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Pricing Variance Swaps on Time-Changed Markov Processes\ast 

Peter Carr\dagger , Roger Lee\ddagger , and Matthew Lorig\S 

Abstract. We prove that the variance swap rate (fair strike) equals the price of a co-terminal European-style
contract when the underlying is an exponential Markov process, time-changed by an arbitrary
continuous stochastic clock, which has arbitrary correlation with the driving Markov process, provided
that the payoff function G of the European contract satisfies an ordinary integro-differential equation,
which depends only on the dynamics of the Markov process, not on the clock. We present examples
of Markov processes where the function G that prices the variance swap can be computed explicitly.
In general, the solutions G are not contained in the logarithmic family previously obtained in the
special case where the Markov process is a L\'evy process.
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1. Introduction. Consider a forward price F that evolves in continuous time. Let time
zero be the valuation time for a derivative security written on the path of F , with a fixed
maturity date T > 0. Assume that F0 > 0 is a known constant, and that the F process is
strictly positive over a time interval [0, T ]. As a result, the log price process X := logF is
well defined, and derivative securities expiring at T can also be written on the path of X. In
particular, we focus on a continuously monitored variance swap, which pays the difference
between the terminal quadratic variation of the log price process [logF ]T and a constant
determined at inception. For brevity, we will refer to a continuously monitored variance swap
as a VS in what follows. As with any swap, the constant that is determined at inception is
chosen so that there is no initial cost for entering into the VS. The objective of this paper is to
give additional conditions on the dynamics of F under which this constant can be determined
from an initial observation of the T -maturity implied volatility smile.

Earlier papers by Neuberger (1990) and Dupire (1993) show that continuity of F suffices
for pricing a VS relative to the co-terminal smile. Carr, Lee, and Wu (2012) weaken the
continuity hypothesis by showing that the log price X can be specified as a L\'evy process
running on an unspecified continuous clock. When the L\'evy process is specified as Brownian
motion with drift ( - 1/2), the earlier results of Neuberger (1990) and Dupire (1993) arise as a
special case. The more general formulation of Carr, Lee, and Wu (2012) allows for the variance
and jump-intensity to depend on the level of X through a local time-change (see Remark 4.3).
However, the local variance and L\'evy kernel must have the same functional dependence on
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X (up to a scaling constant). Additionally, while the arrival rate of each jump size in X is
allowed to depend on the level of X, the ratio of the arrival rates at any two jump sizes is
constant in that previous paper.

This paper weakens the stationary independent increments property of the L\'evy process
used by Carr, Lee, and Wu (2012). We allow that X could be specified as a time-homogeneous
Markov process running on an unspecified continuous clock. As a result (i) the variance and
jump-intensity may have distinct X-dependence and (ii) the ratio of the arrival rates at any
two jump sizes of X can depend on the current level of X.

In effect, we allow the background process to have nearly the full generality of general
Markov processes, whose jump times are not predictable, as discussed in Remark 2.1. We allow
that general background Markov process to undergo a time-change by an unspecified continuous
stochastic clock which may have arbitrary correlation or dependence on the background process.
In this setting, we prove that European-style payoff functions G price the VS, in the sense that
the VS rate (fair strike) equals the price of a contract paying G(logFT ) - G(logF0), provided
that G satisfies an ordinary integro-differential equation that depends only on the dynamics of
the Markov driver, not on the clock.

Our results are related to the semiparametric approach taken by Lorig, Lozano-Carbass\'e,
and Mendoza-Arriaga (2016), who consider the pricing of a VS when the underlying forward
price F is modeled as Feller diffusion time-changed by an unspecified L\'evy subordinator. For
fully parametric approaches to VS pricing in models with jumps and stochastic volatility,
we refer the reader to Itkin and Carr (2010); Wendong and Kuen (2014); Filipovi\'c, Gourier,
and Mancini (2016); and Cui, Kirkby, and Nguyen (2017). For model-independent bounds
on (discrete and continuous) VS prices, see Hobson and Klimmek (2012), Nabil (2014), and
Henry-Labord\`ere and Touzi (2016, Example 5.7).

The rest of this paper proceeds as follows. Section 2 specifies dynamics for the forward
price process and verifies that these dynamics can arise from time-changing the solution of a
stochastic differential equation. Section 3 states and proves our main result (Theorem 3.5),
which establishes that the VS has the same value as a European-style claim whose payoff
function solves an ordinary integro-differential equation (OIDE). Section 4 provides examples
of price dynamics for which we can solve the OIDE explicitly. Section 5 concludes.

2. Time-changed Markov dynamics.

2.1. Assumptions. With respect to a ``calendar-time"" filtration \{ Ft\} t\geq 0 on a probability
space (\Omega ,F,P), assume that X is a semimartingale with predictable characteristics (B,A, \nu ),
relative to a truncation function h (to be definite, let h(z) := z1\{ | z| \leq 1\} ), which satisfy

Bt =

\int t

0
bh(Xs - )d\tau s, At =

\int t

0
a2(Xs - )d\tau s, \nu (dt,dz) = d\tau t \times \mu (Xt - , dz),(2.1)

where \tau is a real-valued, continuous, and increasing process that is null at zero, a is a Borel
function, and for each fixed x \in R the \mu (x, \cdot ) is a L\'evy measure, and

sup
x\in R

| a(x)| < \infty , sup
x\in R

\int 
R

z2\mu (x,dz) < \infty , sup
x\in R

\int 
R

(ez  - 1 - z)\mu (x, dz) < \infty ,(2.2)D
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674 PETER CARR, ROGER LEE, AND MATTHEW LORIG

with

bh(x) :=  - 1

2
a2(x) - 

\int 
R

(ez  - 1 - h(z))\mu (x,dz).(2.3)

The intuition of the L\'evy kernel or transition kernel \mu is that it assigns to each point x in
the state space a ``local"" L\'evy measure \mu (x, \cdot ). Jumps of size in any interval J arrive with
intensity \mu (x, J) when X is at x.

