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Pricing Variance Swaps on Time-Changed Markov Processes*
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Abstract. We prove that the variance swap rate (fair strike) equals the price of a co-terminal European-style
contract when the underlying is an exponential Markov process, time-changed by an arbitrary
continuous stochastic clock, which has arbitrary correlation with the driving Markov process, provided
that the payoff function G of the European contract satisfies an ordinary integro-differential equation,
which depends only on the dynamics of the Markov process, not on the clock. We present examples
of Markov processes where the function GG that prices the variance swap can be computed explicitly.
In general, the solutions G are not contained in the logarithmic family previously obtained in the
special case where the Markov process is a Lévy process.
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1. Introduction. Consider a forward price F' that evolves in continuous time. Let time
zero be the valuation time for a derivative security written on the path of F', with a fixed
maturity date T > 0. Assume that Fy > 0 is a known constant, and that the F' process is
strictly positive over a time interval [0,7]. As a result, the log price process X := log F' is
well defined, and derivative securities expiring at 7' can also be written on the path of X. In
particular, we focus on a continuously monitored variance swap, which pays the difference
between the terminal quadratic variation of the log price process [log F|r and a constant
determined at inception. For brevity, we will refer to a continuously monitored variance swap
as a VS in what follows. As with any swap, the constant that is determined at inception is
chosen so that there is no initial cost for entering into the VS. The objective of this paper is to
give additional conditions on the dynamics of F' under which this constant can be determined
from an initial observation of the T-maturity implied volatility smile.

Earlier papers by Neuberger (1990) and Dupire (1993) show that continuity of F suffices
for pricing a VS relative to the co-terminal smile. Carr, Lee, and Wu (2012) weaken the
continuity hypothesis by showing that the log price X can be specified as a Lévy process
running on an unspecified continuous clock. When the Lévy process is specified as Brownian
motion with drift (—1/2), the earlier results of Neuberger (1990) and Dupire (1993) arise as a
special case. The more general formulation of Carr, Lee, and Wu (2012) allows for the variance
and jump-intensity to depend on the level of X through a local time-change (see Remark 4.3).
However, the local variance and Lévy kernel must have the same functional dependence on
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X (up to a scaling constant). Additionally, while the arrival rate of each jump size in X is
allowed to depend on the level of X, the ratio of the arrival rates at any two jump sizes is
constant in that previous paper.

This paper weakens the stationary independent increments property of the Lévy process
used by Carr, Lee, and Wu (2012). We allow that X could be specified as a time-homogeneous
Markov process running on an unspecified continuous clock. As a result (i) the variance and
jump-intensity may have distinct X-dependence and (ii) the ratio of the arrival rates at any
two jump sizes of X can depend on the current level of X.

In effect, we allow the background process to have nearly the full generality of general
Markov processes, whose jump times are not predictable, as discussed in Remark 2.1. We allow
that general background Markov process to undergo a time-change by an unspecified continuous
stochastic clock which may have arbitrary correlation or dependence on the background process.
In this setting, we prove that European-style payoff functions G price the VS, in the sense that
the VS rate (fair strike) equals the price of a contract paying G(log Frr) — G(log Fy), provided
that G satisfies an ordinary integro-differential equation that depends only on the dynamics of
the Markov driver, not on the clock.

Our results are related to the semiparametric approach taken by Lorig, Lozano-Carbassé,
and Mendoza-Arriaga (2016), who consider the pricing of a VS when the underlying forward
price F' is modeled as Feller diffusion time-changed by an unspecified Lévy subordinator. For
fully parametric approaches to VS pricing in models with jumps and stochastic volatility,
we refer the reader to Itkin and Carr (2010); Wendong and Kuen (2014); Filipovié¢, Gourier,
and Mancini (2016); and Cui, Kirkby, and Nguyen (2017). For model-independent bounds
on (discrete and continuous) VS prices, see Hobson and Klimmek (2012), Nabil (2014), and
Henry-Labordere and Touzi (2016, Example 5.7).

The rest of this paper proceeds as follows. Section 2 specifies dynamics for the forward
price process and verifies that these dynamics can arise from time-changing the solution of a
stochastic differential equation. Section 3 states and proves our main result (Theorem 3.5),
which establishes that the VS has the same value as a European-style claim whose payoff
function solves an ordinary integro-differential equation (OIDE). Section 4 provides examples
of price dynamics for which we can solve the OIDE explicitly. Section 5 concludes.

