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In this paper we develop strategies for pricing and hedging options on realized variance and

volatility. Our strategies have the following features.

e Readily available inputs: We can use vanilla options as pricing benchmarks and as hedging
instruments. If variance or volatility swaps are available, then we use them as well. We do

not need other inputs (such as parameters of the instantaneous volatility dynamics).

e Comprehensive and readily computable outputs: We derive explicit and readily computable
formulas for prices and hedge ratios for variance and volatility options, applicable at all times

in the term of the option (not just inception).

e Accuracy and robustness: We test our pricing and hedging strategies under skew-generating
volatility dynamics. Our discrete hedging simulations at a one-year horizon show mean ab-

solute hedging errors under 10%, and in some cases under 5%.
e Easy modification to price and hedge options on implied volatility (VIX).

Specifically, we price and hedge realized variance and volatility options using variance and volatility
swaps. When necessary, we in turn synthesize volatility swaps from vanilla options by the Carr-Lee

[4] methodology; and variance swaps from vanilla options by the standard log-contract methodology.

1 Introduction

Let S; denote the value of a stock or stock index at time ¢.

Given a variance/volatility option to be priced and hedged, let us designate as time 0 the start
of its averaging period, and time T the end. For ¢t € [0, 7], and 7 < ¢t, let Rz’t denote the realized
variance of returns over the time interval |7, ].

The mathematical results about the synthesis of volatility and variance swaps will hold exactly

if R? refers to the continuously-monitored variance. This means the quadratic variation of log .S,
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times a constant conversion factor u? that includes any desired annualization and/or rescaling:

u? lim Z <log SSt" )2 (1.1)
tn—1

T<tn <t -

where lim denotes limit in probability as the mesh of the partition {t; < ty < ---} tends to zero.
For example, choosing u = 100 x /1/T expresses R%}T in bp per unit time.
For practical implementation with daily monitoring, however, let N be the number of days in

the period [0,T] between the daily closing times 0 and 7', and let

St, \?
R?, = u? (lo z ) 1.2
ot Z & Stn 1 (12)
T<tn<t
where tg := 7 and the ¢; < t3 < ... are the successive daily closing times in (7, ], together with ¢

itself; and w is a constant annualization/rescaling factor. For example, choosing

u =100 x y/252/N (1.3)

expresses R&T in units of annual bp.

The t will denote the valuation date; we allow arbitrary ¢ € [0,7], because we will solve for
prices and hedges not just at inception, but throughout the term of the option. The 7 will denote
the start date of the variance and volatility swaps that will serve as pricing benchmarks and hedging
instruments; by not constraining 7 = 0, we have freedom to use swaps whose averaging periods
[7,T] need not coincide with the option’s period [0, 7.

For a given variance or volatility option, the u is fixed. It may depend on T, but T is fixed. It
does not depend on ¢. Thus the Rf,t is a scale factor times a running “cumulative” variance — not
a running “average” variance, because the scale factor is designed to give a proper average only for
the full interval [0, T7).

Now consider swaps and options written on R? and R := VR2.

A genuine [, T] variance swap with fixed leg f2 pays the holder some notional amount times
R2, - f2 (1.4)
A genuine [1, T volatility swap with fixed leg f pays the holder some notional amount times
Rer— f. (1.5)

In this paper, all swaps have notional 1 and fixed leg 0, unless otherwise stated.
Our options treatment focuses on calls; results for puts can be obtained from parity relations.

A [0,T) variance call with strike K2 | pays the holder at time 7" some notional amount times

(Rgr — K,

vol

)T (1.6)
A [0, T] volatility call with strike Ko pays the holder at time 7" some notional amount times

(Ro.r — Kvo) ™ (1.7)



Figure 2.1: Payoff of a volatility swap, compared to cash plus variance swaps
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In this paper all options have notional 1, unless otherwise stated. The strike K, may be any
nonnegative number. We say that a [0, 7] variance option struck at Kgol is at-the-money at time ¢

if a [0, 7] variance swap (on the same underlier) with fixed leg K2, has time-t value zero.

ol
This paper proposes a methodology to price and hedge options on realized variance and volatil-
ity. Specifically, we price variance options using an explicit formula that takes as inputs the prices of
variance and volatility swaps. We hedge variance options by trading variance and volatility swaps.
We do likewise for volatility options.
If variance and volatility swaps are unavailable to trade, then we propose to synthesize them

using vanilla options. So we begin with swaps, and build toward options.

2 Variance and volatility swaps

Variance option prices depend on the expectation and volatility of variance. The expectation is
revealed by variance swap prices, and the volatility can be inferred from variance and volatility
swap prices together. Specifically:

Let A; be the time-t value of the variance swap which pays RaT.

Let B; be the time-t value of the volatility swap which pays Rg 7.