Define the underlying forward price process F = \{ Ft\} t\in [0,T ] by

Ft = exp(Xt).

Regarding P as a risk-neutral measure, we have chosen bh in (2.3) to ensure F is a local
martingale. If \tau T is integrable, then Lemma 3.4 will imply that F is a true martingale.

2.2. Time-change of an SDE solution. This section verifies that the assumptions of
section 2.1 hold in the case when X comes from time-changing the solution of a stochastic
differential equation (SDE) driven by a Brownian motion and a Poisson random measure.
With respect to a filtration \{ Gu\} u\geq 0 (the ``business time"" filtration), consider a Brownian
motion W , and a Poisson random measure N with intensity measure \mu N (dz)du for some L\'evy
measure \mu N . Assume that Y is a semimartingale that satisfies

dYu = b(Yu) dt+ a(Yu) dWu +

\int 
z\in R

c(Yu - , z) (N(du,dz) - \mu N (dz)du),

where a is a bounded Borel function, b is given by

b(x) =  - 1

2
a2(x) - 

\int 
R

(ez  - 1 - z)\mu (x,dz),

and c is a Borel function such that \mu , defined for each Borel set J by

\mu (x, J) := \mu N (\{ z : c(x, z) \in J\setminus \{ 0\} \} ),

satisfies

sup
x\in R

\int 
R

z2\mu (x,dz) + sup
x\in R

\int 
R

(ez  - 1 - z)\mu (x,dz) < \infty .

Then by Jacod and Shiryaev (1987, Prop. III.2.29), the semimartingale characteristics of Y
are ( \widetilde B, \widetilde A, \widetilde \nu ), where

\widetilde Bu =

\int u

0
bh(Yv - )dv, \widetilde Au =

\int u

0
a2(Yv - )dv, \widetilde \nu (du,dz) = du\times \mu (Yu - ,dz),(2.4)

with bh defined in (2.3).
Now let \{ \tau t\} t\geq 0 be a continuous increasing family of finite G-stopping times (which are not

assumed to be independent of Y ). Let the ``calendar-time"" filtration be defined by Ft := G\tau t ,
and let

Xt := Y\tau t .
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VARIANCE SWAPS ON TIME-CHANGED MARKOV PROCESSES 675

By Kallsen and Shiryaev (2002b, Lemma 5), the F-characteristics of X are (B,A, \nu ), where
At = \widetilde A\tau t , Bt = \widetilde B\tau t , and \nu is determined by\int 

[0,t]\times R
1J(z)\nu (ds, dz) =

\int 
[0,\tau t]\times R

1J(z)\widetilde \nu (du,dz)(2.5)

for general Borel sets J and t \geq 0. By the first two equalities in (2.4) we have

\widetilde A\tau t =

\int \tau t

0
a2(Yv - )dv =

\int t

0
a2(Xs - )d\tau s, \widetilde B\tau t =

\int \tau t

0
bh(Yv - )dv =

\int t

0
bh(Xs - )d\tau s,

and by substituting the last equality in (2.4) into (2.5) and changing variables u to \tau s, we have\int 
[0,t]\times R

1J(z)\nu (ds, dz) =

\int 
[0,t]

\int 
R

1J(z)\mu (Xs - ,dz)d\tau s.

Therefore, (B,A, \nu ) satisfies (2.1). This verifies the hypotheses of section 2.1, as claimed.

Remark 2.1. Time-changes of SDE solutions are nearly as general as time-changes of
general Markov processes whose jump times are not predictable.

To be precise, \c Cinlar and Jacod (1981) show that every strong Markov quasi-left-continuous
semimartingale (which includes every Feller semimartingale) is a continuous time change of
an SDE solution driven by Brownian motion and a Poisson random measure (on an enlarged
probability space if needed). Thus, if X is a continuous time-change \tau \prime of a general Feller
semimartingale Y \prime , then by \c Cinlar--Jacod, Y \prime is a continuous time change \tau \prime \prime of an SDE solution
Y , and therefore, X is a continuous time change \tau \prime \circ \tau \prime \prime of an SDE solution Y .

2.3. Notation. Let Cn(R) denote the class of n-times continuously differentiable functions,
and define the integro-differential operator A by

Ag(x) := bh(x)g
\prime (x) +

a2(x)

2
g\prime \prime (x) +

\int 
R

(g(x+ z) - g(x) - g\prime (x)h(z)) \mu (x,dz)

=
a2(x)

2
(g\prime \prime (x) - g\prime (x)) +

\int 
R

(g(x+ z) - g(x) + (1 - ez)g\prime (x)) \mu (x,dz)(2.6)

for all g \in C2(R) such that g(x+ z) - g(x) + (1 - ez)g\prime (x) \in L1(\mu (x,dz)) for all x.
In more concise notation,

A =
1

2
a2(x)

\bigl( 
\partial 2  - \partial 

\bigr) 
+

\int 
R

\Bigl( 
ez\partial  - 1 + (1 - ez)\partial 

\Bigr) 
\mu (x,dz),(2.7)

where ez\partial is the shift operator defined by ez\partial g(x) := g(x + z). This use of \partial to express
translations in the jump part of the generator A follows Itkin and Carr (2012).

Let C1+(R) denote the union of C2(R) and the following set: all C1(R) functions g whose
derivative is everywhere absolutely continuous, and whose second derivative (which therefore
exists a.e.) is equal (a.e.) to a bounded function, which we will still denote by g\prime \prime or \partial 2g.

Thus the definition of A extends, by relaxing the g \in C2(R) condition to g \in C1+(R),
which still defines Ag uniquely, up to sets of measure zero, via (2.6).
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676 PETER CARR, ROGER LEE, AND MATTHEW LORIG

3. VS pricing. In what follows, each C will denote a constant (nonrandom and non-
time-varying). Different instances of C, even within the same expression, may have different
values.

Lemma 3.1. Suppose that g \in C1+(R) and there exists p \in R such that

sup
x\in R

| g\prime (x)e - px| < \infty and sup
x\in R

\int 
R

(epz  - 1 - pz) \mu (x,dz) < \infty .

