short-term bonds with maturities from 2 to 5 years. Table I reports

the forecasting performance of the two risk premium estimators for both short-term and long-term

par bonds.

Panel A shows that the CP bond risk premium estimator generates negative out-of-sample

forecasting R2 estimates across all maturities. By contrast, Panel B shows that our CW bond risk

premium estimators generate positive out-of-sample forecasting R2 estimates across all maturities.

Furthermore, the DM statistics show that the out-of-sample forecasting performance of the CW

bond risk premium estimator is significantly better than the historical average benchmark for long-

term bonds with maturities from 5 to 30 years. As a robustness check, the online appendix repeats

the analysis on stripped US Treasury par yields over a longer sample period. The findings are

qualitatively similar.
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3.3 Discussions

The decentralized theory separates the risk premium component from the observed yield spread on

a bond based on the conditional mean and variance forecasts on the next movement of the bond’s

yield. This section illustrates the application of the theory in extracting the bond risk premium

by making stylized assumptions in constructing the conditional mean and variance forecasts. For

future research, with robust estimation methodologies that can mitigate in-sample overfitting and

out-of-sample deterioration, researchers can incorporate more information to generate better condi-

tional mean and variance forecasts. Better conditional forecasts should lead to a better separation

of the bond risk premium from the observed yield spread. The information for the conditional

forecasts can come from historical behaviors of the yield changes, forward-looking information in

interest-rate options, the shape of the yield curve, macroeconomic variables, and surveys of ex-

pert opinions (e.g., Kim and Orphanides (2012)). The conditional forecasts can be constructed via

either statistical specifications or some structural model estimation. The decentralized theory can

readily incorporate these conditional forecasts to generate a risk premium estimator, without the

need to know the source or the underlying mechanism of the forecasts.

For the general purpose of bond return prediction, different modeling framework offers differ-

ent insights on the potential sources of predictive information. The classic expectation hypothesis

literature (e.g., Fama and Bliss (1987) and Campbell and Shiller (1991)) focuses on the information

content of the yield curve slope in predicting future interest rate changes and in making inferences

about bond risk premium behaviors. Cochrane and Piazzesi (2005) propose to expand beyond the

yield curve slope and use a portfolio of five forward rates to capture the potentially richer infor-

mation content in the shape of the yield curve in predicting bond returns. By contrast, our theory

focuses less on the shape of the yield curve, but more on the conditional mean and variance fore-

casts of the yield change on the bond in question. The theory adjusts the observed yield spread to

account for contributions from the expectations in the conditional mean and variance of the bond’s

yield change to separate out the risk premium component.

In addition to the information in the yield curve shape and the conditional mean and variance
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forecasts on yield changes, there is also a large strand of macro-finance literature that strives to

understand the macroeconomic foundations of the bond risk premium. The literature has identified

a long list of macroeconomic variables that show predictability on bond returns. Examples include

Cooper and Priestley (2009), who link the bond risk premium to the output gap; Ludvigson and Ng

(2009), who extract factors from a large set of macro variables to predict bond returns; Greenwood

and Vayanos (2014), who link the Treasury bond return to Treasury bond supply; Joslin, Priebsch,

and Singleton (2014), who include measures of economic growth and inflation into dynamic term

structure modeling; and Cieslak and Povala (2015), who decompose Treasury yields into long-

horizon inflation expectations and maturity related cycles.

While these studies can all be informative about the bond risk premium behavior, how to accu-

rately estimate bond risk premium in an out-of-sample setting remains a challenging task (Gargano,

Pettenuzzo, and Timmermann (2017)). Our out-of-sample exercise also highlights this challenge.

Over our sample period, the full in-sample bond return forecasting R2 estimates on the CP bond

risk premium estimator are from 14% for the 30-year bond to 32% for the 2-year bond. The highly

positive R2 estimates highlight the potentially rich information content in the shape of the forward

rate curve in predicting bond excess returns. By comparison, the in-sample forecasting R2 esti-

mates from our CW bond risk premium estimators are lower, from 5% for the 30-year bond to

12-14% for bonds at 2-7 years. The lower R2 estimates suggest that the flexible forward rate curve

can in principle capture richer information about future bond excess returns than our risk premium

estimators based on simple conditional mean and variance forecasts. Nevertheless, the out-of-

sample performance reversal of the two risk premium estimators shows that for out-of-sample

return prediction applications, it is important not only to identify informative predictors, but also

to have a robust estimation methodology that can reduce in-sample overfitting and out-of-sample

deterioration.

Dynamic term structure models can be used to capture the yield curve shape with a few dy-

namic factors. The associated dimension reduction can in principle reduce error-in-variables issues

and accordingly reduce the estimation errors and biases when one uses the extracted yield curve

factors to predict future bond returns. The issue is that these factors are extracted to maximize the
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explanatory power on the variation of the yield curve, but they do not necessarily capture the most

informative yield curve information about future bond returns (Duffee (2011)).

Within the context of inflation rate forecasting, Hua and Wu (2018) highlight the out-of-sample

instability of predictive regressions and propose ways of predicting inflation and interest rate

changes without predictive regressions. Cieslak and Povala (2015) also avoid running predictive

regressions by extracting the bond risk premium via a contemporaneous regression of a long-term

yield on trend inflation and the short rate. Most recently, Bianchi, Büchner, and Tamoni (2021)

show that machine learning techniques can potentially take on the challenge by being able to in-

corporate a long list of predictive variables, allow nonlinear and non-additive relations, and at the

same time maintain out-of-sample stability.