2. Time-changed Markov dynamics.

2.1. Assumptions. With respect to a “calendar-time” filtration {JF;};>0 on a probability
space (2, F,P), assume that X is a semimartingale with predictable characteristics (B, A, v),
relative to a truncation function h (to be definite, let h(2) := 21y);<1}), which satisfy

t t
(2.1) B, = / bp(Xs—)drs, A = / a*(X,_)drs, v(dt,dz) = drp x p(Xy—,dz),
0 0

where 7 is a real-valued, continuous, and increasing process that is null at zero, a is a Borel
function, and for each fixed z € R the pu(z,-) is a Lévy measure, and

(2.2)  supla(z)] < oo, Sup/ 22u(x,dz) < oo, sup/ (e —1—2)u(x,dz) < co,
zeR zeR JR zeR JR
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with

1
(2.3) ba(x) = — 50%() — / (6% — 1 — h(2)) p(x, d).
R
The intuition of the Lévy kernel or transition kernel p is that it assigns to each point x in
the state space a “local” Lévy measure u(x,-). Jumps of size in any interval J arrive with
intensity u(x,J) when X is at z.
Define the underlying forward price process F' = {Fi}ycp0,7] by

Fy = exp(Xy).

Regarding P as a risk-neutral measure, we have chosen b, in (2.3) to ensure F' is a local
martingale. If 77 is integrable, then Lemma 3.4 will imply that F' is a true martingale.

2.2. Time-change of an SDE solution. This section verifies that the assumptions of
section 2.1 hold in the case when X comes from time-changing the solution of a stochastic
differential equation (SDE) driven by a Brownian motion and a Poisson random measure.
With respect to a filtration {G,}u>0 (the “business time” filtration), consider a Brownian
motion W, and a Poisson random measure N with intensity measure py(dz)du for some Lévy
measure py. Assume that Y is a semimartingale that satisfies

dY, = b(Yy) dt + a(Y,) dW, + / c(Yyu—, z) (N(du,dz) — py(dz)du),
z€R
where a is a bounded Borel function, b is given by

1

o) = —502(0) = [ (= 1=2) (o),

and c is a Borel function such that u, defined for each Borel set J by

plz,J) = pn({z s ez, 2) € J\{0}}),

satisfies

sup/ 22u(x,dz) + sup/ (e —1—2)u(z,dz) < co.
zeRJRR zeR JR

Then by Jacod and Shiryaev (1987, Prop. I11.2.29), the semimartingale characteristics of Y’
are (B, A,v), where

(2.4) B, = / b (Yy—)dw, A, = / a*(Y,_)dv, v(du,dz) = du x u(Yy,—,dz),
0 0

with by, defined in (2.3).

Now let {7;}+>0 be a continuous increasing family of finite G-stopping times (which are not
assumed to be independent of V). Let the “calendar-time” filtration be defined by F; := G,,
and let

Xt = YTt.
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By Kallsen and Shiryaev (2002b, Lemma 5), the F-characteristics of X are (B, A,v), where
Ay = A, Bt = B, and v is determined by

(2.5) /[o,t]le 1;(2)v(ds,dz) = /[o,n]le 1;(2)v(du,dz)

for general Borel sets J and t > 0. By the first two equalities in (2.4) we have

- Tt t . Tt t
ATt = / az(}/v—)dv :/ QQ(XS—)dT& B, :/ bh(}/v—)dv :/ bh(XS—)dTS7
0 0 0 0

and by substituting the last equality in (2.4) into (2.5) and changing variables u to 75, we have

/ 1;5(2)v(ds,dz) / / 15(2)u(Xs—,dz)drs.
[0,t] xR [0,¢]

Therefore, (B, A, v) satisfies (2.1). This verifies the hypotheses of section 2.1, as claimed.

Remark 2.1. Time-changes of SDE solutions are nearly as general as time-changes of
general Markov processes whose jump times are not predictable.

To be precise, Cinlar and Jacod (1981) show that every strong Markov quasi-left-continuous
semimartingale (which includes every Feller semimartingale) is a continuous time change of
an SDE solution driven by Brownian motion and a Poisson random measure (on an enlarged
probability space if needed). Thus, if X is a continuous time-change 7’ of a general Feller
semimartingale Y’, then by Cinlar—Jacod, Y is a continuous time change 7" of an SDE solution
Y, and therefore, X is a continuous time change 7 o 7/ of an SDE solution Y.

2.3. Notation. Let C"(R) denote the class of n-times continuously differentiable functions,
and define the integro-differential operator A by

@H.’E .’L'Z—IE—/I' z xr,az
3@+ [ (alat2) - @)~ g @h(2) o)

(9"(x) = d'(z)) + /R(g(ﬂf +2) —g(x) + (1 - ¢*)g'(x)) p(z,dz)

(2.6) -

for all g € C?(R) such that g(x + 2) — g(z) + (1 — *)g'(z) € L' (u(z,dz)) for all x.
In more concise notation,

(2.7) A= %a2(ac) (0 —9) + /]R (eza —-1+(1- eZ)a) w(x,dz),

where ¢?9 is the shift operator defined by e*%g(x) := g(x + z). This use of 0 to express
translations in the jump part of the generator A follows Itkin and Carr (2012).