Let r be the assumed constant interest rate, and let A¥ := A;e" =% and Bj := B;e" T~ be
the time-t variance swap rate and volatility swap rate respectively; by definition this is the “fair”
fixed leg, such that the variance swap (respectively volatility swap) has time-t value zero.

As shown in Figure 2.1, the volatility swap’s concave square-root payoff is dominated by the
linear payoff consisting of \/KI in cash, plus 1/ (2\/A72‘) variance swaps with fixed leg A;. The
dominating payoff has forward value \/fT;k , because the variance swaps have value zero. Thus we

have enforced Jensen’s inequality \/A; > B} by superreplication.



Figure 2.2: The initial payoff profile of a synthetic variance swap
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This concavity’s price impact — as measured by how much /A} exceeds B} — depends on the

volatility of volatility. More precisely, letting E denote risk-neutral expectation,
A} — (B})? = B+R§ 1 — (E¢Ror)* = Var; Ror. (2.1)

So if we can obtain the swap values A and B, then we can back out the volatility-of-volatility, and
use it to price options on R&T and Ro 7. If we can moreover trade the variance and volatility swaps,
then we can hedge the volatility-of-volatility risk. Similar reasoning holds for volatility options.

In the absence of genuine variance or volatility swaps, we obtain A and B from synthetic swaps.

2.1 Synthetic variance swap

By the theory developed in Neuberger [12], Dupire [8], Carr-Madan [5], and Derman et al [7], who

assume essentially only the positivity and continuity of price paths, the following self-financing

trading strategy replicates the continuously-monitored Rg’t for a non-dividend-paying asset.
Write F, := S;e" T for the forward price, and choose an arbitrary put-call separator & > 0.

At each time ¢t > 7, hold the following static position in options, and dynamic position in shares:

2
uQFdK calls at strikes K > k, puts at strikes K < &
2 2
u? (Ft — m) shares (2.2)

e (=) [Rz’t + 2u? log(Ft//i)] cash
where all options have expiry 7. We call this portfolio a synthetic variance swap. Its initial payoff

profile appears in Figure 2.2. With continuous trading and a continuum of strikes, the final portfolio

value will match the continuously-monitored variance.



2.2 Volatility swap: valuation under independent volatility

If one desires only to know the [, T] volatility swap’s initial ¢ = 7 value (not the full replicating
strategy), and if one assumes that instantaneous volatility evolves independently of the risk that
drives price moves, then the at-the-money-forward implied volatility oimp(F}) approximates the
desired volatility swap rate By, as the following argument shows.

Brenner-Subrahmanyam [2] found, by a Taylor expansion of the normal CDF about 0, that the

at-the-money-forward Black-Scholes formula with volatility parameter o satisfies

~ StO'\/T—t

CP5 (o 2.3
(o)~ 27 (23)
Applying this twice,
SiOimp (F)VT — t SiRy7vV/T —t SiBfvVT —t
timp(Fi) ~ CP5(oimp(F)) = E:CP5 (R, 1) ~ B, 20T — o (2.4)
V2T V2T V2T

where the first equality holds due to the independence assumption. Therefore

B} &= Oimp(F}) (2.5)

as Feinstein [9] observed.
However, this estimate does not establish a replication strategy, does not apply at times ¢t > 7
after inception, and does not suggest how to handle the important case of correlated volatility. Our

approach in section 2.3 addresses all of these issues.

2.3 Synthetic volatility swap: the Carr-Lee approach

The conventional wisdom holds that the pricing and hedging of a volatility swap is, unlike variance
swaps, highly model-dependent.

The paper [4] of Carr-Lee challenges this notion. Without imposing a model on the dynamics of
volatility, it shows how to replicate volatility swaps by trading vanilla options. It begins by making
the independence assumption described in section 2.2 — but then it produces strategies robust to
correlation. It also assumes frictionless trading in vanilla options, ignoring transactions costs — but
these may be mitigated by the fact that only the net exposures in a portfolio need to be hedged
via trades.

To specify the correlation-robust replication strategy, let I, denote the modified Bessel function
of order v — for which numerical implementations are readily available; for example, see Matlab’s

besseli or Mathematica’s Bessell.



Figure 2.3: Initial payoff profile of a synthetic volatility swap: R%t =0
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Figure 2.4: Evolution of the synthetic volatility swap: R%t = 0.25u?
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Figure 2.5: Evolution of the synthetic volatility swap: R%t = 1.0u?
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Initially, starting at time ¢ = 7, when RZ

. = 0, the replicating portfolio holds

ux \/7/2/F; straddles at strike K = F;

U X \/SKTF[II(IOg \/m) — Ip(log \/m)} dK calls at strikes K > F; (2.6)
u X \/SKTF[IO(log VEK/F;) — I1(log \/m)} dK puts at strikes K < F

together with a zero-cost delta-hedge. Afterwards, at times ¢ > 7 when R%t > 0, it holds

() —ZR72.7,5/U2 lls at strikes K > F;
U X % %[0+(K/Ft)p+ +6_(K/Ft)p_}dz catis ab shHkes =
VTl K221/ puts at strikes K < Fy (2.7)

e*T(T*t)RT,t cash

together with a zero-cost delta-hedge, where
0+ ::lq;# D+ :ZE:I: 1/4 —2z. (2.8)
2 2y/1-8z 2
and all options have expiry T. The portfolio holdings at strike K depend only on the observables
K, F, R?,, and u.