Then g(X) is a special semimartingale.

Proof. By the form of It\^o's rule in, for instance, Protter (2004, Theorem IV.70), g(X) is a
semimartingale.

By Kallsen and Shiryaev (2002a, Lemma 2.8), it suffices to check that the predictable
process \int t

0

\int 
\{ z:| g(Xs - +z) - g(Xs - )| >1\} 

| g(Xs - + z) - g(Xs - )| \mu (Xs - ,dz)d\tau s(3.1)

is finite (hence of finite variation, as it is increasing in t).
In the case p = 0, we have | g(x+ z) - g(x)| \leq C| z| . In the case p \not = 0, we have

| g(x+ z) - g(x)| \leq 
\int x\vee (x+z)

x\wedge (x+z)
Cep\zeta d\zeta = Cepx| epz  - 1| .

In this case, for each m > 0, let k(m) be such that

| epz  - 1| 1| \mathrm{e}pz - 1| >1/m < (epz  - 1 - pz) + k(m)z2

for all z, and let M := sups\in [0,T ] e
pXs < \infty because X is c\`adl\`ag. Then\int 

\{ z:| g(Xs - +z) - g(Xs - )| >1\} 
| g(Xs - + z) - g(Xs - )| \mu (Xs - , dz)

is bounded in case p = 0 by supx\in R
\int 
\{ z:| z| >1/C\} C| z| \mu (x, dz) < \infty , and in case p \not = 0 by C times

sup
x\in R

\int 
\{ z:| \mathrm{e}pz - 1| >1/(CM)\} 

M | epz  - 1| \mu (x,dz)

\leq M sup
x\in R

\int 
R

(epz  - 1 - pz)\mu (x,dz) +Mk(CM) sup
x\in R

\int 
R

z2\mu (x, dz) < \infty .

These upper bounds do not depend on s \in [0, t], which verifies that (3.1) is finite.

Lemma 3.2. If E\tau T < \infty , then E supt\in [0,T ] | Xt| < \infty .

Proof. Let B\prime 
t := Bt +

\int 
[0,t]\times \BbbR (z  - h(z))\nu (du,dz). We have E supt\in [0,T ] | B\prime 

t| < \infty due to

(2.2) and E\tau T < \infty .
Defining Mt by

Xt = X0 +Mt +B\prime 
t,
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we have, by Jacod and Shiryaev (1987, Proposition II.2.29), that M is a local martingale
satisfying

E[M,M ]T = E

\int T

0
a2(Xs)d\tau s + E

\int T

0

\int 
R

z2\mu (Xs - ,dz)d\tau s < \infty 

because E\tau T < \infty . By Burkholder--Davis--Gundy, E supt\in [0,T ] | Mt| < \infty , which implies the
result.

Lemma 3.3. Suppose \tau T is bounded and p \in R satisfies

sup
x\in R

\int 
R

(epz  - 1 - pz)\mu (x,dz) < \infty .(3.2)

Let

Zt := exp(pXt  - Kt),

Kt :=

\int t

0

1

2
(p2  - p)a2(Xs)d\tau s +

\int t

0

\int 
R

[(epz  - 1 - pz) - p(ez  - 1 - z)]\mu (Xs - , dz)d\tau s.

Then Z is a martingale, and

E sup
t\in [0,T ]

exp(pXt) < \infty .(3.3)

Proof. Let N be the integer-valued random measure associated with the jumps of X. Let\widetilde N := N  - \nu .
By Kallsen and Shiryaev (2002a, Theorem 2.19), the process Z is the stochastic exponential

of the local martingale

pXc
t +

\int 
[0,t]\times R

(epz  - 1) \widetilde N(ds, dz),

where Xc is the continuous martingale part of X. By the boundedness of \tau T and assumptions
(2.2) and (3.2), it follows that

p2
\int T

0
a2(Xs)d\tau s +

\int T

0

\int 
R

(epz  - 1)2 \wedge (epz  - 1) \mu (Xs - ,dz)d\tau s

is bounded. So by Lepingle and M\'emin (1978), the process Z is a martingale and E supt\in [0,T ] Zt

< \infty , which implies (3.3) because supt\in [0,T ]Kt is bounded.

Let us define two conditions that may be satisfied by (\tau T , g), where g \in C1+(R). The first
is

E\tau T < \infty and sup
x\in R

| g\prime (x)| + ess sup
x\in R

| g\prime \prime (x)| < \infty ,(3.4)

and the second is \tau T , which is bounded, and

(3.5) \exists p \in R with sup
x\in R

\int 
R

(epz  - 1 - pz)\mu (x,dz)+ess sup
x\in R

e - px(| g(x)| + | g\prime (x)| + | g\prime \prime (x)| ) < \infty .
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Lemma 3.4. Assume that g is a sum of finitely many C1+(R) functions, each of which
satisfies (3.4) or (3.5). Let

\Gamma t := g(Xt) - g(X0) - 
\int t

0
Ag(Xs - )d\tau s, t \in [0, T ].

Then \Gamma is a martingale.

Proof. We prove for the case when the g satisfies (3.4) or (3.5). The case when g is the
sum of such functions follows immediately by linearity.

Either one of the conditions (3.4) or (3.5) implies that Ag is well defined.
To show that \Gamma is a local martingale, note that Jacod and Shiryaev (1987, Theorem

II.2.42c) extends as follows. They assume g bounded, only to show that g(X) is a special
semimartingale, but the conditions in Lemma 3.1 suffice for that conclusion. Moreover, they
assume g \in C2, only to use It\^o's lemma, but C1+ suffices here by Protter (2004, Theorem
IV.70) and its first corollary.