Let C'(R) denote the union of C%(IR) and the following set: all C1(R) functions g whose
derivative is everywhere absolutely continuous, and whose second derivative (which therefore
exists a.e.) is equal (a.e.) to a bounded function, which we will still denote by ¢” or 92g.

Thus the definition of A extends, by relaxing the g € C?(R) condition to g € C1*(R),
which still defines Ag uniquely, up to sets of measure zero, via (2.6).
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3. VS pricing. In what follows, each C will denote a constant (nonrandom and non-
time-varying). Different instances of C', even within the same expression, may have different
values.

Lemma 3.1. Suppose that g € C*T(R) and there exists p € R such that
sup |¢'(z)e "] < oo and sup/ (eP* =1 —pz) p(z,dz) < oo.
zeR zeRJR

Then g(X) is a special semimartingale.

Proof. By the form of It6’s rule in, for instance, Protter (2004, Theorem IV.70), g(X) is a
semimartingale.

By Kallsen and Shiryaev (2002a, Lemma 2.8), it suffices to check that the predictable
process

t
(3.1) / / 19X + 2) — g(Xo)u(Xs_, dz)dr,
0 J{z:]g(Xs—+2)—g(Xs-)[>1}

is finite (hence of finite variation, as it is increasing in t).
In the case p = 0, we have |g(z + z) — g(z)| < C|z|. In the case p # 0, we have
xV(z+2)
lg(z + 2z) — g(x)] < / CePSd¢ = CeP|eP? — 1).
xN\(z+2)

In this case, for each m > 0, let k(m) be such that
€7 — 1L jepz_1|>1/m < (€77 =1 —p2) + k(m)z?

for all z, and let M := sup,c(o 1) ePXs < 0o because X is cadlag. Then
/ 9(Xe + 2) = g(Xo ) (X, )
{z:]9(Xs—+2)—g(Xs-)|>1}

is bounded in case p = 0 by sup,cp f{z:|z|>l/C} C|z|p(z,dz) < oo, and in case p # 0 by C times

sup M|eP* — 1| p(z,dz)

z€R /{z:|epz—1>1/(CM)}

< Msup/ (eP* =1 —pz)u(x,dz) + Mk(CM) sup/ 22u(x,dz) < oo.
zeRJR zeRJR

These upper bounds do not depend on s € [0, ], which verifies that (3.1) is finite. |
Lemma 3.2. If Erp < oo, then IEsupycpo 7 |Xt| < 0.

Proof. Let Bj := B, + f[o t}xR(Z — h(2))v(du,dz). We have Esup,c(o 1) |Bi| < oo due to
(2.2) and E7p < oo.
Defining M; by

X; = Xo+ M; + By,
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we have, by Jacod and Shiryaev (1987, Proposition 11.2.29), that M is a local martingale
satisfying

T T
E[M, M|r = IE/ a?(Xg)drs + E/ / 22u(X,_,dz)drs < 00
0 0 R

because Erp < oo. By Burkholder-Davis-Gundy, IEsup,c(o 7y [M;| < 0o, which implies the
result. [ |

Lemma 3.3. Suppose 7 is bounded and p € R satisfies

(3.2) sup/ (eP* — 1 —p2z)p(z,dz) < oo.
zeRJR

Let
Zt = exp(pXt — Kt),

K = /0 %(pQ — p)a*(Xs)dr, +/O /]R[(epz —1—pz) —pe® —1—2)|u(Xs—,dz)drs.

Then Z is a martingale, and

(3.3) E sup exp(pX;) < oo.
t€[0,T)

Proof. Let N be the integer-valued random measure associated with the jumps of X. Let
N:=N—v.

By Kallsen and Shiryaev (2002a, Theorem 2.19), the process Z is the stochastic exponential
of the local martingale

pX; +/ (e”* — 1)N(ds,dz),
[0,t]xR

where X ¢ is the continuous martingale part of X. By the boundedness of 7 and assumptions
(2.2) and (3.2), it follows that

T T
p2/ a*(X,)dr, +/ /(epz — 12 A (P — 1) p(Xs_,dz)dry
0 0 R

is bounded. So by Lepingle and Mémin (1978), the process Z is a martingale and IE sup;¢(o 1] Z
< 0o, which implies (3.3) because sup;c(o 71 K¢ is bounded. [ ]

Let us define two conditions that may be satisfied by (77, g), where g € C1*(R). The first
is

(3.4) Erp <oco and supl|g'(z)] + esssup |¢" (z)] < oo,
zeR zeR
and the second is 7, which is bounded, and

(3.5) Ip € R with sup/ (eP* =1 —p2)p(x,dz) +esssupe P (|g(x)|+ |¢ (x)| + 9" (z)]) < oo.
zeRJR z€R
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Lemma 3.4. Assume that g is a sum of finitely many C'T(R) functions, each of which
satisfies (3.4) or (3.5). Let

Py = g(X0) — g(Xo) — /0 Ag(X,_)dr,, te[0,7].

