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ABSTRACT
An alternative volatility index called SPIKES has been recently introduced. Like
VIX, SPIKES aims to forecast S&P 500 volatility over a 30 day horizon and both
indexes are based on the same theoretical formula; yet, they differ in several ways.
While some differences are introduced in response to the controversy surrounding
possible VIX manipulation, others are due to the choice of the S&P500 exchange
traded fund (ETF), named SPY, as a substitute for the S&P500 (SPX) Index it-
self. Indeed, while European-Style options on the S&P500 Index are used for VIX
computation, American-style options on the SPY ETF are used for SPIKES. Hence,
the difference from a theoretical standpoint is mainly given by the early exercise
premium, embedded in the American-style options, and by the change in the div-
idend timing of SPX versus SPY. The main objective of this paper is to use the
benchmark Black, Merton and Scholes model to assess the magnitude of the above
two differences and hence between the two volatility indexes. By applying both the
finite difference method and newly-derived approximation formulas we compute the
overall contribution of the early exercise premiums and show that the new SPIKES
index will track the VIX index as long as 30 day US interest rates and annualised
dividend yields continue to be range bound between 0 and 10 % per year. Hence,
after more that 20 years, VIX may have a competitor.
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1. An Introduction to VIX and SPIKES

The primary volatility index quoted in the financial press has been VIX, since it was
first created in 1993. The construction of VIX was changed in 2003 to take advantage
of conceptual breakthroughs in theoretical replicating strategies for over-the-counter
variance swaps, see Britten-Jones and Neuberger (2000); Demeterfi, Derman, Kamal,
and Zou (1999), and discussion in Carr and Wu (2009); Jiang and Tian (2005), among
others. Since its re-design in 2003, VIX2 has been the cost of a portfolio of out-of
the money (OTM) options written on the SPX. The weighting scheme combines the
mid-point of bid and ask SPX option quotes, updated every minute, at almost all
of the OTM strikes and for two maturities which straddle 30 days. The across-strike
weights are designed to equate the Gamma-cash contribution from each option, while
the across-maturity weights are designed to target a 30 day forecasting horizon. A
detailed description on how the VIX index is constructed in practice is given in CBOE
VIX white paper (2009).

The emphasis on bid and ask quotes rather than on trades has lead prominent aca-
demics to question whether VIX can be manipulated, see Griffin and Shams (2018).
The excessive volumes in out-of-the-money SPX options on VIX settlement were found
to have no other explanation. In response to the controversy surrounding possible VIX
manipulation, an alternative volatility index called SPIKES has been recently intro-
duced and quoted in the Miami International Securities Exchange (MIAX). Currently,
futures and options both trade on SPIKES, the former on the Minneapolis Grain Ex-
change (MGEX) and the latter on MIAX Option Exchange. The futures have monthly
expiration for the 6 nearest months. The options are European-style and have monthly
expiration also for the 6 nearest months. They can be bought or sold individually or
as a combination.

In this paper, we analyse the SPIKES volatility index, primarily by comparing it to
VIX, which is much more well known. Like VIX, SPIKES aims at forecasting S&P500
volatility over a 30 day horizon. SPIKES uses the same weighting scheme across strikes
and maturities as VIX, but differs from VIX in several ways:

(1) Dividend Timing Difference: SPIKES is calculated from prices of OTM options
written on the SPY ETF, rather than from OTM SPX option prices. The under-
lying SPY ETF pays dividends quarterly1, whereas the 500 stocks comprising
S&P500 pay dividends much more frequently.

(2) Early Exercise Premium: SPY options have an American-style exercise feature,
whereas SPX options have a European-style exercise feature.

(3) Trade Prioritization: SPIKES uses a patented price-dragging technique to select
option prices in the portfolio which gives priority to trades.

(4) Weight Updating: the weights on OTM option prices in SPIKES are updated on
the order of seconds, rather than minutes.

(5) Modified truncation and rolling methodology: the SPY option market has 1-cent
increments versus the 5-cents increments allowed for SPX options and the rolling
into a new expiration is of 3 days for SPIKES versus 9 days for VIX.

Besides, the SPY options, whose prices are combined into SPIKES, trade on several
US exchanges. This makes SPIKES harder to manipulate than VIX, which combines
prices of SPX options trading only on the CBOE.

1According to the fund’s prospectus, the SPDR S&P 500 ETF puts all dividends it receives from its underlying

stocks into a non-interest-bearing account until the end of each quarter when they are distributed proportionally
to the investors.
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Points (3) to (5) of the above list are related to so-called market conventions and
do not affect the difference between the theoretical counterparts of the two indexes,
both based on the theory of variance swap replication. Hence, we focus only on the
differences between SPIKES and VIX that arises from different dividend timing and
exercise styles. We decompose the difference between SPIKES and VIX (squared) into
the sum of the dividend timing difference (DTD) and the early exercise premium
(EEP), the precise definitions of which are given below. Note that, under zero interest
rates the total contribution of EEPs in SPIKES vanishes when computed in days
where no quarterly dividends are due during the lifetime of the constituent options
(this happens overall for eight out of twelve months), and becomes positive again in
the days preceding an expected dividend. On the contrary, in case of positive interest
rates, the total contribution is always positive since the EEP is positive for put options;
by symmetry, the same would happen also under the (hypothetical) case of negative
interest rates since the EEP would be positive for call options.

On average, VIX is an upward biased forecast of subsequent realised volatility, see
Bekaert and Hoerova (2014); Carr and Wu (2009); Jiang and Tian (2005), among
others. Since the DTD can either add to or subtract from the non-negative EEP, at
least in principle, it is not obvious ex ante whether or not SPIKES has higher upward
bias than VIX. Historically, the difference between SPIKES and VIX has been positive,
but small in magnitude. One can use an option valuation model to gauge how large
this difference can become as US dividend yields and interest rates rise from their
current positive but historically low levels.

In a hypothetical case of all 500 stocks in the S&P500 paying zero dividends, the
DTD is clearly zero, while the EEP is positive. An increase in dividend yields creates a
non-zero DTD which again can have either sign. In standard valuation models such as
Black, Merton and Scholes (Black and Scholes, 1973), the American Call EEP increases
with dividends and decreases with interest rates, while the American put EEP has the
opposite behaviour in dividends and interest rates. As a result, an increase or decrease
in dividends has a mixed effect on the overall EEP across calls and puts, as does an
increase or decrease in interest rates. The primary purpose of this paper is to use the
benchmark Black, Merton, Scholes (BMS) model to calculate the potential impact of
a rise in interest rates and/or dividend yields on the magnitudes of the DTD and the
EEP, and thereby to assess whether SPIKES is likely to continue tracking VIX in the
future. Our numerical results indicate that the difference is likely to remain small so
long as 30 day interest rates and annualised dividend yields both remain below 10%
per year.

One can also consider the use of an alternative option pricing model that is consis-
tent with the volatility skew. We thought it prudent to begin with the perhaps overly
simple but familiar BMS setting. We could then use the results of this preliminary in-
vestigation to assess whether a more complicated but more realistic option valuation
model would change our qualitative conclusions. We leave this issue to future research.