Under the independence assumption, with continuous trading in a continuum of strikes, we
show in [4] that the portfolio self-finances and has time-T" value equal to the continuously-monitored
volatility swap payoft R, . We call this portfolio a synthetic volatility swap.

Figure 2.3 plots the initial payoff profile of the synthetic volatility swap, and the Appendix [3]
implements this strategy using a discrete set of strikes, and gives a numerical example.

Most of the synthetic volatility swap’s value resides in the ATMF straddles in (2.6). The
short out-of-the-money calls and long out-of-the-money puts in (2.6) are precisely chosen to gain
robustness to violations of the independence condition, by neutralizing the first-order effect of
price/volatility correlation on the synthetic swap’s value. This robustness to correlation is impor-
tant in typical equity markets, where downward-sloping volatility skews indicate the presence of
negative correlation.

Let us test how accurately the synthetic volatility swap value matches the genuine volatility swap
value, under Heston [11] dynamics, with various correlation parameters p € [—1,1]. For comparison,
we also include the at-the-money Black-Scholes implied volatility, as motivated by (2.5). Figure
2.6 shows the results for t = 7 =0 and 7' = 0.5 and r = 0, using parameters estimated by Bakshi-
Cao-Chen (BCC) [1], and u = 100,/1/T. We compute the genuine volatility swap value using the
identity 2¢/7ERy 1 = [;°(1 —Ee™~ R&T)z*?’/ 2dz and the known Laplace transform of R%,T'

Our synthetic volatility swap clearly outperforms implied volatility as an approximation of the
genuine volatility swap value, across essentially all correlation assumptions: in the case p = 0,
our method is (as promised) exact and the implied volatility approximation is nearly exact; but
more importantly, in the empirically relevant case of p # 0, our synthetic volatility swap’s relative

“flatness” with respect to correlation results in its greater accuracy.



Figure 2.6: Volatility swap values: genuine, synthetic, and the ATMF implied approximation
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Taking r # 0 would change nothing, except to scale the genuine and synthetic volatility swap
values by e~"7. Taking T smaller (larger) tends to improve (worsen) the accuracy of both approxi-
mations: our synthetic volatility swap / the naive ATM-implied rule. For example, with p = —0.64,
the respective —6/ — 30 bp discrepancies at 7' = 0.5 shown in Figure 2.6 would become —1/ — 13
bp at "= 0.25, and —18/ — 57 bp at T = 1.0. At each T, our synthetic volatility swap still has

clearly greater accuracy than the naive ATM implied volatility rule.

Remark 2.1. The synthetic volatility swap evolves dynamically. Expressions (2.6) and (2.7) make
this precise, but here we give some intuition. Initially it resembles an at-the-money straddle. Its
dynamics depend on two factors. First, as the spot moves, the “strike” of the “straddle” floats to
stay at-the-money. Second, as the running variance R?,t accumulates, the “straddle” smooths out;
indeed, only when R%t = 0 does the straddle’s kink literally exist.

Eventually the synthetic volatility swap resembles a position in cash plus synthetic variance
swaps, as shown in Figures 2.4 and 2.5. Intuitively, as variance accumulates, we progress rightward
in Figure 2.1. In that direction, the square-root function loses convexity, and becomes more lin-
ear. Thus the cash-plus-variance-swaps portfolio becomes not merely an upper bound, but indeed

improves as an approximation to the volatility swap.



3 Variance and volatility options

3.1 Pricing of variance and volatility options

We have the following pricing problem.
At time ¢, where 0 <t < T, we observe the following:

R%}t, the running variance from time 0 to ¢, where 0 <t < T

R2,, the running variance from some time 7 to ¢, where 7 < ¢
k)

Ay, the time-t price of a (genuine or synthetic) variance swap, which pays RiT

By, the time-t price of a (genuine or synthetic) volatility swap, which pays R, 1

K1, the strike (quoted as a volatility)

r(T—t)

e 7, the interest rate. Let Gy :=e denote the associated discount factor’s reciprocal.

We have allowed the reference swaps’ start date 7, the option’s start date 0, and the valuation date
t, to be distinct or identical. The condition 7 < t allows either spot-starting or seasoned volatility
swaps.