Then I is a martingale.

Proof. We prove for the case when the g satisfies (3.4) or (3.5). The case when g is the
sum of such functions follows immediately by linearity.

Either one of the conditions (3.4) or (3.5) implies that Ag is well defined.

To show that T' is a local martingale, note that Jacod and Shiryaev (1987, Theorem
I1.2.42¢) extends as follows. They assume g bounded, only to show that g(X) is a special
semimartingale, but the conditions in Lemma 3.1 suffice for that conclusion. Moreover, they
assume g € C?, only to use Itd’s lemma, but C'* suffices here by Protter (2004, Theorem
IV.70) and its first corollary.

To show that T" is a true martingale, it suffices, by Protter (2004, Theorem 1.51), to show
that IEsup;cjo 7y [I't| < co. In case (3.4), let p := 0. In both cases, by (2.2), we have

(3. /@) [ (= 1= 2)p(e.dz) < Co”
and by Taylor’s theorem and |¢”(x + 2)| < CeP* Pl for |2| < 1, we have
(3.7) /|| X l9(z + 2) — g(x) — ¢'(2)z|p(z, dz) < CeP* P! et 22p(z,dz) < CeP?,
2l< 2|<
and by (2.2),
s | o+ 2) —(a) g @)2] e, ) < O /| @ L] e ) < 0,
2> 2>

where each C' does not depend on z. Combining (3.6), (3.7), (3.8), and the bounds on ¢’ and
g", we have

T
g/ |Ag(Xs—)|drs < Crp sup ePXt
0

t
sup ‘/ Ag(Xs—)drs
0 te[0,7)

te[0,7]

which is integrable in case (3.4) because ETr < oo, and in case (3.5) by Lemma 3.3. The
remaining component of I' has magnitude

C(1+|Xy) in case (3.4),

9(X¢) = 9(Xo)| < {C’(l +ePXt) in case (3.5),

which has integrable supremum by Lemmas 3.2 and 3.3. |

In conclusion, we relate I [log F]r to the value of a European-style contract.
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Theorem 3.5. Assume that the forward price F, the log-price X, and the clock T satisfy the
assumptions of section 2.1. Assume that G is a sum of finitely many C'T(R) functions, each
of which satisfies (3.4) or (3.5), and that AG satisfies (for a.e. x)

(3.9) AG(z) = a®(z) + /RZQ,LL(:U, dz).

Then G prices the VS, meaning that

(3.10) Ellog F.T = EG(log Fr) — G(log Fp).

Thus, if P is a martingale measure for VS and G contracts, then the fair strike of the VS
(equivalently, the forward price of the floating leg of the VS) is (3.10).

Remark 3.6. The sum of finitely many functions is more general than a single function;
for instance, G may be the sum of two functions, one satisfying (3.5) for some p > 0, and the
other for some p < 0.

Remark 3.7. Functions G that satisfy the conditions of Theorem 3.5, and therefore price the
VS, are not unique. Indeed, if G does, then so does G(-) + Cp + C1 exp(+), where Cy, Cy are any
constants. Adding the latter two terms does not affect the valuation EG(log Frr) — G(log Fp),
because EFr = Fy.

Proof of Theorem 3.5. We have

IE[X]T—E(/OTaz(Xt)th+/oT/]RzQN(dt, dz)>

= E/OT <a2(Xt_) +/]Rz2,u(Xt_,dz)> dr

T
= ]E/Ov .AG(Xt,)th
=EG(X7) — G(Xo)

by Jacod and Shiryaev (1987, Theorems 1.4.52 and I1.1.8), eq. (3.9) and Lemma 3.4. [ |

Theorem 3.5 allows us to value a VS relative to the T-maturity implied volatility smile as
follows:

(3.11) Ellog F|r = EG(log Frr) — G(log Fyp) .
A B C

A = the amount agreed upon at time 0 to pay at time T" when taking the long side of a VS.
B = the value of a European contract with payoff G(log Fr).

C = the value of G(log Fy) zero-coupon bonds.

As shown in Carr and Madan (1998), if h is a difference of convex functions, then for any
k € Rt we have

h(Pr) = h(x) + () ((FT —m)t = (k- FTW) + /0 W'(K)(K - Fr)*dK

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/09/21 to 98.14.239.83. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

680 PETER CARR, ROGER LEE, AND MATTHEW LORIG

+ / T WK (Pr — K)FK.