4. Investing in Decentralized Butterfly Bond Portfolios

The previous section shows how investors can apply the decentralized theory to examine the risk-

return behavior of a single bond. In this section, we apply the theory to construct stable, decentral-

ized butterfly portfolios with bonds of nearby maturities, and propose new investment strategies on

these decentralized butterflies based on classic risk-return tradeoff analysis.

Butterfly portfolios constructed with three bonds have been a staple trade in the fixed income

market. By hedging away systematic movements in the interest-rate levels and possibly also

slope changes, a well-constructed butterfly portfolio can become very stable, allowing investors

to achieve targeted exposures to the curvature of the yield curve and potential temporary mispric-

ings of the bonds in the portfolio. Duarte, Longstaff, and Yu (2007) construct butterfly portfolios

based on a two-factor Gaussian affine model and examine their risk-return behaviors. Two-factor

Gaussian affine models have been the anchor for many quantitative fixed income desks since the

1980s. A three-leg butterfly portfolio can be constructed to neutralize the two common factors of

the model. If the two-factor structure is well-specified and the pricing errors are mean-reverting,

the constructed butterfly portfolios can become much more mean-reverting than the individual

interest-rate series, and one can treat the negative of the pricing errors as the alpha source. Such a
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portfolio construction and investment process is typical of a model-based statistical arbitrage trad-

ing strategy. The stability and profitability of such a strategy depends crucially on how well the

model specification captures the true underlying factor structure and how successful the model can

separate persistent interest-rate movement from the more mean-reverting residual movements.

Given the centralized nature of a dynamic term structure model, the portfolio construction is in

theory agnostic to the particular bond maturity choice: One can in principle hedge away the two

interest-rate factors with combinations of any three distinct interest-rate series. Nevertheless, Bali,

Heidari, and Wu (2009) show that different maturity combinations can lead to butterfly portfolios

with very different behaviors. Some portfolio are very stable and highly mean-reverting, while

others are not stable at all.

In this section, based on the new decentralized theory, we propose to construct decentralized

butterfly portfolios that do not rely on factor structure assumptions but focus much more on the

particular choice of the maturity combination. We propose to invest in these decentralized butter-

flies, not based on statistical arbitrage trading of the pricing errors of a term structure model, but

based on classic risk-return analysis of the portfolio’s excess returns.

4.1 Local Commonality of Interest-rate Movements

To motivate our emphasis on maturity choice, we start with the intuitive observation that bonds

of nearby maturities tend to behave similarly and co-move strongly. The closer the maturities

between two bonds, the closer their behaviors are and the stronger their co-movements. We label

this behavior as local commonality. It is driven less by any model assumptions, but more by the

fact that contracts with nearby maturities have similar payoffs and should hence behave similarly

regardless of any dynamics assumptions.

To illustrate this local commonality behavior, we choose a set of reference maturities and mea-

sure the cross-correlations of swap rate changes between these reference maturities and other ma-

turities. In the US, the most actively traded maturities on swap rates and Treasury bonds center

around the maturities of the Treasury bond futures, which are written on bonds at six segments of
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the maturity spectrum around 3, 5, 7, 10, 15, and 20 years, respectively. We take these maturities

as reference maturities and show how the correlations of weekly changes of the swap rate series

between the reference series and series at other maturities decline as their maturity gaps increase.

Figure 2 plots the sample correlation estimates against the maturity gap with the reference

maturity. Each line plots the correlation of one reference maturity with other maturities. Our data

sample includes weekly swap rate series from January 1995 to December 2018 at nine maturities

from two to 30 years. The maturity gap measures the gap between the nine maturities and the

reference maturity. For example, for the line with 10-year as the reference maturity, the maturity

gaps with 5-, 7-, 10-, 15-, and 20-year swaps are −2, −1, 0, 1, and 2, respectively.

[Figure 2 about here.]

The correlation estimates decline monotonically as the absolute maturity gap increases. The

correlations of weekly changes of swap rates at adjacent maturities (with maturity gaps of ±1) are

all higher than 97.78%, with an average of 98.58%. The estimates remain high at the next level

(with gaps of±2) at no less than 95.27%, with an average of 96.32%. As the gap increases further,

the average correlation estimates decline from an average of 92.7% with gaps of ±3 to an average

of 73.86% with gaps of ±7.

Local commonality is not an exact statement. It is a qualitative observation of an approximate

but robust and universal phenomenon. By comparison, when one specifies a global factor structure,

its implications are exact, but the exact implications are not necessarily robust in the sense that the

exact implications can be wrong when the model assumptions are violated.

To design global factor structures for the term structure of interest rates, researchers often start

with principal component analysis. The findings of such analysis, however, depend crucially on

the number of interest-rate series and the maturity span of the series included in the analysis.

In general, the more series one includes in the analysis and the wider is the maturity span, the

more principal components one finds necessary to explain a sufficiently high percentage of the

variation of the term structure. As such, any global factor structure assumptions are likely to be

only locally true to the scope of the data under analysis. The only thing that is truly global is the
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local commonality of interest rates with nearby maturities, regardless of how far the data extend

and what the true underlying dynamics are.