We intend to solve for

e Variance call: The time-t value of a claim on (R2, — K2 )"

e Volatility call: The time-¢ value of a claim on (R — Kyol) ™"

Our solution will approximate the time-t¢ conditional distribution of R, 1 as a displaced lognormall.
This extends the use of a lognormal distribution by Friz-Gatheral [10], who assume that the val-
uation date, swap start date, and option start date all coincide; moreover, they do not address
hedging; and for estimation of the input B, they do not use correlation-robust volatility swaps.

Specifically, let us approximate as lognormal the time-¢ conditional distribution of “remaining
volatility” R, — Rr;. The lognormal distribution has two parameters (mean and variance), which
we calibrate to the given variance swap and volatility swap prices. Using the calibrated lognormal
distribution, we solve for prices of volatility and variance options.

Thus we obtain the following explicit pricing formulas which, like the Black-Scholes formula,
involve N, the normal CDF.

The displaced lognormal price of a Kfol—strike variance call is

AGi+ R}, — RZ, — K

ol

,LLQN(dO) + 2RT,t,u1N(d1) - (Kg

ol —

if K2, < Rj,

vol =

R},)N(dy) if K%, > R},

vol

Ofr = Gt x (3.1)



where

M1 = Bth — RT,t (32)
Mo = Ath + R72-,t - 2BthRT,t (33)
and 2 2 2 \1/2
my — log((K2, + R, — R ~ R,
= T . 5 s, G=012, (3.4)
t

and where the log remaining volatility log(R, 1 — R;+) has time-t conditional mean m; computable
via
1
my = 2log i — 5 log iz (3.5)

and has time-t conditional variance s? (squared “vol of vol”) computable, from the relative sizes of

the variance swap rate and volatility swap rate, via
s? = log iz — 2log 1. (3.6)
The displaced lognormal price of a Kg-strike volatility call is
o 6—z2/2 +
Cik =G / —= (B3, + 2Ry gemetes 4 2met2es) 12 ) (3.7)
—o0
In the case that 7 = 0, this simplifies to

BiGy — Kyl it Kol < Roy
piN(di) — (Kvol — Rot)N(d2) if Kyol > Rot

Cit = Gyt x

where ; and d; are obtained by taking 7 = 0 in (3.2)-(3.4).

The pricing formulas are easily computable functions of observable quantities. Moreover, the
pricing distribution prices exactly correctly any variance/volatility option known to finish in-the-
money, including the benchmark swaps (which are zero-strike calls), as well as any option whose
strike is smaller than the running variance/volatility; using an undisplaced lognormal distribution

would violate this latter property.

Remark 3.1. Consider a volatility option in the case t = 7 = 0 and u; = Ky Thus the valuation

date is 0, the pricing benchmarks are [0, T'] swaps, and the volatility option is ATM. Then by (3.8),

BSSO

1 1/2
P00 | 1os(/ A5/ ) (39)

so the forward value of the ATM volatility option has a particularly simple expression in terms of

Ci = eTCR = [N (s0/2) — N(=s0/2)] ~

the volatility swap rate B* and the variance swap rate A*. Moreover, rearranging (3.9) gives
/Ay By = em(Co/B0), (3.10)

so the “convexity correction” /Aj/B( has a simple explicit monotonic relationship with the ATM

volatility option value Cj/Bj (expressed relative to the volatility swap rate).

10



3.1.1 Tests

The lognormal distribution is empirically a plausible approximation, but to test robustness, suppose
that instantaneous volatility follows Heston dynamics (which do not generate lognormal distrib-
utions for realized variance), with the same parameters as in Figure 2.6. Hence the genuine and
synthetic volatility swap values are as plotted in that figure, and the genuine and synthetic variance
swap values are both 202.

We plot in Figures 3.1 and 3.2 the lognormal approximations (using genuine and using synthetic
volatility swap prices) to a variance call price, in comparison to the true Heston variance call price.
Figure 3.1 varies the strike K], whereas Figure 3.2 varies the price-volatility correlation p. In each
figure the conversion factor is v = 100/1/T".

Even with non-lognormal Heston dynamics, and even when using synthetic volatility swaps,
the Figures reveal errors of less than 4 bps (relative to a true value of about 100.4 bps), across all
correlation assumptions, in the important ATM 20 strike.

At OTM strikes such as 30 and 35, our approximation has significant error (if the true dynamics
are Heston), but the error’s sign is consistent with the relative thinness of the Heston variance
distribution’s tail, compared to the lognormal tail; indeed if the true distribution of R has right
tail equal or thinner than lognormal, then the displaced lognormal approximation can be seen as a

conservative estimate, prudent from the standpoint of a dealer selling an OTM variance call.