Here, b/ is the left-derivative of h, and h” is the second derivative, which exists as a generalized
function. Taking expectations,
(3.12)
K oo

Eh(Fr) = h(k) + b/ (k) (C(T, k) — P(T, /i)) +/ " (K)P(T,K)dK +/ h"(K)C(T, K)dK,

0 K
where P(T, K) and C(T, K) are, respectively, the prices of put and call options on F' with
strike K and expiry T. Knowledge of Fjy and the T-expiry smile implies knowledge of the
initial prices of T-expiry European options at all strikes K > 0. Thus, the quantity B in (3.11)
is uniquely determined from the T-expiry volatility smile by applying (3.12) to h = G o log,
assuming one can determine the function G. Therefore, to price a VS relative to co-terminal
calls and puts, what remains is to find a solution G of the OIDE (3.9).

4. Examples. In this section we provide examples, in the setting of section 2.2, of local
variance and Lévy kernel pairs (a2, 1) such that solutions G of OIDE (3.9) can be obtained
explicitly. In one of the examples, moreover, we investigate the ratio between the values of the
VS and the log contract.

4.1. Constant relative jump intensity.
Theorem 4.1. Assume the local variance a®(x) and Lévy kernel u(z,dz) are of the forms
a*(z) =~*(z) 0?, e, dz) =% (x) v(dz),

where o > 0 is a constant, v is a Lévy measure, and =y is a positive bounded Borel function.
Assume Erp < oco. Then

(4.1) G(z):=—-Qux
prices the VS, where

(4.2) Q= @, Yo = / (e —1—2)v(dz), o = / 22v(dz).
o%/2+ o R R
Proof. One can verify directly that G in (4.1) satisfies (3.4) and (3.9). [ ]
Remark 4.2. In particular, the constant () in two extreme cases is as follows:
(4.3) No jumps (v =0) : Q =2,
(4.4) Pure jumps (¢ =0) : Q = u2/eo.

Remark 4.3. Dynamics of this form arise by time-changing a Lévy process Y, using the

clock
'f{ >0 /u 1 d >t}
7 i=Inf<u>0: ——dv>t,.
o V(Y)

See, for instance, Kiichler and Sgrensen (1997, Proposition 11.6.1). Thus the payoff function
(4.1) in this case should, and indeed does, match the payoff function obtained by Carr, Lee,
and Wu (2012) for time-changed Lévy processes.
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4.2. Fractional linear relative jump intensity. Let v be a Lévy measure such that 2¢pg <
p2 < 0o, with notation as in (4.2). (The case of 3 < 2¢p admits a similar solution, but with

B8 <0.)
Let a, 8 € R such that

2
0<6<1—ﬂ.

M2
Let

_ a1 __a  (B=Dp
V3 = 28 B’ Yo : % 725800 < 73.

Let 1 and 79 satisfy 79 < 71 < 72 < 73. Define the C! function

av1 + B + (@ — ) (a+26m), T <,
(4.5) G(z) == { ax + fz?, 1 <z < 7,
a2 + B75 + (x — ) (a + 2B72), x> .

We can and do take 0°G(x) = 281 ,¢[y, +,] in the sense of Theorem 3.5.
Let a be a positive, bounded Borel function, and let
a®(z) 0?G(x) — 0G(z) — 2

(4.6) c(z) 1= —— X Jo(G(x) — Gz + 2) + (2 — 1)0G(2) + 22)v(dz)’

Lemma 4.4. The function c is positive and bounded.

Proof. The denominator in (4.6) has a positive lower bound because

/R (G(z) + 20G(z) — Gz + 2))v(d2) + 9odC(z) + 2 > wodG(x) + (1 — B)us
> oo+ 267) + (1 = B)uz > 0.

To show that the numerator 9°G — G — 2 in (4.6) is positive and bounded, we verify in
three intervals. For x € (1, 72), the numerator is 26 —a—2—20z > 20 —a—2—-28v3 =25 > 0,
and is moreover bounded above. In the other two intervals, the result follows from

—a =207 —2>—-a—20v%—-2>—a—28v3—2=0,

where the first two expressions are the numerator for x < ~; and x > =9, respectively. |

Theorem 4.5. Assume the local Lévy kernel u is given by
iz, dz2) = e(@)u(dz),

where ¢, v, G, and the local variance a® are related by (4.5) and (4.6). Assume Err < .
Then G prices the VS.

Proof. We have that G satisfies (3.4) and, by (4.6), the OIDE (3.9). [ ]
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Remark 4.6. We describe these dynamics as “fractional linear relative jump intensity”
because, for « such that {z + z : z € supp(v)} U {z} C [y1,72], the relative jump intensity

c(r) fg—a/2—-1-pFx

a?(z) (1 —B)u2 + (a+26z)po

is a ratio of polynomials linear in the underlying log-price.