To show that \Gamma is a true martingale, it suffices, by Protter (2004, Theorem I.51), to show
that E supt\in [0,T ] | \Gamma t| < \infty . In case (3.4), let p := 0. In both cases, by (2.2), we have

| g\prime (x)| 
\int 
R

(ez  - 1 - z)\mu (x,dz) < Cepx,(3.6)

and by Taylor's theorem and | g\prime \prime (x+ z)| \leq Cepx+| p| for | z| < 1, we have\int 
| z| <1

| g(x+ z) - g(x) - g\prime (x)z| \mu (x, dz) \leq Cepx+| p| 
\int 
| z| <1

z2\mu (x,dz) \leq Cepx,(3.7)

and by (2.2),\int 
| z| >1

| g(x+ z) - g(x) - g\prime (x)z| \mu (x,dz) \leq Cepx
\int 
| z| >1

(epz + 1 + | z| ) \mu (x,dz) \leq Cepx,(3.8)

where each C does not depend on x. Combining (3.6), (3.7), (3.8), and the bounds on g\prime and
g\prime \prime , we have

sup
t\in [0,T ]

\bigm| \bigm| \bigm| \int t

0
Ag(Xs - )d\tau s

\bigm| \bigm| \bigm| \leq \int T

0
| Ag(Xs - )| d\tau s \leq C\tau T sup

t\in [0,T ]
epXt ,

which is integrable in case (3.4) because E\tau T < \infty , and in case (3.5) by Lemma 3.3. The
remaining component of \Gamma has magnitude

| g(Xt) - g(X0)| \leq 

\Biggl\{ 
C(1 + | Xt| ) in case (3.4),

C(1 + epXt) in case (3.5),

which has integrable supremum by Lemmas 3.2 and 3.3.

In conclusion, we relate E [logF ]T to the value of a European-style contract.
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Theorem 3.5. Assume that the forward price F , the log-price X, and the clock \tau satisfy the
assumptions of section 2.1. Assume that G is a sum of finitely many C1+(R) functions, each
of which satisfies (3.4) or (3.5), and that AG satisfies (for a.e. x)

AG(x) = a2(x) +

\int 
R

z2\mu (x,dz).(3.9)

Then G prices the VS, meaning that

E[logF T = EG(logFT ) - G(logF0).(3.10)

Thus, if P is a martingale measure for VS and G contracts, then the fair strike of the VS
(equivalently, the forward price of the floating leg of the VS) is (3.10).

Remark 3.6. The sum of finitely many functions is more general than a single function;
for instance, G may be the sum of two functions, one satisfying (3.5) for some p > 0, and the
other for some p < 0.

Remark 3.7. Functions G that satisfy the conditions of Theorem 3.5, and therefore price the
VS, are not unique. Indeed, if G does, then so does G(\cdot )+C0+C1 exp(\cdot ), where C0, C1 are any
constants. Adding the latter two terms does not affect the valuation EG(logFT ) - G(logF0),
because EFT = F0.

Proof of Theorem 3.5. We have

E [X]T = E

\biggl( \int T

0
a2(Xt)d\tau t +

\int T

0

\int 
R

z2N(dt,dz)

\biggr) 
= E

\int T

0

\biggl( 
a2(Xt - ) +

\int 
R

z2\mu (Xt - , dz)

\biggr) 
d\tau t

= E

\int T

0
AG(Xt - )d\tau t

= EG(XT ) - G(X0)

by Jacod and Shiryaev (1987, Theorems I.4.52 and II.1.8), eq. (3.9) and Lemma 3.4.

Theorem 3.5 allows us to value a VS relative to the T -maturity implied volatility smile as
follows:

E[logF ]T\underbrace{}  \underbrace{}  
\mathrm{A}

= EG(logFT )\underbrace{}  \underbrace{}  
\mathrm{B}

 - G(logF0)\underbrace{}  \underbrace{}  
\mathrm{C}

.(3.11)

A = the amount agreed upon at time 0 to pay at time T when taking the long side of a VS.
B = the value of a European contract with payoff G(logFT ).
C = the value of G(logF0) zero-coupon bonds.

As shown in Carr and Madan (1998), if h is a difference of convex functions, then for any
\kappa \in R+ we have

h(FT ) = h(\kappa ) + h\prime (\kappa )
\Bigl( 
(FT  - \kappa )+  - (\kappa  - FT )

+
\Bigr) 
+

\int \kappa 

0
h\prime \prime (K)(K  - FT )

+dKD
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+

\int \infty 

\kappa 
h\prime \prime (K)(FT  - K)+dK.

Here, h\prime is the left-derivative of h, and h\prime \prime is the second derivative, which exists as a generalized
function. Taking expectations,

Eh(FT ) = h(\kappa ) + h\prime (\kappa )
\Bigl( 
C(T, \kappa ) - P (T, \kappa )

\Bigr) 
+

\int \kappa 

0
h\prime \prime (K)P (T,K)dK +

\int \infty 

\kappa 
h\prime \prime (K)C(T,K)dK,

(3.12)

where P (T,K) and C(T,K) are, respectively, the prices of put and call options on F with
strike K and expiry T . Knowledge of F0 and the T -expiry smile implies knowledge of the
initial prices of T -expiry European options at all strikes K > 0. Thus, the quantity B in (3.11)
is uniquely determined from the T -expiry volatility smile by applying (3.12) to h = G \circ log,
assuming one can determine the function G. Therefore, to price a VS relative to co-terminal
calls and puts, what remains is to find a solution G of the OIDE (3.9).

4. Examples. In this section we provide examples, in the setting of section 2.2, of local
variance and L\'evy kernel pairs (a2, \mu ) such that solutions G of OIDE (3.9) can be obtained
explicitly. In one of the examples, moreover, we investigate the ratio between the values of the
VS and the log contract.

4.1. Constant relative jump intensity.

Theorem 4.1. Assume the local variance a2(x) and L\'evy kernel \mu (x,dz) are of the forms

a2(x) = \gamma 2(x)\sigma 2, \mu (x,dz) = \gamma 2(x) \nu (dz),

where \sigma \geq 0 is a constant, \nu is a L\'evy measure, and \gamma is a positive bounded Borel function.
Assume E\tau T < \infty . Then

G(x) :=  - Qx(4.1)

prices the VS, where

Q :=
\sigma 2 + \mu 2

\sigma 2/2 + \varphi 0
, \varphi 0 :=

\int 
R

(ez  - 1 - z)\nu (dz), \mu 2 :=

\int 
R

z2\nu (dz).(4.2)

Proof. One can verify directly that G in (4.1) satisfies (3.4) and (3.9).