The rest of the paper is outlined as follows: Section 2 includes the preliminary data
analysis; Section 3 details the computation of the two indexed and highlights their
main differences , from a theoretical point of view. In Section 4 we derive our main re-
sults which are a closed-form approximation for the early exercise premium of a single
American Put option and for the aggregate contribution of all Put options compo-
nents to the theoretical SPIKES index (squared). Section 5 is devoted to a numerical
illustration and Section 6 to concluding remarks and possible future directions of our
research. Technical details and proofs are finally summed up in the Appendix section.
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2. Data Analysis from 2005 to 2018

An analysis of data from 2005 to 2018 shows that the inclusion of the early exercise
premiums as well a the difference dividend timing in the SPIKES calculation has had a
negligible impact on the average historical level of SPIKES, as evidenced in Figure A1,
where both the historical values for VIX and the back-calculated values for SPIKES
are plotted. It is clear from the picture that SPIKES tracks VIX during the whole
period. The simplest explanation for this negligible difference is that all of the options
used in the volatility index calculations are OTM, hence with a small EEP. It also
helps that US interest rates have averaged lower in this period than they did in the
late 1970’s, when inflation was larger. It is possible that a return of higher interest
rates or a sharp increase in dividend payouts would increase the gap between SPIKES
and VIX.

[Figure 1 about here.]

Table A1 reports some basic statistics for SPIKES and VIX levels and percentage log-
differences (returns). The mean level of SPIKES at 18.90 has been slightly higher than
that of VIX at 18.70; however, a two sample t-test cannot reject the null hypothesis
of equal mean between the two time series, with a p-value of 0.34. The two volatil-
ity indices also have very similar standard deviations and skewness. The percentage
changes in the two volatility indices are virtually indistinguishable over daily, weekly,
and monthly horizons. This is confirmed, once again, by the outcomes of a t-test for
which the null of equal means cannot be rejected at all frequencies. In addition, the
two volatility indices have very similar, strongly negative correlations to the S&P 500
over the daily, weakly and monthly horizons. Moreover, the correlation between both
levels and percentage changes in the two volatility indices is nearly 1.

[Table 1 about here.]

As reported in Table A2, when SPIKES log-differences are regressed on VIX log-
differences with no intercept, the estimated slope as well as the R2 of the regression
are both very close to 1. This result holds for daily, weekly, and monthly horizons. The
table also shows the result of regressing SPY on SPX after adjusting for the different
dividend payout times:

[Table 2 about here.]

In Figure A2, the regression fit of SPIKES returns on VIX returns is plotted for
weekly and monthly log-differences and confirm that the two indices have moved to-
gether.

[Figure 2 about here.]

Finally, Figure A3 displays the mean difference between SPIKES and VIX by cal-
endar month; the difference is highest in the month preceding those when ex-dividend
fall (February, May, August and November). This is expected, as an effect of both the
different dividend timing DTD and the early exercise premium embedded in American
component options.

[Figure 3 about here.]
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3. Computing VIX, SPIKES and their difference

The computation of both SPIKES and VIX is based on a theoretical result for repli-
cating the payoff on a variance swap via a static position in OTM European-style
index options combined with dynamic trading in futures written on their underly-
ing index, Britten-Jones and Neuberger (2000); Demeterfi et al. (1999). To ease one’s
understanding of the construction of the two volatility indices, we introduce two con-
cepts called TV IX and TSPIKES which stand for theoretical VIX and theoretical
SPIKES respectively.

For TV IX2, the cost of the theoretical replicating portfolio is:

TV IX2 =
365

30

1

B

[∫ f

0

2

K2
p

p(Kp)dKp +

∫ ∞
f

2

K2
c

c(Kc)dKc

]
(1)

where 365/30 is an annualization factor based on calendar days, B is the price of a
zero coupon bond paying $1 in 30 days, and f is the 30 day forward price of the
S&P500 index, which, in practice, is approximated by the futures price. In (1), p(Kp)
and c(Kc) respectively denote market prices of 30 day European-style OTM puts and
calls written on the S&P500 Index struck at Kp ∈ [0, f ] and Kc > f respectively.

Assuming no frictions, deterministic interest rates, and a strictly positive and con-
tinuous futures price process, TV IX2 is the cost of replicating a fictitious variance
swap paying the quadratic variation of the log futures price at maturity. Academics
sometimes wrongly describe this replication strategy as model-free, but what they
should be writing is that this replication is not as model-dependent as the standard
approach for replicating path-dependent derivatives. Under either stochastic interest
rates and/or jumps in price and/or non-negative futures prices, the terminal quadratic
variation of the log futures price cannot be theoretically replicated without further as-
sumptions.

The magnitude of the variance swap replication failure increases as we move from
theory towards practice, see Jiang and Tian (2007) for a comprehensive discussion.
In practice, the actual variance swap has discrete monitoring, most often daily, and
often squares discrete time log price relatives of SPX, not its futures price. Since
option prices are only observed at discrete strikes, the above TV IX2 integral formula
has to be approximated by either fitting an implied volatility smile across strikes or
by replacing the integral with a sum arising from truncation and discrete spacing of
strikes. When a sum is used, a correction term needs to be added to capture the fact
that f does not fall on a strike. Since observed option maturities are only rarely exactly
30 days, a further approximation error is introduced by the necessity of interpolating
across two maturities straddling 30 days. When:

• the annualization factor is based on minutes rather than days
• the integral is replaced by a sum with a correction term
• the maturity interpolation is linear

then the approximation of TV IX2 is called VIX2. As an aside, one can develop
both a theory and a target ”variance swap like” payoff such that VIX2, ignoring
the correction term mentioned above, is the exact replication cost, as opposed to an
approximation of the replication cost of a theoretical or exact variance swap.
TSPIKES is based on the same theoretical formula and weighting scheme as

TV IX, but where European-style options on the S& P500 Index (SPX) are nec-
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essarily replaced by American-style options on the S& P500 ETF (SPY). Hence:

TSPIKES2 =
365

30

1

B

[∫ F

0

2

K2
p

P (Kp)dKp +

∫ ∞
F

2

K2
c

C(Kc)dKc

]
(2)

where P (Kp) and C(Kc) respectively denote market prices of the American-style OTM
puts and calls written on the SPY ETF, struck at Kp ∈ [0, F ] and Kc > F respectively,
and F is the 30 day forward price of the SPY ETF. However, unlike with TV IX2,
there is no known theory under which TSPIKES2 is the initial cost of replicating a
theoretical variance swap.

As for TV IX, the TSPIKES integral formula can also be approximated in prac-
tice by an annualization factor, by truncation and discrete spacing of strikes, and by
linear interpolation across two maturities straddling 30 days. This approximation of
TSPIKES2 is called SPIKES2.