4.3. Lévy mixture with state-dependent weights. Assume the local variance a?(x) and
Lévy kernel p(x,dz) are of the forms

(4.7)
2 2 2
a*(x) = aog(x) + 6803 (x), u(r,dz) = %) vo(dz) + 5L (z) v1(dz), a;(m) = e“ =: e.(x),
2 2 o5(x)
where «, 8,6 > 0 and vy, v; are Lévy measures with
(4.8) / )eAz -1+ (1 —=e)A| vi(dz) < o0 VA e C, i€ {0,1}.
R

Let us first derive a candidate solution G to (3.9) from an ansatz and then verify the validity

of the solution.

Inserting the expressions for a? and p from (4.7) into (3.9) and dividing by 10Z(z), we

have
(49) (.Ao + 560A1)G = Iy + de. 1,

where Iy and I; are constants defined by
Iy = 2a +/ 22 1p(dz), I =23 +/ 22 v1(dz),
R R

and using the notation of (2.7), the operators Ay and A; are given by

Aoza(82—8)+/

R

A1—5(82—8)+/

R

(ez8 —-1+(1- ez)8> vo(dz),
<eza —14(1- ez)(?) v1(dz).

Assume a solution G of (4.9) has a power series expansion in d:
o0

(4.10) G=> 6"Gn,
n=0

where the functions {Gy, }n>0 are, at this point, unknown. Inserting the expansion (4.10) into
OIDE (4.9) and collecting terms of like order in ¢ results in the following sequence of nested
OIDEs:

O(].) : ‘AOGO = IO?
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(4.11) 0(5) : AoGi + e A1Gy = e,
O((Sn) : AoGn + eA1Gr—1 =0, n > 2.

Noting that

Aoer = paen, oy =a(A*—]) +/

<e)‘z 14 (1- ez))\) w(dz)  VAeC,
R

Arex = xaex, =B (A=) +/

(e/\z 11— ez))\) vi(dz)  VYAec,
R

one can easily verify, by direct substitution into (4.11), a solution G given by

« 22up(dz
(4.12) Go(z) = —Qox, Qoi=7 +2f (J;Zf% 1 —Oi()ivj(dZ)’
R

and solutions {Gj, }n,>1 given, for ¢ # 0, by

(4.13)

n—1
Gol) = Qle’j;if) Il e Q=28+ /R 220 (d2) - Qo (5 n /R (€ —1—2)n <dz>)-

Thus we have a formal series expansion, defined by (4.10), (4.12), and (4.13), for a function G
that solves OIDE (3.9). The following conditions suffice for validity of this expansion.

Theorem 4.7. Assume that the local variance a®(x) and Lévy kernel u(x,dz) are given by
(4.7). Assume further that vy and v1 satisfy (4.8), and ¢ # 0, and

2.2 .
(4.14) lim 7oC (61

n—co J((n+1)c;vp) =0, where J(z;v) = /]Ru(dz)(e“ —1—x2).

Then the function G is well defined on R by (4.10), with (4.12) and (4.13), and solves OIDE
(3.9).

Proof. The summation in (4.10) can be written as

1 —Xke
¢nc k1 ¢k’c

(4.15) — Qo + Q1 Z apu”(x), where a,, = and u(x) = de.(x).

n=1
The infinite sum is a power series in u, with coefficients {a, },>1 satisfying, by (4.14),

. An+1 . -
lim —* = lim Xne
n—o0o @ n—00 ¢(n+1)c

=0,

which implies that the sum in (4.15) has infinite radius of convergence, and G is well-defined on
R by (4.10), with (4.12) and (4.13). As every power series can be differentiated and integrated
term-by-term within its radius of convergence, G solves OIDE (3.9). [ ]

Remark 4.8. If a =0, 8> 0, 1 =0, and ¢ > 0 (resp., ¢ < 0), then any Lévy measure vy
with support on the positive (resp., negative) axis will satisfy (4.14).
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Figure 1. In this figure, we set Fo =1, a =1, =0, § =0.35, vp =0, and v1 = §.,, where zo = 2.5, and
we plot h(Fr) as a function of Fr with ¢ =0 (solid), c = —1 (dashed), and ¢ = —2 (dotted). Note that, when
c =0, we are in the setting of section 4.1 and thus h is a log contract plus an affine function.

Remark 4.9. if « >0, =0, vg =0, and ¢ > 0 (resp., ¢ < 0), then a Lévy measure vy will
satisfy (4.14) only if the support of v; lies strictly within the negative (resp., positive) axis.