Remark 4.2. In particular, the constant Q in two extreme cases is as follows:

No jumps (\nu \equiv 0) : Q = 2,(4.3)

Pure jumps (\sigma = 0) : Q = \mu 2/\varphi 0.(4.4)

Remark 4.3. Dynamics of this form arise by time-changing a L\'evy process Yu using the
clock

\tau t := inf

\biggl\{ 
u \geq 0 :

\int u

0

1

\gamma 2(Yv)
dv \geq t

\biggr\} 
.

See, for instance, K\"uchler and S{\e}rensen (1997, Proposition 11.6.1). Thus the payoff function
(4.1) in this case should, and indeed does, match the payoff function obtained by Carr, Lee,
and Wu (2012) for time-changed L\'evy processes.
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4.2. Fractional linear relative jump intensity. Let \nu be a L\'evy measure such that 2\varphi 0 <
\mu 2 < \infty , with notation as in (4.2). (The case of \mu 2 < 2\varphi 0 admits a similar solution, but with
\beta < 0.)

Let \alpha , \beta \in R such that

0 < \beta < 1 - 2\varphi 0

\mu 2
.

Let

\gamma 3 :=  - \alpha 

2\beta 
 - 1

\beta 
, \gamma 0 :=  - \alpha 

2\beta 
+

(\beta  - 1)\mu 2

2\beta \varphi 0
< \gamma 3.

Let \gamma 1 and \gamma 2 satisfy \gamma 0 < \gamma 1 < \gamma 2 < \gamma 3. Define the C1 function

G(x) :=

\left\{     
\alpha \gamma 1 + \beta \gamma 21 + (x - \gamma 1)(\alpha + 2\beta \gamma 1), x < \gamma 1,

\alpha x+ \beta x2, \gamma 1 \leq x \leq \gamma 2,

\alpha \gamma 2 + \beta \gamma 22 + (x - \gamma 2)(\alpha + 2\beta \gamma 2), x > \gamma 2.

(4.5)

We can and do take \partial 2G(x) = 2\beta 1x\in [\gamma 1,\gamma 2] in the sense of Theorem 3.5.
Let a be a positive, bounded Borel function, and let

c(x) :=
a2(x)

2
\times \partial 2G(x) - \partial G(x) - 2\int 

R
(G(x) - G(x+ z) + (ez  - 1)\partial G(x) + z2)\nu (dz)

.(4.6)

Lemma 4.4. The function c is positive and bounded.

Proof. The denominator in (4.6) has a positive lower bound because\int 
R

(G(x) + z\partial G(x) - G(x+ z))\nu (dz) + \varphi 0\partial G(x) + \mu 2 \geq \varphi 0\partial G(x) + (1 - \beta )\mu 2

\geq \varphi 0(\alpha + 2\beta \gamma 0) + (1 - \beta )\mu 2 > 0.

To show that the numerator \partial 2G - \partial G - 2 in (4.6) is positive and bounded, we verify in
three intervals. For x \in (\gamma 1, \gamma 2), the numerator is 2\beta  - \alpha  - 2 - 2\beta x > 2\beta  - \alpha  - 2 - 2\beta \gamma 3 = 2\beta > 0,
and is moreover bounded above. In the other two intervals, the result follows from

 - \alpha  - 2\beta \gamma 1  - 2 >  - \alpha  - 2\beta \gamma 2  - 2 >  - \alpha  - 2\beta \gamma 3  - 2 = 0,

where the first two expressions are the numerator for x \leq \gamma 1 and x \geq \gamma 2, respectively.

Theorem 4.5. Assume the local L\'evy kernel \mu is given by

\mu (x,dz) = c(x)\nu (dz),

where c, \nu , G, and the local variance a2 are related by (4.5) and (4.6). Assume E\tau T < \infty .
Then G prices the VS.

Proof. We have that G satisfies (3.4) and, by (4.6), the OIDE (3.9).

D
ow

nl
oa

de
d 

06
/0

9/
21

 to
 9

8.
14

.2
39

.8
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

682 PETER CARR, ROGER LEE, AND MATTHEW LORIG

Remark 4.6. We describe these dynamics as ``fractional linear relative jump intensity""
because, for x such that \{ x+ z : z \in supp(\nu )\} \cup \{ x\} \subset [\gamma 1, \gamma 2], the relative jump intensity

c(x)

a2(x)
=

\beta  - \alpha /2 - 1 - \beta x

(1 - \beta )\mu 2 + (\alpha + 2\beta x)\varphi 0

is a ratio of polynomials linear in the underlying log-price.

4.3. L\'evy mixture with state-dependent weights. Assume the local variance a2(x) and
L\'evy kernel \mu (x, dz) are of the forms

a2(x) = \alpha \sigma 2
0(x) + \delta \beta \sigma 2

1(x), \mu (x,dz) =
\sigma 2
0(x)

2
\nu 0(dz) + \delta 

\sigma 2
1(x)

2
\nu 1(dz),

\sigma 2
1(x)

\sigma 2
0(x)

= ecx =: ec(x),

(4.7)

where \alpha , \beta , \delta \geq 0 and \nu 0, \nu 1 are L\'evy measures with\int 
R

\bigm| \bigm| \bigm| e\lambda z  - 1 + (1 - ez)\lambda 
\bigm| \bigm| \bigm| \nu i(dz) < \infty \forall \lambda \in C, i \in \{ 0, 1\} .(4.8)

Let us first derive a candidate solution G to (3.9) from an ansatz and then verify the validity
of the solution.