The history of the US bond market highlights this fluid nature of a global factor structure. The

US bond market in the early years is concentrated in the short maturity segment between two to

five years. Accordingly, the historical literature on expectation hypothesis, including the bond risk

premium analysis by Cochrane and Piazzesi (2005), focuses on this short end of the term struc-

ture, where the convexity effect is negligible and the expectation of future interest-rate movements

dominates the term structure shape. A one-factor model, such as the classic Vasicek (1977) model

or the Cox, Ingersoll, and Ross (1985) model, can do a reasonably good job explaining the term

structure variation within this short maturity range. As the maturity range of the bond market

expands to up to 10 years, quantitative researchers in the industry start to implement two-factor

term structure models to capture variations over this wider maturity span by, for example, allowing

the short rate to revert to a stochastic central tendency instead of a constant mean (Balduzzi, Das,

and Foresi (1998)). Butterfly trades are a natural result of such two-factor structures. Longer-term

Treasury bonds and swap rates with maturities up to 30 years become more actively traded since

the early 1990s. The factor analysis of Litterman and Scheinkman (1991) over this maturity range

becomes the watershed evidence for establishing the existence of a three-factor structure. This

finding has also become the starting point for subsequent specification analysis of dynamic term

structure models (Dai and Singleton (2000)).

During the past decade, as the levels of long-term interest rates become increasingly lower

across the world, central governments race to issue ultra long-dated bonds, with maturities extend-

ing to 60 years. The corresponding swap market has also started trading contracts with ultra long

maturities. Including such ultra long maturities in the analysis is bound to put further stress on a

three-factor model structure and ask for even more principal components. In fact, a standard three-

factor Gaussian affine model has been shown to become increasingly inadequate in capturing the

full term structure variation over a wide maturity span. The inadequacy happens at both the short

end and the long end. At the short end, Fed policy inertia (Woodford (1999)) reduces the short-rate

volatility and induces a time-inhomogeneous trend component that is difficult to be accommo-
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dated with any time-homogeneous factor dynamics assumptions (Heidari and Wu (2010)). Short

rate hitting the zero lower bound creates another layer of complication and tension for standard

affine term structure models, potentially asking for option-like modeling approaches (e.g., Black

(1995) and Krippner (2012)). At the very long end, 50-year rates move with as much volatility

as interest rates at 10 to 30-year maturities, adding tension to the standard short-rate stationarity

assumptions (Bauer and Rudebusch (2020)).

It is important to point out that our documented local commonality of interest-rate movements

is not inconsistent with a global factor structure per se. In fact, it is an intuitive observation that is

consistent with the implications of most commonly specified global factor structures. Therefore,

local commonality is not evidence against a global factor structure, but rather a more universally

robust observation that does not depend on the exact specification of any particular global factor

structures. By relying more on the universal robustness of the local commonality observation and

less on the accuracy of a particular global factor structure specification, we seek to achieve more

robustness in butterfly construction and investment performance.

4.2 Constructing Decentralized Butterflies with Nearby Maturities

With local commonality in mind, we propose to build decentralized butterfly portfolios with bonds

of nearby maturities. Regardless of the underlying dynamics, since interest rates at nearby ma-

turities show stronger co-movements, butterflies formed with nearby-maturity bonds are likely to

become more stable, with only a small proportion of idiosyncratic movements left. Butterflies

constructed with nearby maturities are also less intertwined with other butterflies and are therefore

more decentralized, allowing larger diversification benefits when investing in multiple butterflies

across different reference maturities.

To construct a decentralized butterfly, we normalize the weight at the middle maturity to one,

and determine the weights on the two maturities at the wings. We do not make any factor dynamics

assumptions, but start by directly estimating the covariance matrix Σt of the changes in the three

chosen interest-rate series in the portfolio. Then, we choose the weights on the three interest-rate
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series bt to minimize the variance of the interest-rate portfolio,

min
bt

b>t Σtbt , subject to b>t i2 = 1, (27)

where i2 is an indicator vector with all elements being zero except the second element being one,

as a way of normalizing the weight of the center maturity to one. The solution is

bt = Σ
−1
t i2/(i>2 Σ

−1
t i2). (28)

At each point in time t, one can use a rolling window to estimate the covariance matrix Σt of the

three swap rate series and solve the weights according to (28). Alternatively, one can directly

regress rate changes at the middle maturity against the two rate changes on the wings over the

same rolling period. The slope estimates would be for (−bt,1,−bt,3), i.e., the negative of the first

and third elements of the weight vector bt . The variance of the regression residuals would reflect

the variance left in the butterfly interest rate portfolio. The closer the three maturities are to each

other, the more highly correlated the three interest-rate series tend to be, and the smaller would be

the residual variation left.

Each bond responds to its underlying yield movement via its duration exposure. To convert the

interest-rate portfolio weight bt into the weight of the corresponding bond wt , we adjust for the

duration difference for the three bonds,

wt,i = bt,iD2/Di, for i = 1,2,3, (29)

where we normalize the weight of the bond at center maturity to one (wt,2 = 1) and convert the

wing weights on interest rates to weights on the corresponding bonds based on their duration ratio

to the center maturity.

Butterfly portfolios constructed with the above weights have minimum variation left. Recall

the bond return decomposition in (7), where the carry term yt is known ex ante, and the convexity

term ct =
1
2C (dyt)

2 also becomes deterministic under diffusive moves as the term (dyt)
2 converges
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to the variance rate σ2
t dt of the yield changes. The bond return variation is thus chiefly driven by

the variation of the bond yield dyt . With the butterfly construction with portfolio weight vector wt ,

the return attribution for the butterfly portfolio can be written as,

w>t
dBt

Bt
= w>t ytdt +

1
2

w>t ct−D2b>t dyt , (30)

where in the last term we replace the bond portfolio weight vector wt with the corresponding

interest-rate portfolio weight vector bt via the relation in (29). Since the interest-rate portfolio

weight bt is chosen in (27) to minimize the variance rate of the yield combination b>t dyt , the

thus-constructed bond portfolio also has its expected return variance minimized.