3.2 Hedging of variance and volatility options

We propose to hedge variance and volatility options by trading variance swaps and volatility swaps
— either synthetic or genuine. Specifically, in order to hedge against a short position (or replicate

a long position) in one variance call, hold at each time ¢

acvar 8CVaI‘
A variance swaps, and GEN

volatility swaps.

and in order to hedge against a short position (or replicate a long position) in one volatility call,
hold at each time ¢

acvvol acvol
&EIN variance swaps, and 3 gN

where all partial derivatives are evaluated at (A¢, By, R3 e RTt, Kyol)-

volatility swaps,

The hedge ratios have the following explicit formulas. In the case of variance calls,

o var 1 if K2 S R(2)t
8A = ’ (3.11)
N(do) + paN"(do) 9P + 2R, 4y N'(d1) 95 — xN'(d2) %% if K2, > R3,
o var - 0 if K2 S R%,t
83 2R +[N(di) = N(do)] + p2N'(do) Gz + 2Rrpin N'(d1) G (do) %Gz if K2 > R3,
(3.12)

11



Figure 3.1:

Call price approximations, against strike. Correlation p is fixed at —0.64. The ATM

strike (the variance swap rate, quoted as a volatility) is 20, and expiry is 0.5 years. In the left-hand

plot, the vertical axis is the call’s dollar value; in the right-hand plot, the vertical axis is the call’s

Black implied volatility. Heston dynamics are as in Figure 2.6.
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where y := K2

vol

Rg,t and

i 2

aD — G 1 ad 1 11— mg — log((Kgol + Rz,t - R%}t)l/Q — RT,t) 1 N RT,t
aB 83 St J

Eh St1 St2
(3.13)
D, : 1 —1lo +R2, - R2)V2 R,
0D; — Gt_l% _ e g((K 1 2 O,t) t) (3.14)
0A 0A  2stpo Eh
for j =0,1,2.
In the case of volatility calls with 7 =0,
ocy 0 if Kyot <R
9A oD oD | N (3.15)
p1N'(d1) G — (Kyol — Ro¢)N'(d2) %z if Kvol > Roy
8CV01 1 if Kvol < ROt
_ ’ 1
55 (3.16)

N(dr) + piN'(d) 328 — (Ko — Rot)N'(d2) 222 if Kyt > Roy

For general 7, see the Appendix [3] equations (C.1) and (C.2).

The formulas of sections 3.1 and 3.2 allow arbitrary u, but assume notional 1. To apply the
formulas to general notionals, just ensure that A and B are swap prices per unit notional; then
multiply the call price formulas by the call notional, and multiply the hedging formulas by the ratio

of call notional to swap notional.

3.3 Implementation choices

To implement this strategy, the hedger must choose what type of variance and volatility swaps
(genuine, synthetic, or a hybrid), and what start dates (fixed or rolling) to use for the swaps.

Specifically, consider the following types of variance/volatility swaps.

e “Genuine”: Use genuine swap quotes to infer the option’s initial price and compute hedge

ratios. Trade genuine swaps to implement the hedge.

e “Synthetic”: Use synthetic swap quotes to infer the option’s initial price and compute hedge

ratios. Trade synthetic swaps to implement the hedge.

e “Hybrid”: Use genuine swap quotes to set the option’s initial price and compute hedge ratios.

Trade synthetic swaps to implement the hedge.

Genuine quotes and genuine swap trades are desirable, but may not always be liquidly available,
hence the importance of the synthetic alternatives.

All variance/volatility swaps will have terminal date T', but we have a choice of start dates 7.

e “Fixed”: Use swaps which start at a fixed time 7. A natural choice is 7 = 0, which coincides
with the start date of the option to be hedged.

13



e “Rolling”: At each discrete time t; when the hedge is rebalanced, use fresh swaps. Thus

T = t, for the swaps that are held from time ¢; until the next rebalancing time 1.

For variance swaps, the fixed/rolling distinction is immaterial, by the additivity of variance; the
dynamics of a variance swap that starts today differ only by a constant from one that started
yesterday. For volatility swaps, however, the distinction matters, due to the square root.

In trading rolling-start synthetic volatility swaps, the bulk of the constituent transactions occur
mainly among the most liquid vanilla options — opening a position in ATMF straddles, and closing
a position in nearly-ATMF straddles; see Figure 2.3 and Appendix [3] Table B.1(c).

3.4 Simulation tests

To test these hedging strategies, we run the following simulation. Assume Heston dynamics with

r =0 and BCC’s [1] estimated parameters p = —0.64 and
dV; = 1.15(0.20% — V;)dt 4 0.39\/V,dW;, Vo = 0.20° (3.17)

under risk-neutral measure. Under physical measure, assume that S has drift coefficient 0.06 and
V has Heston dynamics with the same parameters as (3.17), except a long-run mean 0.182. As the
Heston model does not capture all of the observed features of equity markets, the future research
agenda includes supplementing these simulations with more sophisticated tests.