Inserting the expressions for a2 and \mu from (4.7) into (3.9) and dividing by 1
2\sigma 

2
0(x), we

have

(A0 + \delta ecA1)G = I0 + \delta ecI1,(4.9)

where I0 and I1 are constants defined by

I0 = 2\alpha +

\int 
R

z2 \nu 0(dz), I1 = 2\beta +

\int 
R

z2 \nu 1(dz),

and using the notation of (2.7), the operators A0 and A1 are given by

A0 = \alpha 
\bigl( 
\partial 2  - \partial 

\bigr) 
+

\int 
R

\Bigl( 
ez\partial  - 1 + (1 - ez)\partial 

\Bigr) 
\nu 0(dz),

A1 = \beta 
\bigl( 
\partial 2  - \partial 

\bigr) 
+

\int 
R

\Bigl( 
ez\partial  - 1 + (1 - ez)\partial 

\Bigr) 
\nu 1(dz).

Assume a solution G of (4.9) has a power series expansion in \delta :

G =

\infty \sum 
n=0

\delta nGn,(4.10)

where the functions \{ Gn\} n\geq 0 are, at this point, unknown. Inserting the expansion (4.10) into
OIDE (4.9) and collecting terms of like order in \delta results in the following sequence of nested
OIDEs:

O(1) : A0G0 = I0,
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O(\delta ) : A0G1 + ecA1G0 = ecI1,(4.11)

O(\delta n) : A0Gn + ecA1Gn - 1 = 0, n \geq 2.

Noting that

A0e\lambda = \phi \lambda e\lambda , \phi \lambda = \alpha 
\bigl( 
\lambda 2  - \lambda 

\bigr) 
+

\int 
R

\Bigl( 
e\lambda z  - 1 + (1 - ez)\lambda 

\Bigr) 
\nu 0(dz) \forall \lambda \in C,

A1e\lambda = \chi \lambda e\lambda , \chi \lambda = \beta 
\bigl( 
\lambda 2  - \lambda 

\bigr) 
+

\int 
R

\Bigl( 
e\lambda z  - 1 + (1 - ez)\lambda 

\Bigr) 
\nu 1(dz) \forall \lambda \in C,

one can easily verify, by direct substitution into (4.11), a solution G0 given by

G0(x) :=  - Q0x, Q0 :=
2\alpha +

\int 
R
z2\nu 0(dz)

\alpha +
\int 
R
(ez  - 1 - z)\nu 0(dz)

,(4.12)

and solutions \{ Gn\} n\geq 1 given, for c \not = 0, by

Gn(x) := Q1
enc(x)

\phi nc

n - 1\prod 
k=1

 - \chi kc

\phi kc
, Q1 := 2\beta +

\int 
R

z2\nu 1(dz) - Q0

\biggl( 
\beta +

\int 
R

(ez  - 1 - z)\nu 1(dz)

\biggr) 
.

(4.13)

Thus we have a formal series expansion, defined by (4.10), (4.12), and (4.13), for a function G
that solves OIDE (3.9). The following conditions suffice for validity of this expansion.

Theorem 4.7. Assume that the local variance a2(x) and L\'evy kernel \mu (x,dz) are given by
(4.7). Assume further that \nu 0 and \nu 1 satisfy (4.8), and c \not = 0, and

lim
n\rightarrow \infty 

n2c2 + J(nc; \nu 1)

J((n+ 1)c; \nu 0)
= 0, where J(x; \nu ) :=

\int 
R

\nu (dz)(exz  - 1 - xz).(4.14)

Then the function G is well defined on \BbbR by (4.10), with (4.12) and (4.13), and solves OIDE
(3.9).

Proof. The summation in (4.10) can be written as

 - Q0x+Q1

\infty \sum 
n=1

anu
n(x), where an =

1

\phi nc

n - 1\prod 
k=1

 - \chi kc

\phi kc
and u(x) = \delta ec(x).(4.15)

The infinite sum is a power series in u, with coefficients \{ an\} n\geq 1 satisfying, by (4.14),

lim
n\rightarrow \infty 

an+1

an
= lim

n\rightarrow \infty 

 - \chi nc

\phi (n+1)c
= 0,

which implies that the sum in (4.15) has infinite radius of convergence, and G is well-defined on
\BbbR by (4.10), with (4.12) and (4.13). As every power series can be differentiated and integrated
term-by-term within its radius of convergence, G solves OIDE (3.9).

Remark 4.8. If \alpha = 0, \beta > 0, \nu 1 \equiv 0, and c > 0 (resp., c < 0), then any L\'evy measure \nu 0
with support on the positive (resp., negative) axis will satisfy (4.14).
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0.5 1.0 1.5 2.0 2.5

0.1
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0.5

0.6

Figure 1. In this figure, we set F0 = 1, \alpha = 1, \beta = 0, \delta = 0.35, \nu 0 \equiv 0, and \nu 1 = \delta z0 , where z0 = 2.5, and
we plot h(FT ) as a function of FT with c = 0 (solid), c =  - 1 (dashed), and c =  - 2 (dotted). Note that, when
c = 0, we are in the setting of section 4.1 and thus h is a log contract plus an affine function.

Remark 4.9. If \alpha > 0, \beta = 0, \nu 0 \equiv 0, and c > 0 (resp., c < 0), then a L\'evy measure \nu 1 will
satisfy (4.14) only if the support of \nu 1 lies strictly within the negative (resp., positive) axis.

Remark 4.10. In the particular case where the forward price F is a time-change of an
exponential L\'evy process with variance \alpha and L\'evy measure \nu 0, the function G0 prices the VS.
In the more general class of models in (4.7), which can be seen as a regular \delta -perturbation
around the time-changed exponential L\'evy case, the candidate function G for pricing the VS
by Theorem 3.5 becomes, by (4.15), a \delta -perturbation around G0.

In Figures 1 and 2, using a variety of different model parameters, we plot

h(FT ) := G(logFT ) - G(logF0) +A(FT  - F0), A =
 - 1

F0
G\prime (logF0)(4.16)

as a function of FT , where G is defined by (4.10), (4.12), and (4.13). Note that, if G prices
the VS, then h prices the VS for any constant A. The particular value of A in (4.16) ensures
that h\prime (F0) = 0.