4.3 Maturity Gaps and Stability of Butterfly Portfolios

To examine the effectiveness of butterfly construction in removing systematic interest rate risk, we

treat the swap rates as the coupon rates or par yields of the corresponding par bonds and estimate

the butterfly weights b on different swap rate combinations based on full sample regression on

weekly changes of the associated swap rates. The regression residual represents the residual risk of

the butterfly swap rate portfolio b>dyt . At each reference maturity, we construct butterfly interest

rate portfolios both with adjacent maturities (with maturity gap of±1) and with increasingly larger

maturity gaps. We compare how the behaviors of the butterflies vary with the maturity gap.

Table II reports in Panel A the annualized volatility of the weekly changes of the reference

swap rates and the butterfly swap rate portfolios constructed around the reference maturity with

increasing maturity gaps, all in percentage points. We have 9 swap rate series from 2 to 30 years,

with 7-year as the median maturity. Thus, when the reference maturity is 7 year, the wings of the

butterfly can be constructed with maturity gaps from 1 to 4. At other reference maturities, when

one side of the wing maturity reaches the edge of the maturity span, we only increase the maturity

gap on the other side. The label shows the absolute maximum maturity gap from 1 to 4.

[Table II about here.]
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Weekly changes in the reference swap rate series have annualized volatility estimates from

0.866% to 0.934%. When we construct butterfly swap rate portfolios with adjacent maturities, the

variance reduction is drastic. The volatility estimates of the weekly changes of the butterfly swap

rate portfolios range from 0.064% to 0.109%. The variance ratios of the butterflies to the reference

swap rates are merely 0.5-1.4%. Therefore, the butterfly construction with adjacent maturities

removes 98.6-99.5% of the swap rate change variance, resulting in remarkably stable interest-rate

portfolios.

As the maturity gap increases, the volatility estimates for the butterfly portfolios increase, a

sign of deterioration in the effectiveness of variance reduction. When the maturity choice becomes

the widest apart at the 7-year reference maturity with a maturity gap of 4, the volatility estimate

reaches 0.242%. The variance ratio to the reference swap rate increases to 6.7%.

Another way of examining the stability of the butterfly interest rate portfolios is to examine their

mean-reversion behavior. Panel B of Table II compares the autocorrelation of the weekly changes

of the reference swap rates to the autocorrelation of weekly changes of the butterfly interest-rate

portfolios. The autocorrelation estimates for weekly changes of the reference swap rates are close

to zero, reflecting the high persistence of the swap rate series and the hard-to-predict nature of

their weekly changes. By contrast, the autocorrelation estimates for the weekly changes of but-

terfly interest-rate portfolios constructed with adjacent maturities become much more negative,

ranging from −39.5% to −52.4%. A well-constructed butterfly interest-rate portfolio can remove

the most persistent component of the interest-rate movements and leave a portfolio that exhibits

much stronger mean reversion. Butterfly interest rate portfolio construction with adjacent maturi-

ties is very effective in removing the persistent movements.

As the maturity gap increases, the effectiveness declines. When the reference maturity is at 7-

year and the butterfly is constructed with the widest apart maturities, the autocorrelation estimate

for weekly changes of the butterfly becomes very close to zero at −0.029, not much different from

the autocorrelation estimate for the weekly changes of the reference swap rate series at −0.025.

Therefore, when the maturity gap is wide apart, the butterfly construction may completely lose its

effectiveness in removing the persistent component of the swap rate movement.
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The statistics in Table II highlight why butterfly construction is such a common practice in the

fixed-income market. By forming a butterfly with nearby maturities, one can effectively remove

99% of the variance in the reference swap rate movements. The construction also effectively

removes the most persistent component of the swap-rate movements, resulting in an interest-rate

portfolio that is much more mean-reverting than any single interest-rate series in the portfolio.

This high mean-reverting behavior dictates that the value of the butterfly portfolio shows long-run

stability as the variance of the butterfly movements does not increase with the holding horizon as

fast as for the individual swap rate series. Therefore, when there are opposite demands at nearby

maturities, broker dealers often use butterfly construction as a cheaper and more flexible way of

managing their interest-rate risk. Some investment firms with good broker relations can also share

the liquidity provision business with their brokers by timing the strong mean-reverting behavior of

the butterflies.

The analysis also shows the crucial importance of shrewd maturity choice. While butterflies

constructed with nearby maturities show remarkable stability, butterflies constructed with far-apart

maturities can be as unpredictable as the individual interest-rate series. The importance of ma-

turity choice is an aspect often neglected in traditional model-centric analysis. If the yield curve

variation can be well-captured by a two-factor structure, the model-centric thinking goes, one can

hedge away the variation of the two factors with the combination of any three distinct yields. In

this mindset, model design is of top importance whereas maturity choice is irrelevant. When a

two-factor structure looks insufficient, the researcher will attempt a three-factor or an even higher

dimensional structure, holding on to the mathematical trusim that K factors can always be neu-

tralized with the combination of any (K + 1) yields, rendering maturity choice irrelevant again.

The issue with such an approach is that the number of common factors itself depends crucially

on the maturity choice for the analysis. This dependence makes any assumed global factor struc-

tures decidedly local to the data set used for the analysis. Furthermore, as the number of factors

becomes large, the portfolios constructed with increasingly many legs lose the practical simplicity

and flexibility of butterfly portfolios for liquidity provision.

The decentralized nature of our new theory prompts us to think from a different perspective,
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and allows us to pay more attention to maturity choice than dynamics assumptions. Our analysis

shows that as long as one chooses nearby maturities, butterfly construction can be very effective

in removing persistent interest-rate risk, regardless of what the true underlying factor structure is.