Let T'= 1 year, and consider a variance call struck at-the-money at Kgol = 0.202. Although we
defer to future research any theoretical analysis of the possibly material effect of discrete sampling
on variance option valuations, we do use in our simulation analysis the discretely (daily) sampled
returns typical in practice.

Suppose we sell the option at the initial price inferred from (genuine or synthetic) volatility
swap quotes. Then we hedge by trading (genuine or synthetic) variance and volatility swaps once
per day, allowing synthetic volatility swaps to use vanilla options of all strikes. Define the hedging
error to be the initial sale proceeds, plus the hedging P&L, minus the contractual option payout,
defined discretely using daily returns.

We simulate 400 paths, and report in Table 3.3 the mean absolute hedging error for the variance
call, under the strategy variations listed in Section 3.3. The errors are expressed as a percentage
of the true initial option price. Figure 3.4 plots the distribution of the simulated error in hedging
the variance call using rolling-start synthetic swaps.

The rolling-start strategy outperforms the fixed-start strategy in these simulations. Intuitively,
greater sensitivity to volatility-of-variance can be captured in a newly-issued volatility swap than
in a seasoned volatility swap, making the former better suited to hedge volatility-of-variance.

The mean absolute hedging errors of under 10%, and under 5% for some strategies, indicate ro-
bustness of our methodology against unfavorable conditions, including the non-lognormal dynamics

and nonzero price-correlation of the simulation’s volatility process.
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Table 3.3: Mean absolute errors of six variants of the hedging strategy for at-the-money 1-year

variance calls, simulated under the Heston dynamics (3.17).

Genuine swaps Hybrid swaps | Synthetic swaps

Fixed-start swaps 4.7% 6.7% 8.1%

Rolling-start swaps 3.5% 5.5% 6.2%

Figure 3.4: Distribution of the hedging errors using rolling-start synthetic swaps in Table 3.3

Frequency

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Relative error
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4 Hedging VIX options

A special case of our setup, with modified inputs, produces prices and hedges of VIX options using
variance swaps and VIX futures. Define VO%T = IEUR(Q)’T to be the time-0 implied variance given by
the time-0 variance swap rate. Define the [idealized] time-0 VIX to be V7, where T' = 1 month.
Consider a VIX call paying (Vo — Kyo1)™ at time 0, which we will price and hedge at times
t < 0. Redefine the discount factor Gy := €"(©~) to reflect the pay date 0, not 7. Redefine A;
as the time-t price of the payoff VD%T, which admits replication by holding (when t < 0) variance
swaps paying R&T (and closing the position when ¢ = 0); or alternatively replication via futures on
R&T. Redefine B; as the time-t price of the payoff V7, which admits replication via VIX futures.
Define Ry; := R;; := 0. Assuming the lognormality of V{ r, the formula (3.8) prices the VIX
option — in agreement with Carr-Wu [6] who, however, do not propose any hedge. Our formulas
(3.15)-(3.16) propose how many units of A and B to hold, in a dynamic hedge of the VIX option.
More generally, assume the time-¢ conditional lognormality of Vo1 — 3, for some nonegative
displacement parameter 3 < By. Then, with Ry; := R;; := 3, our formulas (3.8, 3.15, 3.16)
price and hedge VIX options. For 8 > 0, the resulting Black-implied volatility-of-VIX exhibits an

upward skew ATM. We leave analysis of its accuracy to future research.
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A Appendix: Historical remarks

Variance swaps now trade actively over-the-counter. Like any swap, variance swaps are entered
into at zero cost. Unlike most swaps, there is but a single exchange, which occurs at expiry. The
buyer of a variance swap agrees to pay the difference between a standard ex-post calculation of
realized variance and a fixed amount agreed upon at inception.

According to Mike Weber of Rabobank, the first variance swap appears to have been dealt in
1993 by him at the Union Bank of Switzerland (UBS). As the profile of the variance swap looked
very much like that of an at-the-money-forward (ATMF) straddle, UBS initially valued the variance
swap as such, less one vol point for safety. They later valued it using the method of Neuberger
[12]. Mike Weber recalls that UBS bought one million pounds per vol point on the FTSE100 at
15 vol, with a cap at 21 (so UBS also dealt the first option on vol as well). The motivation for the
trade was that UBS’ book was short many millions of vega in the five-year time bucket and thus
the trade represented a step in the right direction.

Volatility swaps also trade over-the-counter, but are not as liquid as variance swaps at present.
Like a variance swap, a volatility swap is entered into at zero cost and involves a single payment
at expiry. As the name suggests, the floating side of the payoff on a volatility swap is an ex post
measure of realized volatility, rather than variance. This volatility is obtained by taking the square
root of the realized variance. For both variance and volatility swaps, the fixed payment is converted
into a quote which is expressed in terms of annualized volatility.