4.3.1. Ratio of the VS value to the log contract value. Although the purpose of this
paper is to compute the value of a VS relative to the G contract (and to solve for G), it is also
interesting to compute the ratio of the value of the VS to the value of a European log contract.
To this end, for a function G that prices a VS, let

Q(T, F0) :=
EG(logFT ) - G(logF0)

 - E log(FT /F0)
=

E [logF ]T
 - E log(FT /F0)
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0.5 1.0 1.5 2.0 2.5

0.5
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1.5

2.0

2.5
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3.5

Figure 2. In this figure, we set F0 = 1, \alpha = 1, \beta = 0, \delta = 1, \nu 0 \equiv 0, and \nu 1 = \delta z0 , where z0 =  - 2.5, and
we plot h(FT ) as a function of FT with c = 0 (solid), c = 2 (dashed), and c = 4 (dotted). Note that, when c = 0,
we are in the setting of section 4.1 and thus h is a log contract plus an affine function.

In Carr, Lee, and Wu (2012) the authors find that if Ft = exp(\widehat Y\tau t), where \widehat Y is a L\'evy process,
then the ratio Q(T, F0) is a constant Q which is independent of the initial value F0 of the
underlying and the time to maturity T (see Theorem 4.1 and Remark 4.3 of section 4.1). This
is in contrast to empirical results from the same paper, which show in a study of S\&P500
data that the ratio Q(T, F0) is not constant. In the more general time-changed Markov setting
considered in the present paper, the ratio Q(T, F0) can, in general, depend on the current value
F0 of the underlying and the time to maturity T . Below, we derive a formal approximation for
the ratio Q(T, F0) for one specific example of (a2, \mu ) which is of the form (4.7).

Assumption 4.11. Throughout this section, we assume Ft = exp(Y\tau t), where \tau is a contin-
uous time change independent of Y and the Laplace transform L(t, \lambda ) := E e\tau t\lambda is known. Let
the Markov process Y have local variance a2(x) and L\'evy kernel \mu (x,dz) of the form (4.7)
with

\alpha = 1, \beta = 0, \sigma 2
0(x) = 2\omega 2, \sigma 2

1(x) = 2\omega 2ec(x), \nu 0 \equiv 0, \nu 1 \equiv \nu ,

where \omega , c > 0. Assume, moreover, that the L\'evy measure \nu satisfies the conditions of Theorem
4.7. Thus, the function G, defined by (4.10), (4.12), and (4.13), solves (3.9) . In accordance
with Remark 4.9, jumps must be downward, i.e., \nu (R+) = 0.

We compute an approximation for Q(T, F0) in three Steps, described below.

Step 1. Derive an approximation for u(t, x;\varphi ) := Ex \varphi (Yt).
Formally, the function u satisfies the Kolmogorov backward equation

( - \partial t +A)u = 0, u(0, \cdot ;\varphi ) = \varphi ,(4.17)
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where A, the generator of Y , is given by

A = \omega 2A0 + \delta ec\omega 
2A1.(4.18)

Now, suppose that the function u has a power series expansion in \delta ,

u =

\infty \sum 
n=0

\delta nun,(4.19)

where the functions \{ un\} n\geq 0 are unknown. Inserting expressions (4.18) and (4.19) into (4.17)
and collecting terms of like powers of \delta , we obtain a sequence of nested partial integro-differential
equations (PIDEs) for the unknown functions \{ un\} n\geq 0,

O(1) : ( - \partial t + \omega 2A0)u0 = 0, u0(0, \cdot ;\varphi ) = \varphi ,

O(\delta n) : ( - \partial t + \omega 2A0)un =  - ec\omega 
2A1un - 1, un(0, \cdot ;\varphi ) = 0, n \geq 1.

The solution to this nested sequence of PIDEs is given in Jacquier and Lorig (2013, eq. (5.2)).
We have

un(t, x;\varphi ) =

\int 
R

\Biggl( 
n\sum 

k=0

et\omega 
2\phi \tti \lambda +kce\tti \lambda +nc(x)\prod n

j \not =k(\omega 
2\phi \tti \lambda +kc  - \omega 2\phi \tti \lambda +jc)

\Biggr) \Biggl( 
n - 1\prod 
k=0

\omega 2\chi \tti \lambda +kc

\Biggr) \widehat \varphi (\lambda )d\lambda ,(4.20)

where an empty product is defined to equal one
\prod  - 1

k=0(\cdot \cdot \cdot ) := 1, and \widehat \varphi denotes the distributional
generalization of the Fourier transform defined for integrable functions \varphi by

\widehat \varphi (\lambda ) := 1

2\pi 

\int 
R

\varphi (x)e - \tti \lambda xdx.

Inserting expression (4.20) into the sum (4.19) and truncating at order N yields \=uN , our Nth
order approximation of u. Explicitly,

\=uN (t, x;\varphi ) :=
N\sum 

n=0

\delta nun(t, x;\varphi )

=

\int 
R

N\sum 
n=0

\delta n

\Biggl( 
n\sum 

k=0

et\omega 
2\phi \tti \lambda +kce\tti \lambda +nc(x)\prod n

j \not =k(\omega 
2\phi \tti \lambda +kc  - \omega 2\phi \tti \lambda +jc)

\Biggr) \Biggl( 
n - 1\prod 
k=0

\omega 2\chi \tti \lambda +kc

\Biggr) \widehat \varphi (\lambda )d\lambda .(4.21)

Step 2. Derive an approximation for v(t, x;\varphi ) := Ex \varphi (Y\tau t).
Using the independence of \tau and Y , we have

v(t, x;\varphi ) := Ex\varphi (Y\tau t) = ExEx[\varphi (Y\tau t)| \tau t] = Eu(\tau t, x;\varphi ).(4.22)

Replacing the function u in (4.22) with \=uN yields \=vN , our Nth order approximation of v.
Explicitly,

\=vN (t, x;\varphi ) := E \=uN (\tau t, x;\varphi )