Indeed, by relying on the local commonality of payoff structures, our new decentralized theory

prompts us to ignore the global factor structure all together and construct stable butterflies that are

independent of any structural model assumptions. It also allows us to construct each butterfly on

its own, decentralized from the construction of other butterflies.

4.4 Mean-variance Investments in Decentralized Butterflies

The previous subsection highlights the importance of maturity choice in forming stable butterfly

portfolios and shows that decentralized butterflies constructed with nearby maturities are naturally

stable due to the local commonality of their payoff structures. This subsection uses an out-of-

sample investment exercise to illustrate how to invest in these stable, decentralized butterflies based

on classic mean-variance analysis of the portfolio’s excess returns.

Starting on January 3rd, 1996, at each Wednesday t, for each butterfly maturity combination,

we use the past one-year history of weekly changes of the swap rates to estimate the annualized

variance rate σ̂2
t,i and compute the annualized convexity contribution ât,i =

1
2Ciσ̂

2
t,i for each series

i. We also use the one-year history to regress weekly changes of the reference swap rate against

weekly changes of the two swap rate series on the wings of the butterfly. The regression slope

estimates represent estimates for (−b̂t,1,−b̂t,3). From the regression residual series, we obtain an

annualized variance rate estimator σ̂2
t,e for the butterfly interest-rate portfolio et = b>t dyt .

According to the bond return attribution in (30), the variance of the returns on the par bond

butterfly portfolio is related to the variance of the interest-rate portfolio by

v̂t, f = D2
2 σ̂

2
t,e. (31)

With the weight on the reference bond at the center maturity normalized to one, the bond portfolio

return variance is proportional to the residual variance of the interest-rate portfolio σ̂2
t,e, scaled by
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the squared duration of the reference bond D2
2 .

To determine the annualized expected excess return on the butterfly bond portfolio, we take

expectation on the bond return decomposition equation in (7), annualize the expected return, and

deduct the financing rate from it,

EERt, f = w>t (yt− rt)+w>t ât−D2µt,e, (32)

where the first term captures the carry contribution over the financing rate, which we observe,

and the second term captures the contribution from convexity, which we construct based on the

variance estimators. Since the expected rate of change on each individual interest-rate series µt =

Et [dyt ]/dt is inherently difficult to predict, we avoid predicting the expected rate of change on each

individual series, but exploit the high mean-reverting behavior of the butterfly interest-rate portfolio

and directly predict the expected rate of change on the interest-rate portfolio, µt,e =Et
[
b>t dyt

]
/dt.

For this purpose, we take the last day of the regression residual et , assume that it will converge to

zero in a week, and set the expected rate of change to the negative of this residual annualized to 52

weeks, µ̂t,e =−52et .

Given the conditional mean excess return estimate in (32) and the conditional variance esti-

mate in (31), we perform classic mean-variance investing by setting the investment weight on the

butterfly par bond portfolio proportional to the mean-variance ratio,

nt, f = s ÊERt, f /v̂t, f . (33)

where s denotes a constant scaling coefficient. We apply the same scaling coefficient to different

butterfly portfolios. The choice of the scaling coefficient is immaterial to our analysis. We choose

a level so that the variations of the weights are within the usual confines of the leverage levels

employed by institutional fixed income investors.

Table III reports the summary statistics of the allocation weights nt, f to butterfly par bond

portfolios constructed with adjacent maturities around each of the six reference maturities. The

statistics include percentile values of the allocation weights at 10, 25, 50, 75, and 90 percentiles.
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The median weights are close to zero and the percentile values reveal a reasonably symmetric

distribution. The variations of the allocation weights are larger at shorter maturities than at longer

maturities.

[Table III about here.]

To examine how the allocation weights to different butterflies co-move, the last row of Table III

reports the average cross-correlation estimates of each allocation weight series with the other allo-

cation weight series. The average cross-correlation estimates are close to zero, suggesting that the

variations of the estimated expected excess returns from these decentralized butterfly portfolios are

largely independent of one another. This behavior forms a sharp contrast with the extremely high

cross-correlation between the market price of risk estimates extracted from different par bonds.

The butterfly construction has largely removed the common movements in the par bonds, so much

so that even though the expected excess returns on different par bonds tend to move strongly to-

gether, the expected excess returns on the decentralized butterfly par bond portfolios are largely

independent of one another.

Table IV reports the summary statistics of the weekly excess returns from investing in the

decentralized butterfly par bond portfolios constructed with adjacent maturities. The investment

performances are similar across butterflies with different reference maturities. The annualized

mean excess returns range from 7% to 14%. The annualized standard deviations range from 9% to

12%. The annualized information ratios, defined as the ratio of annualized mean excess return to

the annualized standard deviation, range from 0.84 to 1.18. The excess returns show large excess

kurtosis and positive skewness.

[Table IV about here.]

The last row of Table IV reports the average cross-correlation estimates of each excess return

series with other excess return series. Just as the allocation weights across different butterflies are

largely independent of one another, so are the realized excess returns from the different butterfly

portfolios. The near-independent nature of the decentralized butterflies offers strong diversification
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benefits when one simultaneously invests in multiple butterflies at different reference maturities.

The last column reports the excess return statistics from an equal-weighted portfolio of the six

butterflies across the six reference maturities. While the mean excess return retains the average

magnitude of 10%, the standard deviation of the aggregate portfolio becomes much smaller than

that of the individual butterflies at merely 5%. The annualized information ratio reaches 2.14,

nearly doubling that of the individual butterfly investment.