Remark 4.10. In the particular case where the forward price F' is a time-change of an
exponential Lévy process with variance o and Lévy measure 1q, the function Gy prices the VS.
In the more general class of models in (4.7), which can be seen as a regular d-perturbation
around the time-changed exponential Lévy case, the candidate function G for pricing the VS
by Theorem 3.5 becomes, by (4.15), a J-perturbation around Gj.

In Figures 1 and 2, using a variety of different model parameters, we plot

—1
(4.16) h(Fr) := G(log Fr) — G(log Fy) + A(Fr — Fp), A= ?G’(log Fy)
0

as a function of Fr, where G is defined by (4.10), (4.12), and (4.13). Note that, if G prices

the VS, then A prices the VS for any constant A. The particular value of A in (4.16) ensures
that h,(F()) = 0.

4.3.1. Ratio of the VS value to the log contract value. Although the purpose of this
paper is to compute the value of a VS relative to the G contract (and to solve for G), it is also
interesting to compute the ratio of the value of the VS to the value of a European log contract.
To this end, for a function G that prices a VS, let

 EG(log Fr) —G(log Fy)  E[log F|
AT, Fo) := —]Elog(FT/FO) = —Elog(FT/TFO)'
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Figure 2. In this figure, we set Fo =1, a =1, §=0,5 =1, 1o =0, and v1 = §,, where zo = —2.5, and
we plot h(Fr) as a function of Fr with ¢ =0 (solid), ¢ = 2 (dashed), and ¢ = 4 (dotted). Note that, when ¢ =0,
we are in the setting of section 4.1 and thus h is a log contract plus an affine function.

In Carr, Lee, and Wu (2012) the authors find that if F; = exp(Yy,), where Y is a Lévy process,
then the ratio Q(T, Fy) is a constant () which is independent of the initial value Fy of the
underlying and the time to maturity 7" (see Theorem 4.1 and Remark 4.3 of section 4.1). This
is in contrast to empirical results from the same paper, which show in a study of S&P500
data that the ratio Q(7', Fpy) is not constant. In the more general time-changed Markov setting
considered in the present paper, the ratio Q(T, Fy) can, in general, depend on the current value
Fy of the underlying and the time to maturity 1. Below, we derive a formal approximation for
the ratio Q(T, Fyy) for one specific example of (a?, 1) which is of the form (4.7).

Assumption 4.11. Throughout this section, we assume F; = exp(Y7,), where 7 is a contin-
uous time change independent of Y and the Laplace transform L(t, ) := Ee™* is known. Let
the Markov process Y have local variance a?(z) and Lévy kernel u(z,dz) of the form (4.7)
with

a=1, B8=0, od(z) = 2w?, oi(x) = 2w?e.(x), vy =0, v =,
where w, ¢ > 0. Assume, moreover, that the Lévy measure v satisfies the conditions of Theorem

4.7. Thus, the function G, defined by (4.10), (4.12), and (4.13), solves (3.9) . In accordance
with Remark 4.9, jumps must be downward, i.e., v(R") = 0.

We compute an approximation for Q(T, Fy) in three Steps, described below.

Step 1. Derive an approximation for u(t,z; ) := E; o(Y;).
Formally, the function w satisfies the Kolmogorov backward equation

(4.17) (=0 +A)u =0, u(0,50) = @,
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where A, the generator of Y, is given by
(4.18) A = wrAg + decw? Al

Now, suppose that the function u has a power series expansion in 4,
oo

(4.19) u=>Y 0"up,
n=0

where the functions {uy, },>0 are unknown. Inserting expressions (4.18) and (4.19) into (4.17)
and collecting terms of like powers of §, we obtain a sequence of nested partial integro-differential
equations (PIDEs) for the unknown functions {u, }n>0,

o(1): (=0 + wAg)ug = 0, up(0, -5 9) = o,
O(6") : (=0 + wQAO)un = —ew? Ajup_1, un(0,+50) =0 n>1.

The solution to this nested sequence of PIDEs is given in Jacquier and Lorig (2013, eq. (5.2)).
We have

tw Pixtkep
(4.20)  un(t,2;9) /R (Z ixne(Z ) (Hw xlwc) P(A)dA,

k=0 H];ﬁk 2¢1>\+kc W2¢1)\+jc

where an empty product is defined to equal one H}?:lo( -+):= 1, and @ denotes the distributional
generalization of the Fourier transform defined for integrable functions ¢ by

1 .
PN = 27T/Ipbcga(x)el)‘md:c.

Inserting expression (4.20) into the sum (4.19) and truncating at order N yields @y, our Nth
order approximation of u. Explicitly,

N(t,z; ) : Zéuntxgp

etw?Pirtkee
(4.21) 5”( iXine( )( w?ys ) A(A)dA.
-/ 5 Zn TT w*uns

J;ék w2¢1)\+kc - w2¢1)\+]c

Step 2. Derive an approzimation for v(t,x;¢) = E, o(Yz,).
Using the independence of 7 and Y, we have

(4.22) vt 75 0) = Eop(Yr,) = By B p(Yr, ) |7i] = Eu(m, ;).