In variance swap replication theory, the market prices of the European options
are observed directly. As a result, the only role of the underlying forward price is to
separate OTM Put strikes from OTM Call strikes. The underlying forward price is not
needed to calculate option premia from a model as the option premia are supposed
to be directly observed. Likewise, the American option premia in TSPIKES are
supposed to be directly observed. In fact, when future values of SPIKES are to be
compared to future values of VIX, we don’t observe future prices of the component
options. However, we can use an option pricing model to project these future option
prices onto future relevant stochastic state variables such as spot SPX or SPY, and/or
an ATM implied volatility of SPX or SPY. We can then use the model to compare
future levels of SPIKES to future levels of VIX, conditional on given numerical values
of the relevant state variables.

When an American option on SPY is exercised early or at maturity, its payoff relates
to the spot value of SPY, not its futures price. When option pricing models are used to
determine the early exercise premium of a SPY option, it is easier to evolve the single
spot price of the underlying rather than to evolve the entire term structure of forward
or futures prices. It is also easier to assume that implied volatilities are constant across
moneyness and calendar time rather than to assume they vary with moneyness and
stochastically over time.

If we assume that the only relevant stochastic state variable is the spot and that it
has constant proportional carrying costs and constant instantaneous volatility over
time, we are sing the BMS model to price options. Consider first the pricing of
European-style SPX options; we assume for the rest of the paper that the dividends
from the 500 stocks in SPX are continuously paid over time and that the annualised
dividend yield of SPX is constant at some known level γ ≥ 0. In BMS setting the
risk-free interest rate and the volatility are also constant at some known levels r and
σ > 0 and so it is the proportional carrying cost r−γ ∈ R. Then the value of TV IX2,
when the current value of the underlying SPX is at some known level X > 0, is given
by:

TV IX2 =
365

30

1

B

[∫ f

0

2

K2
p

pbs(X, γ,Kp)dKp +

∫ ∞
f

2

K2
c

cbs(X, γ,Kc)dKc

]
, (3)

where pbs(X, γ,Kp) and cbs(X, γ,Kc) respectively denote the BMS model value of a
European Put and Call for strikes Kp ∈ [0, f ] and Kc ≥ f respectively, f being the
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forward price in T of the underlying SPX.
Note that TV IX2 is independent of the inputs X, γ, r, and T that enter into the

relative pricing of each constituent SPX option and, in BMS model, is simply the
constant instantaneous variance rate σ2. However, when we move from TV IX2 to
VIX2, VIX2 gains dependence on X, γ, r, and T due to the discreteness of strikes.

The theoretical counterpart of squared SPIKES, i.e. TSPIKES2, is defined by:

TSPIKES2 =
365

30

1

B

[∫ F

0

2

K2
p

P bs(Y, q,Kp)dKp +

∫ ∞
F

2

K2
c

Cbs(Y, q,Kc)dKc

]
(4)

where P bs(Y, q,Kp) and Cbs(Y, q,Kc) respectively denote the BMS model value of an
American Put and Call when SPY is at Y > 0, with constant quarterly paid dividend
yield q ≥ 0, and for strikes Kp ∈ [0, F ] and Kc ≥ F respectively, F being the forward
price of SPY.

Let (p/c)bs(Y, q,K) be the theoretical value of a European Put or Call on SPY.
Suppose we subtract and add (p/c)bs(Y, q,K) in (4). Then we can decompose the
difference between TSPIKES2 and TV IX2 into two parts:

TSPIKES2 − TV IX2 = εx(Y, q) + δd(X,Y ; γ, q), (5)

where εx(Y, q) is the non-negative SPY option aggregate early exercise premium

εx(Y, q) =
365

30

1

B

[∫ F

0

2

K2
p

[P bs(Y, q,Kp)− pbs(Y, q,Kp)]dKp

+

∫ ∞
F

2

K2
c

[Cbs(Y, q,Kc)− cbs(Y, q,Kc)]dKc

]
and δd(X,Y ; γ, q) the dividend timing difference :

δd(X,Y ; γ, q) =
365

30

1

B

[∫ F

0

2

K2
p

pbs(Y, q,Kp)dKp

+

∫ ∞
F

2

K2
c

cbs(Y, q,Kc)dKc

]
− TV IX2.

Note that while the decomposition in (5) is model free the computation of the two
addends depends on the assumption on the underlying assets X and Y . It is impor-
tant to display the theoretical relationship between the two underlying assets SPX
and SPY, with SPX having a constant continuously-paid, continuously-compounded,
annualised dividend yield γ ≥ 0 and SPY having a constant quarterly-paid, quarterly-
compounded annualised dividend rate q ≥ 0. Consider the one year price relatives X1

X0

and Y1

Y0
when time 0 is just after SPY has paid a quarterly dividend. Let D0 be the

price at this time of a pure discount bond paying $1 in 1 year. Under the forward

measure Q1, we have D0E
Q1

0
X1

X0
= e−γ , while D0E

Q1

0
Y1

Y0
=
(

1
1+q/4

)4
. Equating the two

expressions and solving for q one gets q = 4(eγ/4 − 1). Notice that q ≥ γ since the γ
is compounded more often.
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Under our model assumptions, it is possible to show that Yt =
Xt exp (γ(t− TD(t))+) where TD(t) is the dividend date just before time t ≥ 0
and Xt and Yt coincide at any ex-dividend date, just after the discrete dividend is
paid. In Figure A4, we plot an example of a price path for Y and X to illustrate the
jump effect of the difference in the dividend schemes on the price dynamics. The Div-
idend Timing Difference is due to the jump, possibly occurring due to a dividend date
within the one-month time horizon, the magnitude of which can be expressed, under
our assumptions, as a function of the proportional dividend rate q (Carr and Wu, 2009;

Klassen, 2009). Precisely, we have δd(X,Y ; γ, q) = δd(γ, q) = 2
[
log
(
1 + q

4

)
− q/4

1+q/4

]
.

[Figure 4 about here.]

The overall contribution εx(Y, q) to the difference between TSPIKES2 and TV IX2,
as indicated in (5), is obtained by adding the total EEPs arising from the American
calls and American Puts. Specifically we can write:

εx(Y, q) = TotalEEPput + TotalEEPcall, (6)

where TotalEEPput, T otalEEPcall denote the aggregate contribution of Puts and
Calls, respectively. The total contribution by Calls TotalEEPcall can be computed
explicitly. Since the SPIKES index is based on a 30 day horizon, there can be at most
one quarterly dividend payment from the underlying SPY ETF; when no dividend is
expected during the lifetime of the options (this happening overall in 2

3 of the days in a
year) this contribution vanishes while when one proportional dividend is expected, the
EEP of an American-style Call is given, in the BMS setting, by the EEP of a Bermu-
dan Option with exercise times TD, T and can be computed in closed form (Villiger,
2006). The cumulative contribution TotalEEPcall is then obtained by simple integra-
tion. Hence, in what follows we will focus on the computation of TotalEEPput. To this
end we develop an explicit approximation for the individual EEP of an American-style
Put which, suitably integrated, leads to an explicit formula for its weighted integral
TotalEEPput. As a byproduct we obtain the pricing formula of an American put op-
tions on an underlying paying discrete dividends in a BMS setting, thus complementing
the outcomes in Villiger (2006) which hold for American calls.