Like many houses, UBS dealt a volatility swap before it did the variance swap in 1993. A casual
historical survey suggests that most houses switched from initially dealing in volatility swaps to
variance swaps, and some houses now deal in both. It is widely agreed that volatility swaps are
harder to hedge in practice than variance swaps. This observation explains both the transition
from vol swaps to variance swaps and the larger volume in the latter. Paralleling this transition,
the definition of the Volatility Index (VIX) changed from an average of eight at-the-money implied
volatilities to a weighted average of option prices in 2003. As this paper shows, this transition
roughly corresponds to a change from a synthetic vol swap quote to a synthetic variance swap
quote.

In the last few years, options on realized variance and volatility have also emerged on the scene.
Like most over-the-counter options, the options are European-style and first appeared on stock
indices. Besides the option embedded in the UBS 1993 variance swap, Mike Weber points out that
during the late 1990s, several houses sold warrants with an embedded call on realized variance.
However, with this kind of product, the option was typically struck far out-of-the-money (OTM).
Similarly, the payoff to variance swaps on single names are always capped, thus embedding a short
position in a deep-out-of-the-money call for the variance swap buyer. Nowadays, one can get quotes

on at-the-money options on realized variance from several houses.
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B Appendix: Implementation using discrete strikes

B.1 Synthetic volatility swap

First we! introduce some new notation to rewrite (2.6). Define m := m(S, F) := log(S/F) and

P(S, F) :=u X \/Zem/z\mfo(m/Q) —mli(m/2)|. (B.1)

It can be shown that ¥(St, F;) is the payoff of the Carr-Lee synthetic [, T] volatility swap, and

Y'(S, F) = u x Sgr;,(m)\/je_mﬂlo(mﬂ), S+ F, (B.2)
where the prime denotes partial derivative with respect to S. Moreover,
W"(S,F) = u x Sg;(;m \/ie—?’m/?(h (m/2) — Io(m/2)), S #F. (B.3)

To construct a claim on the payoff ¢ (St, F;) using a continuum of vanilla strikes, according to

Carr-Madan [5], hold ¢"(K, F;)dK options at each strike K; in addition, because of the kink

Y (Frt, Fr) = +uy/7/2/F;, hold uy/7/2/F, straddles at K = Fy. This agrees with (2.6).
However, when strikes are available only discretely, we replace dK by the strike spacing AK, and

choose a highest put strike K, and a lowest call strike K., where K, + AK = K.. We recommend

taking K, < Fr < K., but our formulas will not assume this. Let K, be the strike nearest F;

(unless F; is equidistant between two strikes; then let K, := (K, + K.)/2 to deactivate (B.7)).
The initial (time-7) replicating portfolio (2.6) becomes

uy/7/2/F; straddles at strike K = F; (B.4)

V'(K,F;)AK calls at strikes K > K., K # K, (B.5)

Y"(K,F;)AK puts at strikes K < K,,, K # K, (B.6)
s at strike K., if K, > K,

V(Ko + AKJ2,F) — /(K — AK/2,F,) —u/2r /B, 0 @0 SEE e B = Be g gy
puts at strike K, if K, < K,

F - K,

K. K,

—r(T—) KC — FT 7

e mw(Kp, E.) + (K., Fr)| cash (B.8)

and a zero-cost delta hedge; see below. (B.9)

where (S, F) := (S, F) — uy/m/2|S/F — 1|. We make the following line-by-line remarks.

The straddle at strike F; in (B.4) should be interpolated from the two available strikes K
and K neighboring F., where Ko < F, < Kj. For valuation purposes, each F.-straddle can
be priced as CB%(oimp(F,)), where CB5 is the Black-Scholes straddle (call plus put) formula, and
oimp(Fr) is the Black-Scholes implied volatility linearly interpolated between the observable implied
volatilities at strikes Ky and K7. For hedging purposes, the F;-strike straddle can be approximated

"We thank Glen Luckjiff and Mark Shaps for correcting typos in a previous version of this Appendix.
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as (Kj — Fr) /(K1 — Ky) straddles struck at Ky, plus (Fr — Ky)/(K; — Kp) straddles struck at K7,
plus the amount of cash needed to make the total value equal to CPS (i, (Fy)).

The synthetic volatility swap’s remaining components (B.5) to (B.8) aim to match discretely
the value of the payoff @(ST,FT), which is ¢ minus the straddle. The call and put quantities in
(B.5) and (B.6) use the standard second derivative, but in (B.7) the K option quantity is specified
as a finite difference, which more accurately deals with the ¢ function’s nonsmoothness at F.

Whereas the options price the convexity of v, the cash position (B.8) prices the level and slope
of ¢ at the put-call-separating strike. To specify this cash position, we again use a finite-difference
version of the standard formula, to deal with the nonsmoothness at F.. The cash position will
typically be negligible if K}, and K. are chosen close to F’.