Replacing the function u in (4.22) with @y yields vy, our Nth order approximation of v.
Explicitly,

on(t,x; @) = Eun(m, x; @)

N
(4.23) - /R 7;)5" (Z o L{t, i dutie)enrine(z ) (Hw lekc) P(A)dA,

J;ék w2¢1)\+kc —Ww ¢1)\+]c

using (4.21) and Ee*™ = L(t, \).
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Step 3. Derive an approximation for Q(T, Fp).
With G as given in Theorem 4.7, we have

EG(log Fr) — G(log Fp)

Q(T7 FO) =

—Elog(Fr/Fo)
52551 b (Bene(log Fr) = encllog Fy) )
= Qo —Elog Fr + log iy
5251 b (Bene(Yor) = encllog Fy) )
=Qot “EY,, +log Fo
Yool by (U(T, log Fo; €ne) — enc(log Fo))
(4.24) =@t —o(T, log Fo; 1d) + log Fy
0" T e
by = Q16" an, = Q1 ;
Pe =5 Pke

where Id is the identity function Id(x) = x. Replacing the function v wherever it appears in
(4.24) by vy and truncating the infinite sum at N terms produces Qn (7', Fp), our Nth order
approzimation of Q(T, Fy). Explicitly,

Zﬁ;l by (T)N (T7 log Fo; enc) - enc(log FO))
—on(T, log Fo; Id) + log Fy

(4.25) ON(T, Fo) :== Qo +

The Fourier transforms of the complex exponential e, (v € C) and the identity function Id, as
needed to compute vy (T, log Fu; ene) and vy (T, log Fy; Id) in (4.25), are given by

(4.26) & (\) =6\ +1v), v eC, Id(\) = i8'(N),

where § and ¢’ denote the Dirac delta function and its derivative, understood in the sense of
distributions. Inserting (4.26) into (4.23) and integrating produces closed-form expressions for
both o (T, log Fy; ene) and vy (T, log Fy; Id).

Figure 3 plots Qun (T, Fy) as a function of Fy.

5. Conclusion. In Carr, Lee, and Wu (2012), the authors model the forward price as the
exponential of a Lévy process time-changed by a continuous increasing stochastic clock. In this
setting, they show that a VS has the same value as a fixed number of European log contracts.
The exact number of log contracts that price the VS depends only on the dynamics of the
driving Lévy process, irrespective of the time-change.

This paper generalizes the underlying forward price dynamics to time-changed exponential
Markov processes, where the background process may have a state-dependent (i.e., local)
volatility and Lévy kernel, and where the stochastic time-change may have arbitrary dependence
or correlation with the Markov process. In the time-changed Markov setting, we prove that
the VS is priced by a European-style contract whose payoff depends only on the dynamics
of the Markov process, not on the time-change. We explicitly compute the payoff function
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e———————————————————————————————————————————

10 20 30 40 50 60

Figure 3. A plot of On (T, Fv), our Nth order approzimation of Q(T, Fy) := % as a function of

Fy (solid line). In this plot, the forward price is given by Fy = exp(Y:) (i.e., no time-change) and the Markov
process Y has local variance a*(z) = 2w® and Lévy kernel p(z,dz) = dw?e®v(dz), where v = d8,,. We use the
following parameters: ¢ = 0.395, 6 = 1.0, w = 0.3, z0 = —1.0, and T = 1.0. We fir N = 35. Note that as

Fy — 0, the jump intensity goes to zero: dw’F§ — 0. Accordingly, as Fo — 0, the ratio % — 2,

which is what one would expect for a forward price process that experiences no jumps (see (4.3)). As Fy — oo
E [log F]pr
—E log(Fr /Fp)
ratio for a pure-jump Lévy-type process (see (4.4)). Note that if the Markov process Y were a Lévy process (i.e.,
E [log F]r
—I log(Fr/Fp)

and the jump-intensity increases, we expect the ratio — p2/po = e, which is the corresponding

with constant variance coefficient and Lévy measure), as in Carr, Lee, and Wu (2012), the ratio
would be a constant independent of Fy.

that prices the VS for various driving Markov processes. When the Markov process is a Lévy
process we recover the results of Carr, Lee, and Wu (2012).

For certain Markov processes, we also compute directly from model parameters an approx-
imation for valuation of European-style contracts, showing the variation in the ratio of the VS
value to the log contract value as a function of the current level of the underlying. This is in
contrast to Carr, Lee, and Wu (2012), who show in the more restrictive time-changed Lévy
process setting that this ratio is constant.
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