4. Closed form approximation for the Early Exercise Premium of an
American-style Put option

The underlying dynamics in Black and Scholes (1973) model can be generalised to the
case when the risky asset pays a single proportional dividend before maturity; if the
continuously compounded interest rate is constant at r > 0 and Yt is the spot price at
time t, representing the price of the underlying SPY, the dynamics of the process Y
under the risk-neutral probability measure Q, in t ∈ [0, T ], is given by:

dYt = rYtdt+ σYtdWt − δ(t− TD)Dtdt (7)

where Dt = qYt, q is the (annualised) proportional dividend rate and δ is the Dirac
delta function. As already remarked, if the underlying stock pays no dividends be-
tween the valuation time t and the option’s maturity date T , then an American Call
with expiration date T and strike price K has the same price as a European one
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i.e. C(t, T,K) = c(t, T,K), where C and c denote the price of an American and a
European Call respectively. In contrast, American puts have a positive early exercise
premium.

4.1. The individual Early Exercise Premium

It is well known, see Carr, Jarrow, and Myneni (1992), that the initial value of an
American put’s EEP with expiry T , strike price K, and a non-dividend paying under-
lying priced at Y0, may be represented as:

EEP (0, T,K) = EQ
[
rK

∫ T

0
e−rt1{Yt<B(t,K)}dt

]
, (8)

where B(t,K) is the early exercise boundary for strike K and maturity T , which has
no known exact formula, but solves an integral equation. Precisely, under Black and
Scholes (1973) assumptions, Carr et al. (1992) proved that

EEP (0, T,K) = rK

∫ T

0
e−rtN

 ln
(
B(t,K)
Y0

)
−
(
r − σ2/2

)
t

σ
√
t

 dt. (9)

Indeed, the discrete nature of the dividend makes it possible to split the integral in
(8) and write the early exercise premium for an American put as:

EEP (0, T,K) = EQ
[
rK

∫ TD

0
e−rt1{Y ct <B(t,K)}dt+ rK

∫ T

TD

e−rt1{Y xt <B(t,T )}dt

]
(10)

= EQ
[
rK

∫ TD

0
e−rt1{Y ct <B(t,T )}dt

]
+ e−rTDEQ

[
rK

∫ T

TD

e−r(t−TD)1{Y xt <B(t,T )}dt

]
,

where the cum-dividend stock price Y c appears in the indicator function in the first
integral, while the ex-dividend stock price Y x appears in the indicator function in the
second integral.

Theoretically, increasing the level of the short interest rate r raises each American
put’s EEP, after accounting for the increase in the early exercise boundary B(t,K), t ∈
[0, T ]. As a result, the overall effect of an increase in the interest rate r on the EEP
should be positive. The magnitude of this effect is obtained by computing the above
integrals, once we have some expression for the early exercise boundary B(t,K).

We assume that the early exercise boundary B(t,K), t ∈ [0, T ] is approximated by
an exponential function of time, as in Ju (1998), both before and after the ex dividend
date. Precisely, the true early exercise boundary is approximated by Yp = {Yp(t), 0 <
t < T}, defined as:
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Yp(t) ≈

 Ce−ht, if 0 < t < TD

Legt, if TD < t < T
(11)

where C,L, h, g are positive constants.

Theorem 4.1. Assume we are under the MS model setting and that:

a1. the price changes of the risky asset Y in the time interval [0, T ] are described by
the dynamics in (7) with constant parameters r, σ, q and 0 < TD < T ;

a2. the early exercise boundary for American put options is approximated by the piece-
wise exponential function in (11).

Then the early exercise premium for an American put with strike K and expiration
date T is approximated by

EEP (0, T,K) = f̃(Y c
0 ;C,−h)− e−rTDEQ

[
f̃(Y c

TDe
hTD ;C,−h)

]
(12)

+ e−rTDEQ
[
f̃(Y x

TDe
−gTd ;L, g)

]
− e−rTEQ

[
f̃(Y x

T e
−gT ;L, g)

]
,

with f̃ : R3
+ → R+ defined as:

f̃(ỹ; l, u) =
2rK

σ2(p+ − p−)

[
1{ỹ<l}

(
1

p+
− 1

p−
− 1

p+

(
ỹ

l

)p+)
− 1{ỹ>l}

1

p−

(
ỹ

l

)p−]
,

(13)

where ỹ = y exp (−ut) and p+, p− are the roots of P(p) = σ2

2 p
2 + (r − u− σ2

2 )p− r.

Proof. A detailed proof is given in the Appendix.

Note that expected values are calculated using the cum-dividend initial price for
the first two terms and the ex-dividend price for the following others. The relevance of
the above theorem is in the fact that the function f̃ is not path dependent; while the
LHS of the expression in (A15) depends on the distribution of the whole path from
0 to T of the stochastic process Y , the RHS only depends, through f̃ on the random
variables YTD , YT . Further, it is straightforward to show that

Lemma 4.2. Under the assumptions of Theorem 4.1, if no dividends are due in [t, T ]
then we have:

EQt
[
e−r(T−t)f̃(ỸT ; l, u)

]
= Ke−r(T−t)N

(
−d2(t, Ỹt, l, T )

)
(14)

− 2rK

σ2(p+ − p−)

1

p+

(
Ỹt
l

)p+
N
(
−d+

2 (t, Ỹt, l, T )
)

− 2rK

σ2(p+ − p−)

1

p−

(
Ỹt
l

)p−
N
(
d−2 (t, Ỹt, l, T )

)
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where Ỹt = Y exp (−ut), d−2 (t, Ỹt, l, T ) = d2(t, Ỹt, l, T ) + p−σ
√
T − t and

d+
2 (t, Ỹt, l, T ) = d2(t, Ỹt, l, T ) + p+σ

√
T − t and Et denotes conditional expectation at

time t.

Proof. The proof is straightforward, given the known dynamics of the process Y and

observing that 2r
σ2(p+−p−)

(
1
p+
− 1

p−

)
= 1.

It is worth to remark that the EEP in 4.1 can be computed explicitly by applying
Lemma 4.2 where Y is replaced by either the cum-dividend process Y c or the ex-
dividend process Yx. In this latter case the conditional expectation in t = TD is
computed first and the unconditional expectation is obtained then by using the tower
rule.