The zero-cost delta-hedge in (B.9) does not affect valuation; but for hedging, it delta-neutralizes
each option at each strike K using —D;(K) shares and D;(K)S; in cash, where
K 00imp
S; 0K
and Delta® and VegaP® are the Black-Scholes delta and vega. Alternatively, —D, (K )e*T(T*T)

futures contracts (and no cash) may be used for each option at each strike K. Under the condition

D, (K) := Delta? (ginp (K)) — Vega?S (gimp (K))

(B.10)

of price/volatility independence, the options position in (2.6) is already delta neutral, so the total
share position automatically evaluates to zero, as shown in Carr-Lee [4]. Absent the independence
condition, however, we have a (typically nonzero) total share position, which neutralizes the options’
delta, robustly in that the only assumption is degree 1 homogeneity of option prices in spot and

strike.

B.2 Numerical example: Volatility and variance swaps

At time t = 0, we construct synthetic [0, 7] volatility and variance swaps on S with expiry 7' = 0.5.
Suppose that Sy = 100 and r = 0.04, and that T-expiry vanilla calls and puts on S are available at
strike increments of AK = 5.

Table B.1 performs the calculations, resulting in the synthetic volatility swap value By = 19.41,
and the synthetic variance swap value Ag = 395.09, where the units of variance are annual basis

points, as specified in (1.3), and the swaps have notional 1.

B.3 Numerical example: Volatility and variance options

In the setting of B.2, consider a [0,7] variance call and a [0,7] volatility call, each with strike
Ko = 20. Suppose volatility swaps and calls have notional 1, but the variance swaps and calls
have notional 1/(2Ky01) = 1/40 (which gives them the same “vega notional” as the volatility claims).

By (3.1) and (3.8), with the A and B inferred in section B.2, we find a variance call value of
1.34 and a volatility call value of 1.20. The variance call hedge consists of 2.93 variance swaps and
—2.39 volatility swaps. The volatility call hedge consists of 2.35 variance swaps and —1.88 volatility

swaps.

20



Table B.1: Synthetic volatility and variance swaps

Strike | Option type Number of options Premium per option | Delta per option
Volatility swap | Variance swap

(a) (b) (¢) (d) (e) (f)
60 put 0.109 55.56 0.02 -0.002
65 put 0.094 47.34 0.05 -0.005
70 put 0.083 40.82 0.11 -0.012
75 put 0.073 35.56 0.25 -0.026
80 put 0.065 31.25 0.51 -0.050
85 put 0.059 27.68 0.97 -0.091
90 put 0.053 24.69 1.74 -0.154
95 put 0.048 22.16 2.92 -0.244
100 put 0.036 20.00 4.65 -0.361

102.0 straddle 1.737 0 11.05 0.170
105 call -0.040 18.14 4.10 0.500
110 call -0.037 16.53 2.26 0.353
115 call -0.035 15.12 1.07 0.216
120 call -0.032 13.89 0.42 0.110
125 call -0.030 12.80 0.12 0.044
130 call -0.028 11.83 0.03 0.012

We have Fy = Spe™” = 102.0, so we take K, =100, K. = 105.

Column (c) is computed by (B.4) through (B.7). Column (d) is computed by (2.2). Column
(e) is observed from market prices of listed options; in this example, we suppose that the prices
correspond to an implied volatility skew ojpp(K) = 0.20—0.002(K —100). Column (f) is by (B.10).

Therefore we have

Synthetic volatility swap: Synthetic variance swap:
Total options value = Z[(C) X (e)] = 19.412 Total options value = Z[(d) x (e)] = 395.52
By (B.8), Cash = —0.004 By (2.2), Cash and shares value = —0.43
Total synthetic volatility swap value = 19.408 Total synthetic variance swap value = 395.09

and the volatility swap’s zero-cost delta hedge should have delta — ) [(¢) x (f)] = —0.204, which
may be implemented as —0.204 shares plus 0.204 x Sy cash, or alternatively as —0.204 x e~"T

futures (and zero cash).
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C Appendix: Hedge ratios

For a call on volatility, with general 7, we have the hedge ratios

oCYS! 0 if Kyol < Rot o1
04 ) [ Ryemitoteyemitas: (52 — 52) 20 i Ky > R (€1
—ds (Rg t+2R7—,t6mt+stz+e2mt+23tz)1/2 25t 12 2412 o vo. 0,t
aCE(f\} 1 if Kvol < RO,t
= 2
aB o0 RT,temt+StZ+52mt+25tZ l RT,t _ =z _ ZRT,t e ? /2 :
f—dg (Rg t+2RTyt6mt+Stz+e2mt+23tz)1/2 (m + 72 75”“ 7515#2 ) /o dz if Kvol > RO,t

(C.2)

by differentiating (3.7).
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