=

\int 
R

N\sum 
n=0

\delta n

\Biggl( 
n\sum 

k=0

L(t, \omega 2\phi \tti \lambda +kc)e\tti \lambda +nc(x)\prod n
j \not =k(\omega 

2\phi \tti \lambda +kc  - \omega 2\phi \tti \lambda +jc)

\Biggr) \Biggl( 
n - 1\prod 
k=0

\omega 2\chi \tti \lambda +kc

\Biggr) \widehat \varphi (\lambda )d\lambda ,(4.23)

using (4.21) and Ee\lambda \tau t = L(t, \lambda ).
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Step 3. Derive an approximation for Q(T, F0).
With G as given in Theorem 4.7, we have

Q(T, F0) =
EG(logFT ) - G(logF0)

 - E log(FT /F0)

= Q0 +

\sum \infty 
n=1 bn

\Bigl( 
Eenc(logFT ) - enc(logF0)

\Bigr) 
 - E logFT + logF0

= Q0 +

\sum \infty 
n=1 bn

\Bigl( 
Eenc(Y\tau T ) - enc(logF0)

\Bigr) 
 - EY\tau T + logF0

= Q0 +

\sum \infty 
n=1 bn

\Bigl( 
v(T, logF0; enc) - enc(logF0)

\Bigr) 
 - v(T, logF0; Id) + logF0

,(4.24)

bn := Q1\delta 
nan = Q1

\delta n

\phi nc

n - 1\prod 
k=1

 - \chi kc

\phi kc
,

where Id is the identity function Id(x) = x. Replacing the function v wherever it appears in
(4.24) by \=vN and truncating the infinite sum at N terms produces \=QN (T, F0), our Nth order
approximation of Q(T, F0). Explicitly,

\=QN (T, F0) := Q0 +

\sum N
n=1 bn

\Bigl( 
\=vN (T, logF0; enc) - enc(logF0)

\Bigr) 
 - \=vN (T, logF0; Id) + logF0

.(4.25)

The Fourier transforms of the complex exponential e\gamma (\gamma \in C) and the identity function Id, as
needed to compute \=vN (T, logF0; enc) and \=vN (T, logF0; Id) in (4.25), are given by

\widehat e\gamma (\lambda ) = \delta (\lambda + \tti \gamma ), \gamma \in C, \widehat Id(\lambda ) = \tti \delta \prime (\lambda ),(4.26)

where \delta and \delta \prime denote the Dirac delta function and its derivative, understood in the sense of
distributions. Inserting (4.26) into (4.23) and integrating produces closed-form expressions for
both \=vN (T, logF0; enc) and \=vN (T, logF0; Id).

Figure 3 plots \=QN (T, F0) as a function of F0.

5. Conclusion. In Carr, Lee, and Wu (2012), the authors model the forward price as the
exponential of a L\'evy process time-changed by a continuous increasing stochastic clock. In this
setting, they show that a VS has the same value as a fixed number of European log contracts.
The exact number of log contracts that price the VS depends only on the dynamics of the
driving L\'evy process, irrespective of the time-change.

This paper generalizes the underlying forward price dynamics to time-changed exponential
Markov processes, where the background process may have a state-dependent (i.e., local)
volatility and L\'evy kernel, and where the stochastic time-change may have arbitrary dependence
or correlation with the Markov process. In the time-changed Markov setting, we prove that
the VS is priced by a European-style contract whose payoff depends only on the dynamics
of the Markov process, not on the time-change. We explicitly compute the payoff function
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10 20 30 40 50 60

2

e

Figure 3. A plot of \=QN (T, F0), our N th order approximation of Q(T, F0) :=
E [\mathrm{l}\mathrm{o}\mathrm{g}F ]T

 - E \mathrm{l}\mathrm{o}\mathrm{g}(FT /F0)
as a function of

F0 (solid line). In this plot, the forward price is given by Ft = exp(Yt) (i.e., no time-change) and the Markov
process Y has local variance a2(x) = 2\omega 2 and L\'evy kernel \mu (x,dz) = \delta \omega 2ecx\nu (dz), where \nu = \delta z0 . We use the
following parameters: c = 0.395, \delta = 1.0, \omega = 0.3, z0 =  - 1.0, and T = 1.0. We fix N = 35. Note that as
F0 \rightarrow 0, the jump intensity goes to zero: \delta \omega 2F c

0 \rightarrow 0. Accordingly, as F0 \rightarrow 0, the ratio E [\mathrm{l}\mathrm{o}\mathrm{g}F ]T
 - E \mathrm{l}\mathrm{o}\mathrm{g}(FT /F0)

\rightarrow 2,

which is what one would expect for a forward price process that experiences no jumps (see (4.3)). As F0 \rightarrow \infty 
and the jump-intensity increases, we expect the ratio E [\mathrm{l}\mathrm{o}\mathrm{g}F ]T

 - E \mathrm{l}\mathrm{o}\mathrm{g}(FT /F0)
\rightarrow \mu 2/\varphi 0 = e, which is the corresponding

ratio for a pure-jump L\'evy-type process (see (4.4)). Note that if the Markov process Y were a L\'evy process (i.e.,

with constant variance coefficient and L\'evy measure), as in Carr, Lee, and Wu (2012), the ratio E [\mathrm{l}\mathrm{o}\mathrm{g}F ]T
 - E \mathrm{l}\mathrm{o}\mathrm{g}(FT /F0)

would be a constant independent of F0.

that prices the VS for various driving Markov processes. When the Markov process is a L\'evy
process we recover the results of Carr, Lee, and Wu (2012).

For certain Markov processes, we also compute directly from model parameters an approx-
imation for valuation of European-style contracts, showing the variation in the ratio of the VS
value to the log contract value as a function of the current level of the underlying. This is in
contrast to Carr, Lee, and Wu (2012), who show in the more restrictive time-changed L\'evy
process setting that this ratio is constant.

Acknowledgment. The authors are grateful to Feng Zhang and Stephan Sturm for their
helpful comments.
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