We repeat the investment exercise on butterflies constructed with wider maturity gaps. Table V

reports the summary statistics of the excess returns from investing in butterflies constructed with

maximum maturity gaps from two in Panel A to four in Panel C. Compared to butterflies con-

structed with adjacent maturities in Table IV, the annualized information ratios of the investments

on butterflies with wider maturity gaps become significantly lower, and increasingly so as the ma-

turity gap becomes wider. The performance deterioration comes from both lowered mean excess

return and increased return volatility. With larger maturity gaps, the excess return distribution also

shows less positive or even negative skewness.

[Table V about here.]

Worse yet, as the maturity gap becomes wider, butterflies with different reference maturities

become intertwined on the wings and lose their decentralized nature. As a result, the investment

returns become more correlated with one another. The average cross-correlation among the excess

return series is merely 9% when the maturity gap is 1, but increases to 23% when the maximum

maturity gap is 2, to 37% when the maximum maturity gap is 3, and reaches as high as 47%

when the maximum maturity gap is 4. The increased correlation reduces the benefit of diversifi-

cation when one invests in multiple butterfly portfolios across different reference maturities. With

the combined effects of deteriorated individual butterfly investment performance and reduced di-

versification benefits across different butterfly portfolios, the annualized information ratio for the

equal-weighted butterfly portfolio declines quickly as the maturity gap increases.
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4.5 Statistical Arbitrage Investment with Dynamic Term Structure Models

For comparison, we also perform an analogous out-of-sample investment analysis on butterflies

constructed to benefit from the statistical arbitrage opportunities identified from estimating a dy-

namic term structure model. We estimate both a two-factor model as in Duarte, Longstaff, and Yu

(2007) and a three-factor model as in Bali, Heidari, and Wu (2009). With the two-factor model,

we construct butterflies to neutralize both interest-rate factors. With the three-factor model, we

construct butterflies to neutralize the two more persistent factors. We adopt the parsimonious

dimension-invariant cascade term structure specification of Calvet, Fisher, and Wu (2018), and

follow their procedure in estimating the model parameters with quasi-maximum likelihood and

extracting the factors with unscented Kalman filter. The parsimony of the specification enhances

the parameter identification. To achieve better pricing performance, we re-estimate the model

parameters once a year using data from the previous year.

The out-of-sample exercise follows a similar procedure as in the previous subsection. Starting

on January 3rd, 1996, at each Wednesday t, we take the model parameter estimates from the

previous year, run the unscented Kalman filter through the history up to date t to generate the

history of the interest-rate factors. Based on the factor values at time t, we compute the sensitivity

of the swap rates to the two factors and compute the butterfly portfolio weight bt to neutralize

the portfolio’s exposure to these two factors while normalizing the weight of the center maturity

to one. We then convert the swap rate portfolio weight to the corresponding par bond portfolio

weight by adjusting for the par bond duration as in (29) .

We determine the allocation weight to a butterfly at each date to benefit from the statistical

arbitrage opportunities as manifested by the pricing errors. We measure the difference between

the observed value of the butterfly portfolio of swap rates and the corresponding model value, and

treat the pricing error as temporary market mispricing. The more positive the pricing error, the

higher the coupon payments of the par bond portfolio relative to the fair model value. To mitigate

the impact of persistent mispricing due to model misspecification, we demean the pricing error by

its historical average over the past year, and we scale the demeaned pricing error by the historical
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variance estimator of the pricing error series over the past year, multiplied by the squared duration

of the reference swap contract.

The reference maturity choice, the maturity combination, and the excess return calculation

all follow the same procedure as in the previous subsection. Table VI summarizes the out-of-

sample annualized information ratio for the statistical arbitrage investment in each butterfly port-

folio. When the butterflies are constructed with adjacent maturities, the statistical arbitrage trading

generates reasonable out-of-sample performance. The information ratio for the aggregate portfolio

reaches 1.54 when the butterflies are constructed with the two-factor model, and 1.84 when they

are constructed with the three-factor model.

[Table VI about here.]

Even with a centralized dynamic term structure model, the investment performance remains

highly dependent on maturity choice. Table VI shows that as the maturity gap of the butterflies

becomes wider, the investment performance deteriorates quickly. Indeed, when the butterfly is

constructed around the 7-year maturity with the widest maturity gap using the two-factor model,

the average excess return from the out-of-sample investment exercise becomes negative. Model

centralization does not replace the need for careful maturity consideration.

In a potentially high or even infinite dimensional world, the ambitious effort to build a robust

and universally applicable global factor structure is likely futile. The elusive nature of a global

factor structure also puts in question the true nature of the “arbitrage opportunities” identified from

a no-arbitrage dynamic term structure model. Unless under certain special circumstances when

a market maker can lock in a nonnegative future payoff without a cost, “arbitrage” opportunities

identified from any assumed dynamic term structure models are most likely just a mirage. Invest-

ing in them as if they were truly arbitrage opportunities can be dangerous and can lead to financial

ruins. Instead, owning up to the reality that they are not truly arbitrage opportunities does not

preclude us from investing in them simply as an investment opportunity with potentially attractive

risk-return tradeoff characteristics. Carefully gauging their expected returns and estimating their

risks can potentially lead to more honest assessments, more prudent investments, and long-run sus-
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tainability. Our decentralized theory provides such a framework for doing mean-variance analysis

on the excess returns of bonds and bond portfolios.

5. Concluding Remarks

In this paper, we propose a new modeling framework that is particularly suited for performing de-

centralized risk-return analysis on a bond or bond portfolio. The framework does not try to model

the full dynamics of a short rate, or determine the functional form of the whole term structure, or

its macroeconomic determinants, but rather focuses squarely on the behavior of the yield of the

particular bond in question, and attributes the short-term investment return on the bond to varia-

tions of the bond’s yield. The theory links the pricing of the bond’s yield at any given point in time

to the market pricing of risk on that bond and the conditional mean and variance forecasts on the

bond’s yield change at that time.