In order to gauge the magnitude of the approximation error, we solve the partial dif-
ferential equation (PDE) obtained from the dynamics in (7) for a discrete proportional
dividend, q Y at TD, see also Göttsche and Vellekoop (2011). Notably, by applying fi-
nite difference method to numerically solve the PDEs it is possible to get both the
price of American options and the (true) early exercise boundary. In Figures A5 and
A6, we plot the (true) early exercise boundary obtained by numerical integration, for
several values of the risk free rate r and the annualised dividend rate q, respectively.
Indeed, the presence of a discrete dividend makes the boundary jump upward at time
TD which is decreasing in calendar time t before time TD, and increasing afterwards.
In Figure A7 we plot both the true and the approximated boundary for a specific
example example with r = 2%, q = 3%,TD = 1/2 months and K = 100, T = 1 month.
The exponential approximation is above the true so the closed form for the put option
EEP is an upward biased approximation of the actual one.

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

Figures A8 and A9, represent a zoom on the early exercise boundary respectively
for the period before and after the dividend date. In this pictures we also plot the
linear approximations obtained as steps towards the final exponential approximation
of the boundary; the precise computation is detailed in the Appendix.

[Figure 8 about here.]

[Figure 9 about here.]

4.2. The cumulative Early Exercise Premium

The representation of the EEP of a single American put given in (13) allows us to
compute directly the excess of TSPIKES2 over TV IX2 arising from the early exercise
premium of component put options by integrating over all of the OTM strikes K ∈
[0, F ], i.e. Total EEPPut(0, T ) =

∫ F
0

2
K2 EEP (0, T,K)dK. It is possible to prove the

following result:

10



Proposition 4.3. Under the assumptions of Theorem 4.1 the cumulative contribution
of the early exercise premiums of OTM Puts is approximated by:

Total EEPPut(0, T ) = G̃(Ỹ c
0 ; a,−h)− e−rTDEQ

[
G̃(Ỹ c

TD ; a,−h)
]

(15)

+ e−rTDEQ
[
G̃(Ỹ x

t ; b, g)
]
− e−r(T )EQ

[
G̃(Ỹ x

T ; b, g)
]

where Ỹ c
s = Y c

s exp (hs), Ỹ x
s = Y x

t exp (−gs), s ≥ 0 and a := C/K, b := L/K are
positive constants. Finally, the function G : R3

+ → R+ is defined as:

G̃(ỹ; v, u) =
4r

σ2(p+ − p−)
(16)

×

[
1{ỹ<vF}

((
1

p+
− 1

p−

)
log

Fv

ỹ
+

1

(p+)2

(
ỹp

+

(Fv)p+
− 1

)
+

1

(p−)2

)
+ 1{ỹ>vF}

ỹp
−

(vF )p−

]
,

where F is the forward price of the underlying Y for maturity T , ỹ = y exp (−ut) and

p+, p− are the roots of P(p) = σ2

2 p
2 + (r − u− σ2

2 )p− r.

Proof. It suffices to compute the following integral:

G̃(ỹ, v, u) =

∫ F

0

2

K2
f̃(ỹ, vK, u)dK

=

∫ F

0

2

K2

2rK

σ2(p+ − p−)

(
1{ỹ<vK}

(
1

p+
− 1

p−
− 1

p+

ỹp
+

(vK)p+

)
− 1{ỹ>vK}

1

p−
ỹp

−

vKp−

)
dK

=
4r

σ2(p+ − p−)
×
∫ F

0

1

K

(
1{ỹ<vK}

(
1

p+
− 1

p−
− 1

p+

ỹp
+

(vK)p+

)
− 1{ỹ>vK}

1

p−
ỹp

−

vKp−

)
dK

Since all the addends in the integrating function are power functions in K, the final
expression for G̃ is obtained by applying elementary integration rules.

The Total EEP can be approximated by a closed formula since the expectations
appearing in (16) can be computed explicitly.

Lemma 4.4. Under the assumptions of Theorem 4.1, if no dividends are due in [t, T ]
then we have:

EQt
[
e−r(T−t)G̃(ỸT ; v, u)

]
= 2e−rt

[(
log

Feu(T−t)v

Yt(1− q)er−σ2/2
− 2r

σ2(p+ − p−)

(
1

(p+)2
− 1

(p−)2

))
(17)

×N
(
−d2(t, T, Yt(1− q), Fveut)

)
+ σ
√
tN ′
(
−d2(t, T, Yt(1− q), Fveut)

)]
+

4r

σ2(p+ − p−)

1

(p+)2

(
Yt(1− q)
Fv

)p+
N
(
−d2(t, T, Yt(1− q), Fveu(T−t))− σp+

√
T − t

)
+

4r

σ2(p+ − p−)

1

(p−)2

(
Yt(1− q)
Fv

)p−
N
(
d2(t, T, Yt(1− q), Fveu(T−t))+σp−

√
T − t

)
.
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where F is the forward price of the underlying Y prevailing at time t for maturity
T , Ỹt = Y exp (−ut), d−2 (t, Ỹt, l, T ) = d2(t, Ỹt, l, T ) + p−σ

√
T − t and d+

2 (t, Ỹt, l, T ) =

d2(t, Ỹt, l, T ) + p+σ
√
T − t and Et denotes conditional expectation at time t.

Proof. The proof is straightforward, given the known dynamics of the process Y in

BMS setting and observing that 2r
σ2(p+−p−)

(
1
p+
− 1

p−

)
= 1.

We remark that when there is no dividend paid during the lifetime of SPY options,
then the overall contribution of puts to the EEP reduces to:

Total EEPPut(0, T ) = G̃(Ỹ0, b, g)− e−r(T )EQ
[
G̃(ỸT , b, g)

]
. (18)

5. Numerical Results

In this section, we derive the difference between TSPIKES2 and TV IX2 by comput-
ing the early exercise premiums for American call and put components via a Crank-
Nicolson finite difference scheme. We consider different examples for which the divi-
dend is paid one week, two weeks and three weeks ahead, with option expiring in one
month for both SPY and SPX options. For each case, we fix Y0 = 100, σ = 0.2, and
T = one month. We let r and q vary to test how interest rates and dividend yields affect
the difference between SPIKES2 and V IX2. The numerical integration to obtain the
two volatility indices is truncated at Klowest = 30 for the puts and Khighest = 200 for
the calls. The above difference is then compared with the closed form approximation
obtained by adding three terms: the exact Dividend Timing Difference (DTD), the
exact contribution of calls to the total EEP, and the total contributions of puts to the
EEP, obtained by applying Proposition 4.3 and Lemma4.4.

In Table A3 and Table A4, we report the value in basis points of the total difference
between (truncated) TSPIKES2 and TV IX2 for several pairs of r and q.

[Table 3 about here.]

It is clear from Table A3 that the true difference between TSPIKES2-TV IX2 is
negligible. We draw the same qualitative conclusion from the outcomes displayed in
Table A4, obtained by applying the closed formulas. As expected the approximation
is upward biased and the error is between 0.25 and 6 basis points for the considered
examples. For any pair of interest and dividend rate the difference increases when
the dividend date gets closer to this expiration date, as expected from the theoretical
discussion an consistently with Figure A3.

[Table 4 about here.]