We illustrate the application of the theory in a decentralized investment analysis of a single par

bond. The theory allows us to extract the market price of the par bond at any given point in time

based on the observed yield spread over the financing cost at that time and the conditional mean

and variance forecasts on the bond’s yield change. We construct a simple conditional mean yield

change forecast on the par bond based on the yield’s sliding effect on the yield curve by assuming

that changes in long-term floating interest rates are difficult to predict. We construct the conditional

variance forecast with a simple historical variance estimator. The risk premium estimator based on

these simple conditional forecasts generates better out-of-sample predicting performance on long-

term bond excess returns than do commonly specified predictive regressions using the yield curve

information.

We also apply the theory to the construction and investment of decentralized butterfly bond

portfolios. The decentralized nature of our theory prompts us to pay more attention to maturity

choice than dynamics assumptions in the butterfly construction. We propose the concept of local

commonality and show that decentralized butterfly portfolios constructed with nearby maturities

are much more stable than those constructed with maturities far apart. Global factor structure
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specification does not replace the need for shrewd maturity choice. With shrewd maturity choice,

we can build stable decentralized butterfly bond portfolios and make profitable investments in them

based on classic mean-variance analysis, without specifying any global factor structures.

The decentralized theory moves away from cross-sectional relative valuation, and puts renewed

emphasis on classic risk-return analysis. While we retain the idea of forming portfolios of securi-

ties with related payoffs to cancel out a large proportion of their common movements, we do not

put so much trust on any given no-arbitrage model to the point of regarding the pricing errors of the

model as truly arbitrage opportunities. Instead, we propose to rely less on factor model construc-

tion, but pay more attention to security selection based on their structural linkages and our domain

expertise, construct the portfolios based on their statistical behaviors and our insights about their

near-term behaviors, and make investment decisions based on classic risk-return analysis.

Data Availability Statement

The empirical analysis in this paper uses US dollar LIBOR and swap rates, which can be down-

loaded from subscribed Bloomberg terminals.

Supplementary Material

An appendix is available at Review of Finance online.
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Table I. Out-of-sample forecasting performance on par bond excess returns

Entries report the out-of-sample forecasting performance on six-month excess returns on par bonds
with maturities from 2 to 30 years. Panel A reports the performance of the Cochrane-Piazzesi (CP)
bond risk premium estimator based on a portfolio of forward rates. Panel B reports the performance
of our bond risk premium estimators (CW) based on an implementation of our decentralized theory.
The performance measures include both a forecasting R2 measure and the Diebold–Mariano (DM)
(1995) t-statistic. The risk premiums are estimated with a 10-year rolling window. The out-of-
sample statistics for each series are computed on 704 weekly observations from January 5th, 2005
to Jun 27th, 2018.

Panel A. CP Panel B. CW
Maturity R2 DM R2 DM

2 -0.35 -0.96 0.13 0.57
3 -0.43 -1.61 0.14 1.15
4 -0.41 -1.61 0.18 1.88
5 -0.39 -1.51 0.19 2.26
7 -0.31 -1.30 0.18 2.59
10 -0.21 -1.02 0.15 2.73
15 -0.13 -0.76 0.12 2.75
20 -0.08 -0.59 0.10 2.78
30 -0.06 -0.47 0.09 2.82
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Table II. Effectiveness of variance reduction via butterfly construction

Entries report the annualized volatility in panel A and weekly autocorrelation in panel B of weekly
changes on each reference swap rate series, as well as the butterfly swap rate portfolios constructed
around the reference maturity with increasing maturity gaps. When one side of the wing maturity
reaches the edge of the maturity choice, the maturity gap increase reflects the maturity choice of
the other wing.

Reference Reference Butterflies with maximum maturity gap of

Maturity Swap 1 2 3 4

Panel A. Annualized volatility of weekly changes
3 0.876 0.078 0.089 0.106 0.122
5 0.928 0.079 0.115 0.192 0.213
7 0.934 0.078 0.123 0.169 0.242
10 0.928 0.109 0.147 0.191 0.213
15 0.893 0.064 0.108 0.124 0.135
20 0.866 0.070 0.102 0.107 0.113

Panel B. Autocorrelation of weekly changes
3 -0.001 -0.395 -0.326 -0.231 -0.179
5 -0.018 -0.524 -0.219 -0.073 -0.036
7 -0.025 -0.442 -0.247 -0.097 -0.029
10 -0.033 -0.412 -0.318 -0.243 -0.200
15 -0.050 -0.439 -0.316 -0.262 -0.232
20 -0.049 -0.443 -0.414 -0.401 -0.384
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Table III. Summary statistics of time-varying allocation weights to butterfly par bond portfolios

Entries report the summary statistics of the allocation weights to butterfly par bond portfolios
constructed with adjacent maturities around each of the six reference maturities. The statistics
include the values of the allocation weights at 10, 25, 50, 75, and 90 percentiles. The last row
reports the average cross-correlation of the allocation weights of each butterfly with the allocation
weights of other butterflies.