One naturally wonders whether OTM calls or OTM puts are more important in
explaining the cumulative EEP across strikes, contributing to the difference between
TV IX2 and TSPIKES2. In order to answer to this question we report in Table A5,
the separate contributions of OTM calls and OTM puts to the total EEP, computed by
applying the closed formulas, for the example case when a single dividend is paid during
SPY options lifetime in TD = 3 weeks. The total contribution of calls is increasing
in the dividend rate q and decreasing in the interest rate and, as expected, the total
contribution of Puts does not vary with q and it is increasing with r; the dividend
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timing difference is increasing in q and does not change with r. Overall, the impact of
a change in the dividend rate is higher than that in the interest rate.

[Table 5 about here.]

6. Conclusions and Future Research

When SPIKES is back-calculated to 2005, it hardly differs from VIX. We used the
benchmark BMS model to discuss the main causes of this difference and to asses
whether it would remain negligible in other scenarios. In order to prove this results we
decomposed the difference between the theoretical counterparts of the two indexes in
two main terms: the dividend timing difference and the total early exercise premium.
The former is due to the different dividend payment scheme for SPX and SPY which
are the underlying assets of the constituent options, respectively for VIX and SPIKES
and it is shown to be only dependent on the value of the annualised dividend rate
q. The latter gathers the early exercise premiums arising from the American exercise
style of SPY options against the European style of SPX options. The contribution of
calls can be computed in close form by applying the outcomes in Villiger (2006); we
derive in this paper an analogous closed form expression for the early exercise of a put
options and for the aggregate contribution of Put option on SPIKES. In the numerical
illustration we show that the new SPIKES index will continue tracking the VIX index
as long as 30 day US interest rates and annualised dividend yields continue to be range
bound between 0 and 10 % per year and we compare the (true) difference computed
by applied the finite difference method to solve the model PDE with the closed form
approximations proposed in this paper. We did not consider negative interest rates
in the numerical application; indeed, both VIX and SPIKES are quoted in United
States where interest rates have remained positive to date and, most likely, should
stay positive in the future. Even during the recent pandemic the US Fed has refrained
from pushing its benchmark rates below zero. Anyway, the theory tells us that in case
of negative interest rates the contribution of American Calls to the total early exercise
premium would increase as it may become convenient, under such circumstances, to
exercise a call before its expiration. However, Puts would never be exercised early and
the contribution of American puts to the early exercise premium would vanish. Hence,
we don’t expect substantial changes to the overall difference between TSPIKES and
TV IX if the interest rate r was assumed negative. We have also evidenced how the
impact of the dividend rate is higher than that of the interest rate, affecting both the
dividend timing difference and the total EEP from Calls. Notably, during the historical
period analysed in this paper dividend rates for the SPY ETF have remained around
2% but for a single peak at 3.3%, as illustrated in Figure A10. Overall, we expect the
gap between SPIKES and VIX to increase substantially only in case of an extremely
positive performance of the stocks underlying the SPY ETF.

[Figure 10 about here.]

It is worth noticing that we also believe the prices of the near and next maturity
OTM options used to calculate both SPIKES and VIX respond primarily to volatility,
along with interest rates and dividends. Future research can investigate whether the
sensitivity of TSPIKES2 and TV IX2 with respect to the volatility parameter σ
differs substantially, in line with the approach in Demeterfi et al. (1999). Given (5), it
suffices to compute the derivative of the total EEP εx(Y, q) with respect to σ. This is
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easily approximated in closed form by computing the corresponding derivative of the
expressions for the Total EEP for Calls, available by applying the outcomes in Villiger
(2006) and that of the Total EEP for Puts given in (16), when a discrete dividend is
paid by the SPY ETF during the lifetime of the options. When no dividends are paid
by the SPY ETF before expiration, Vega is calculated by differentiating the expression
in (18) with respect to σ. Preliminary results indicate that the numerical difference
between the two Vegas is small, but not always negligible.

It is also worth to investigate whether these initial conclusions are robust to the
assumptions that interest rates, dividend yields, and variance rates are constant. When
all three of these rates are allowed to be stochastic, the extra optionality in an American
option gives its holder the right to swap an exposure based primarily on volatility for a
swap between interest and dividends. The EEP should rise due to this extra volatility
value and so should the gap between SPIKES and VIX. We leave this analysis to
future research.
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Appendix A. Proof of Theorem 4.1.

In this appendix we develop the necessary steps in order to approximate the exercise
boundary and hence the EEP for the American-style Put options considered in the
SPIKES Index computation. These are written on an underlying paying a single dis-
crete proportional dividend qY at the dividend date TD < T , being T their expiration
date. It is worth noticing that the dividend date plays a crucial role in the approxima-
tion of the early exercise boundary for the options, which jumps at time TD. Indeed,
after time TD, the option reduces to an American Put written on a non-dividend
paying asset.

The proof is given by proceeding in steps:

(1) we restrict our attention to the time interval (TD, T ], where no dividends are
due, and consider a constant boundary L by setting g = 0 in (11).

(2) we apply a change of probability measure to derive a closed form formula when
the exercise boundary is approximated by an exponentially growing boundary,
g 6= 0, once again focusing on the time interval after the dividend date TD;

(3) we generalise the outcomes of previous steps for approximating the exercise
boundary and computing the EEP of an American-style Put for t < TD.

Note that in the first two steps we assume that the early exercise boundary is flat
at the level 0 for t ≤ TD. This corresponds to approximating the price of the American
Put option with that of a hybrid American Put which can be exercised at any time in
(TD, T ].

Step 1 Since there are no dividends in the time interval (TD, T ], the early exercise
premium for the hybrid put is just the present value of the interest earned on the
strike price, while the stock price is below the early exercise boundary, as shown in
Carr et al. (1992), which we assume to be constant at L in the time interval (TD, T ].

Hence, the price PH at time t < TD of the hybrid put is given by:

PH(t, Yt, T,Kp;L) = p(t, Yt, T,Kp, L) (A1)

+ e−r(TD−t)EQ
[
rKp

∫ T

TD

e−r(u−TD)1{Yu<Yp(u)}du

]
. (A2)

The critical stock price at time TD is defined as the level for Y such that the con-
tinuation value of the hybrid put equals its exercise value; if we further assume that
the exercise boundary is constant at this critical stock price after time TD, then L
implicitly solves:

PH(TD, L, T,K;L) = K − L. (A3)

We know that when the underlying asset is non-dividend paying, the value at time
s ∈ (TD, T ], of interest on the strike while Y < L is

EQs
[
rK

∫ T

s
e−r(u−s)1{Yu<L}du

]
. (A4)

Consider a function f : R+ −→ R+ with f ∈ C2 . By applying Ito’s Lemma in
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integral form we get

e−rT f(YT ) = f(Ys) +

∫ T

s
e−r(u−s)f ′(Yu)dYu

+

∫ T

s
e−r(u−s)[

f ′′(Yu)

2
σ2Y 2

u − rf(Yu)]du

= f(Ys) +

∫ T

s
e−r(u−s)f ′(Yu)[dYu − rYudu]

+

∫ T

s
e−r(u−s)[

f ′′(Yu)

2
σ2Y 2

u + rYuf
′(Yu)− rf(Yu)]du

and, taking conditional expectation at time s we get,

e−r(T−s)EQs [f(YT )] = f(Ys)+EQs
[∫ T

s
e−r(u−s)[

f ′′(Yu)

2
σ2Y 2

u + rYuf
′(Yu)− rf(Yu)]du

]
.

(A5)
Hence, the value of the accrued interest on the strike for Y < L may be written, in
TD as

EQTD

[
rK

∫ T

TD

e−r(u−TD)1{Yu<L}du

]
= f(YTD)− e−r(T−TD)EQTD [f(YT )] , (A6)

if and only if there exists a function f(Y ) solving the following ordinary differential
equation (ODE):

f ′′(Y )

2
σ2Y 2 + rY f ′(Y )− rf(Y ) = −rK1{Y <L}. (A7)

It is straightforward to show that a solution exists for any constant L, and it is
given by

f(Y ;L) =
Kp

r + σ2

2

[
1{Y <L}

(
r +

σ2

2
− rY

L

)
+ 1{Y >L}

σ2

2

(
Y

L

)−2r/σ2
]
. (A8)

The function f(Y ;L) can be seen as a final payoff at T whose time value at s matches
the value of the interest earned on the strike price K when Y < L between s and T .
Finally, by discounting and applying the tower property for conditional expectation,
the price of the hybrid put with constant boundary at time t, for 0 ≤ t ≤ TD , is given

PH(t, Yt, T,Kp;L) = p(t, Yt, T,Kp) + e−r(TD−t)EQt
[
f(YTD ;L)− e−r(T−TD)f(YT ;L)

]
.

(A9)
To solve for L, we must compute the above price at time TD i.e. conditioning on

the information available at time TD and then solve (A3). Note that we can write
L = bKp for some positive constant b.
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The early exercise premium in TD for the hybrid put can be computed explicitly:

EEPH(TD, T,Kp) = EQTD
[
f(YTD ;L)− e−r(T−TD)f(YT ;L)

]
=

Kp

r + σ2

2

[
(r +

σ2

2
)
[
1{YTD<L} − e

−r(T−TD)N (−d2 (TD, YTD , T, L))
]

−rYTD
L

[
1{YTD<L} −N (−d1 (TD, YTD , T, L))

]]
+

K

r + σ2

2

σ2

2

(
YTD
L

)−2r

σ2
[
1{YTD>L} −N

(
d2 (TD, YTD , T, L)− 2r

σ

√
T − TD

)]
.

(A10)

Finally, the early exercise premium at time t = 0 for the hybrid put is simply the
discounted value of the premium in A10:

EEPH(0, T,Kp) =

Kp

[
e−rTDN (−d2 (0, Y0(1− q), TD, L))− e−r(T−TD)N (−d2 (0, Y0(1− q), T, L))

]
− Kp

r + σ2

2

rY0(1− q)
L

[N (−d1 (0, Y0(1− q), TD, L))−N (−d1 (0, Y0(1− q), T, L))]

+
Kp

r + σ2

2

σ2

2

(
Y0(1− q)

L

)−2r

σ2
[
N

(
d2 (0, Y0(1− q), TD, L)− 2r

σ

√
TD

)
−N

(
d2 (0, Y0(1− q), T, L)− 2r

σ

√
T

)]
,

so the price at time t = 0 for the hybrid put is given by:

PH(0, Y0, T,Kp;L) = p(0, Y0, T,Kp) + EEPH(0, T,Kp). (A11)

Step 2
As an improved approximation for the early exercise premium and the price of the

hybrid American option introduced above, we let the exponential growth coefficient g
be non-zero in (11). The boundary is again assumed to be flat at 0 before the dividend
date TD.

Several methods are available to obtain the constants L, g specifying the approxi-
mating exponential function. Here, we obtain these constant imposing value matching
conditions at times TD and T , according to the outcomes in Ju (1998).

We extend the approach used in Step 2 and define a function f̃ which represents
the payoff flow of the EEP in the time span (TD, T ].

Define the auxiliary process Ỹt := Yte
−gt. Under the risk-neutral probability measure

Q, the price changes of Ỹ are described by:

dỸt = (r − g)Ỹtdt+ σỸtdWt − δ(t− TD)Dtdt.
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We can use a similar approach to that of a constant boundary and find a function
f̃ such that

EQt
[
rKp

∫ T

t
e−r(u−t)1{Ỹu<L}du

]
= f̃(Ỹt)− e−r(T−t)EQt

[
f̃(ỸT )

]
, (A12)

which is obtained by solving:

f̃ ′′(Ỹ )

2
σ2Ỹ 2 + (r − g)Ỹ f̃ ′(Ỹ )− rf̃(Ỹ ) = −rK1{Y <L}. (A13)

The solution is:

f̃(Ỹ ;L, g) =
2rKp

σ2(p+ − p−)

[
1{Ỹ <L}

(
1

p+
− 1

p−
− 1

p+

(
Ỹ

L

)p+)
− 1{Ỹ >L}

1

p−

(
Ỹ

L

)p−]
,

(A14)

where p+, p− are the roots of P(p) = σ2

2 p
2 + (r − g − σ2

2 )p− r.
Note that once this new function is computed, the case of an exponential boundary

for the underlying stock Y is equivalent to that of a constant boundary for the process
Ỹ .

Hence, as in the previous subsection, we get

EEPH(TD, T,K) = EQTD
[
f̃(ỸTD)− e−r(T−TD)f̃(ỸT )

]
=

2rKp

σ2(p+ − p−)

[
(

1

p+
− 1

p−
)
[
1{ỸTD<L}

− e−r(T−TD)N
(
−d2

(
TD, ỸTD , T, L

))]
− 1

p+

(
ỸTD
L

)p+ [
1{ỸTD<L}

−N
(
−d2

(
TD, ỸTD , T, L

)
− p+σ

√
T − TD

)]]

− 2rKp

σ2(p+ − p−)

1

p−

(
ỸTD
L

)p− [
1{ỸTD>L}

−N
(
d2

(
TD, ỸTD , T, L

)
+ p−σ

√
T − TD

)]
,

and similarly we obtain the early premium at time t = 0 by computing its discounted
value and the corresponding hybrid option price.