Maturity 3 5 7 10 15 20

10 -42.89 -23.80 -24.92 -15.36 -19.15 -19.35
25 -16.51 -9.29 -7.97 -5.14 -5.51 -5.38
50 -0.43 -0.15 -0.25 0.05 -0.05 0.00
75 14.94 7.24 7.55 4.67 6.73 5.29
90 40.44 21.07 23.21 15.31 24.57 18.98
Corr -0.04 0.01 0.07 0.09 -0.05 -0.06
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Table IV. Investment excess returns on butterfly par bond portfolios with adjacent maturities

Entries report the summary statistics of excess returns from investments in butterfly par bond port-
folios constructed with adjacent maturities. The statistics include the annualized mean excess
return (Mean), the annualized standard deviation (Stdev), the annualized information ratio (IR),
the skewness (Skewness), the excess kurtosis (Kurtosis), and the average correlation of each ex-
cess return series with the other series (Corr). The last column reports the statistics of an aggregate
portfolio constructed with equal weighting on the six butterfly portfolios across the six reference
maturities, and the correlation value in the last column represents the grand average of the cross-
correlations among the six butterfly investment return series.

Maturity 3 5 7 10 15 20 Aggregate

Mean 0.11 0.11 0.07 0.08 0.09 0.14 0.10
Stdev 0.10 0.09 0.09 0.09 0.09 0.12 0.05
IR 1.11 1.18 0.84 0.92 1.02 1.14 2.14
Skewness 2.53 1.15 9.47 0.93 1.55 1.03 0.78
Kurtosis 29.95 31.87 189.46 45.97 62.31 25.71 25.11
Corr 0.02 0.09 0.11 0.12 0.08 0.09 0.09
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Table V. Investment excess returns on butterfly bond portfolios with wider maturity gaps

Entries report the summary statistics of excess returns from investments oin butterfly bond portfo-
lios constructed with wider maturity gaps, with each panel representing butterflies with a different
maximum maturity gap. The statistics include the annualized mean excess return (Mean), the
annualized standard deviation (Stdev), the annualized information ratio (IR), the skewness (Skew-
ness), the excess kurtosis (Kurtosis), and the average correlation of each excess return series with
the other series (Corr). The last column reports the statistics of an aggregate portfolio constructed
with equal weighting on the six butterfly portfolios, and the correlation value in the last column
represents the grand average of the cross-correlations among the six butterfly investment return
series.

Maturity 3 5 7 10 15 20 Aggregate

Panel A. Maximum maturity gap = 2
Mean 0.10 0.08 0.05 0.05 0.08 0.11 0.08
Stdev 0.11 0.11 0.10 0.10 0.12 0.14 0.07
IR 0.87 0.78 0.53 0.54 0.65 0.79 1.18
Skewness 2.02 0.96 -1.70 -4.07 -0.30 0.39 -2.00
Kurtosis 22.53 20.94 35.02 80.67 35.20 28.16 38.94
Corr 0.01 0.13 0.34 0.32 0.35 0.23 0.23

Panel B. Maximum maturity gap = 3
Mean 0.09 0.07 0.05 0.06 0.06 0.11 0.07
Stdev 0.14 0.15 0.11 0.13 0.12 0.14 0.09
IR 0.68 0.46 0.42 0.44 0.51 0.81 0.82
Skewness 1.24 1.04 -3.51 -4.25 -1.30 -0.17 -2.74
Kurtosis 18.52 23.20 63.53 85.68 49.94 32.65 47.18
Corr 0.11 0.32 0.48 0.49 0.46 0.37 0.37

Panel C. Maximum maturity gap = 4
Mean 0.09 0.06 0.05 0.06 0.06 0.10 0.07
Stdev 0.14 0.15 0.14 0.13 0.13 0.14 0.10
IR 0.62 0.40 0.33 0.45 0.45 0.72 0.66
Skewness 0.98 0.86 -1.86 -4.45 -2.25 -0.14 -2.47
Kurtosis 13.80 24.55 37.24 88.69 56.92 34.10 43.15
Corr 0.22 0.48 0.61 0.57 0.52 0.43 0.47
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Table VI. Statistical arbitrage investment in butterfly bond portfolios with term structure models

Entries report the annualized information ratio for investing in butterfly par bond portfolios to ben-
efit from statistical arbitrage opportunities identified from the pricing errors of a two-factor (Panel
A) and a three-factor (Panel B) dynamic term structure model, respectively. Each column denotes
a butterfly with a different reference maturity. Each row denotes the maximum maturity gap the
butterfly is constructed around the reference maturity. The last column reports the information
ratio on the aggregate portfolio constructed with equal weighting on the six butterfly portfolios.

Reference: 3 5 7 10 15 20 Aggregate

Maturity gap:
Panel A. Butterflies constructed with a two-factor model

1 0.65 1.12 0.86 0.57 0.83 0.74 1.54
2 0.66 0.52 0.29 0.33 0.51 0.74 0.86
3 0.50 0.16 0.16 0.29 0.39 0.81 0.56
4 0.40 0.07 -0.02 0.24 0.34 0.66 0.35

Panel B. Butterflies constructed with a three-factor model
1 0.59 1.25 0.70 1.12 0.90 0.84 1.84
2 0.60 0.67 0.34 0.78 0.56 0.79 1.10
3 0.50 0.08 0.14 0.51 0.63 0.66 0.68
4 0.46 0.06 0.19 0.45 0.59 0.66 0.60
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Figure 1. Market price of bond risk extracted from long swap rates based on an implementation of
the decentralized theory. The swap rate data are weekly from January 1995 to December 2018. The
first year of the data are used to estimate the rolling-window variance rate of swap rate changes.
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Figure 2. Cross-correlations of weekly changes of swap rates at different maturity gaps. The six
lines denote correlation estimates of weekly swap rate changes between each of the six reference
maturities at 3, 5, 7, 10, 15, and 20 years and other maturities. The correlations are estimated on
the weekly data series from January 1995 to December 2018. The estimates are plotted against the
maturity gap between the other maturities and the reference maturity.
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