Step 3 We finally consider the case of an American option which can be exercised
throughout its lifetime [0, T ]. This can be done by applying the outcomes obtained in
Step 2 for different exponential approximating functions before and after the dividend
date TD, respectively as defined in (11) and considering the cum-dividend and the
ex.dividend process respectively. The challenge here is to obtain the constant values
C, h for which we cannot apply the same method as above. By looking at Figures A5
and A6, it is evident that the exercise boundary is essentially linear before time TD
and vanishes at time TD. We want the exponential approximation before time TD to
emulate the linear behaviour displayed by the true boundary computed numerically;
since TD < T ≈ 1/12, this is easily achieved by setting the constant h in (11) to a small
value. Further, we surmise from the pictures that the intercept is approximately at the
level r

qKTD. A linear boundary approximation with the above properties is given by
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y = r
qK(TD − t), which can be in turn approximated by an exponential function with

C = r
qKTD and h = 1

TD
. The linear boundary may also be calibrated by matching the

average slope of the area under the linear and exponential boundary approximations;
the results are qualitative analogous. Once the values for C, h are computed, then the
overall early exercise premium for an American put with strike Kp and expiration date
T , can be computed by summing the two early exercise premiums for the first and
second part of the approximated boundary. Precisely,

EEP (0, T,K) = f̃(Y c
0 ;C, h)− e−rTDEQ

[
f̃(Y c

TDe
hTD ;C, h)

]
(A15)

+ e−rTDEQ
[
f̃(Y x

TDe
−gTD ;L, g)

]
− e−rTEQ

[
f̃(Y x

T e
−gT ;L, g)

]
,

where the expected values are calculated using the cum-dividend initial price for the
first two terms and the ex-dividend price for the others. This finally proves Theorem
4.1. �
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Statistics Index Daily Ret. Weekly Ret. Monthly Ret.

Vol. Index VIX, SPIKES VIX, SPIKES VIX, SPIKES VIX, SPIKES
Mean 18.70, 18.90 0.28%, 0.28% 1.1%, 1.1% 3.10%, 3.00%
Std. Dev. 9.20, 9.20 123%, 123% 115%, 112% 96%, 94%
Skewness 2.50, 2.50 2.20, 2.90 2.80, 2.80 2.70, 2.90
SPX Corr. -51% , -50% -72%, -71% -71%, -71% -69%, -69%
VIX Corr. 1, 99.9%, 1, 97.4%, 1, 98.5% 1, 99.1%

Table A1. Descriptive statistics for VIX, SPIKES and their returns from 2005 to 2018
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Asset Pair Daily Return R2 Weekly Return R2 Monthly Return R2

SPIKES vs. VIX 0.95 0.97 0.98
SPY vs. SPX 0.98 0.99 1.00

Table A2. The R2 value when SPIKES returns are regressed on VIX returns (top row) and SPY returns are
regressed on SPX returns (bottom row).
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TSPIKES2-TV IX2

Finite Difference r q TD = 1 week TD = 2 weeks TD = 3 weeks

0.01 0.01 0.17 0.22 0.34
0.01 0.03 0.51 0.97 1.56
0.01 0.05 1.35 2.48 3.62
0.01 0.1 6.31 9.51 11.98
0.03 0.01 0.17 0.21 0.31
0.03 0.03 0.48 0.87 1.46
0.03 0.05 1.25 2.31 3.46
0.03 0.1 5.93 9.13 11.69
0.05 0.01 0.17 0.22 0.31
0.05 0.03 0.47 0.81 1.38
0.05 0.05 1.17 2.16 3.32
0.05 0.1 5.59 8.78 11.41
0.1 0.01 0.22 0.35 0.41
0.1 0.03 0.50 0.76 1.26
0.1 0.05 1.10 1.91 3.05
0.1 0.1 4.91 8.03 10.81

Table A3. TSPIKES2-TV IX2 (in bp) computed via Finite Differences when dividends are paid during the

lifetime of SPY options at time TD=1,2,3 weeks.
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TSPIKES2-TV IX2

Closed Form r q TD = 1 week TD = 2 weeks TD = 3 weeks

0.01 0.01 0.53 0.54 0.59
0.01 0.03 1.09 1.51 2.03
0.01 0.05 2.36 3.46 4.52
0.01 0.1 9.36 12.53 14.92
0.03 0.01 1.30 1.22 1.09
0.03 0.03 1.83 2.11 2.46
0.03 0.05 3.04 3.98 4.90
0.03 0.1 9.75 12.83 15.16
0.05 0.01 2.02 1.84 1.54
0.05 0.03 2.53 2.64 2.83
0.05 0.05 3.68 4.43 5.21
0.05 0.1 10.12 13.08 15.33
0.1 0.01 3.74 3.29 2.59
0.1 0.03 4.24 3.91 3.66
0.1 0.05 5.27 5.50 5.88
0.1 0.1 11.10 13.63 15.66

Table A4. TSPIKES2-TV IX2 (in bp) computed with the closed form approximation formula when divi-

dends are paid during the lifetime of SPY options at time TD = 1, 2, 3 weeks.
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Table A5. Separate contribution of Calls, Puts and the Dividend Timing to TSPIKES2-TV IX2 (in bp)

when a single dividend is paid during SPY options’ lifetime in TD = 3 weeks.

r q Call Total Premium Put Total Premium Dividend Timing

0.01 0.01 0.17 0.36 0.06
0.01 0.03 1.11 0.36 0.56
0.01 0.05 2.63 0.36 1.54
0.01 0.1 8.52 0.36 6.05
0.03 0.01 0.11 0.92 0.06
0.03 0.03 0.98 0.92 0.56
0.03 0.05 2.44 0.92 1.54
0.03 0.1 8.19 0.92 6.05
0.05 0.01 0.06 1.42 0.06
0.05 0.03 0.86 1.42 0.56
0.05 0.05 2.25 1.42 1.54
0.05 0.1. 7.86 1.42 6.05
0.1 0.01. 0.00 2.53 0.06
0.1 0.03 0.58 2.53 0.56
0.1 0.05 1.82 2.53 1.54
0.1 0.1 7.08 2.53 6.05
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Figure A1. Historical data for VIX (blu solid line) and back-calculated values for SPIKES (red stars) from

2005 to 2018.
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Figure A2. Linear Regressions of SPIKES Returns on VIX Returns
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Figure A3. Mean difference between SPIKES and VIX by calendar months
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Figure A4. One possible path of SPX and SPY under Black and Scholes for n=120 days, taking into account

the different dividend scheme: γ = 0.02, σ = 0.20, r = 0.01, SPX0 = SPY0 = 100, TD = 0, 90 days.
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Figure A5. Early exercise boundary curves for different levels of the risk free interest rate r when the dividend

rate q is fixed at q = 3%. Option strike price and maturity are set at K = 100 and T = 1 month while the
dividend is expected in TD = 2 weeks.
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Figure A6. Early exercise boundary curves for different levels of the dividend rate q when the risk free

interest rate is fixed at r = 2%. Option strike price and maturity at fixed at K = 100 and T = 1 month while
the dividend is expected in TD = 2 weeks.
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Figure A7. Early exercise boundary curve when r = 2%. Option strike price and maturity are set at K = 100

and T = 1 month while the dividend is expected in TD = 2 weeks.
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m

Figure A8. Early exercise boundary before the dividend date TD: Finite difference (Red), Linear approxi-
mation (Green), Exponential approximation (Blue)
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Figure A9. Early exercise boundary after the dividend date TD: Finite difference (Red), Constant approxi-
mation (Green), Exponential approximation (Blue)
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Figure A10. Historical values of the SPY dividend rate q from 2005 to 2018.
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