NYU Big Data Course Syllabus 2021

Week 1: (Ken)
- Introduction to data science
 - Data science concepts
 - Statistics concepts
 - Classification & clustering
 - Introduction of R
- Homework:
 - Statistical analysis and data visualization in R / Python

Week 2: (Tyler)
- Introduction to entropy
 - Shannon’s understanding of entropy
 - Modeling signal vs. Noise
 - Entropy allocation between parameters and residuals
 - KL-divergence as a concept
 - Pathologies as inaccurate entropy estimations
- Homework: First project using Apache Spark
 - Fit simple model on example data set. Compute entropies.

Week 3: (Ken)
- Regression Models
 - Linear Regression
 - Data transformation for Regression
 - Non-linear Regression / Logistic Regression
- Various Concepts in Machine Learning Modeling
 - Overfit vs underfit
 - Regularization
 - Cross validation
 - Optimization
- Homework:
 - Design and build a regression model in R / Python

Week 4: (Tyler)
- Classification Models
 - Multinomial Logistic classification model using cleaned mortgage data
 - Explain the data set, explain the model.
 - Simple theoretical results in this space, connections to entropy.
- Homework: Classification model assigned
 - Build Classifier in Spark using multi-logit regression.

Week 5: (Ken)
- Classic Classifiers
 - Decision Tree
- Naive Bayes
- SVM
- Model Comparison & Evaluation
- Use Cases

 o Homework:
 - Design and build classifiers in R / Python

Week 6: (Tyler)

 o Model Pathologies and Overfitting
 - Examine results of previous round of classifiers.
 - Explore some common model mishaps
 - Examine results from “pace car” model
 - Explore information criteria, AIC, BIC, TIC
 - White’s criteria

 o Homework
 - No homework, prep for midterm.

Week 7: (One of us)

Midterm test

Week 8: (Ken)

 o Clustering & Pattern Recognition
 - K-Means
 - Hierarchical
 - Association Rules
 - MCL

 o Homework
 - Application of clustering techniques in R / Python

Week 9: (Tyler)

 o Introduction to cloud computing.
 - Cloud computing with google cloud.
 - Computational costs, accuracy, performance.
 - Compare known models, compare models from literature.

 o Homework
 - Classification model on the cloud

Week 10: (Ken)

 o Natural Language Processing
 - Parsing & tokenization
 - Conversion of text into digital format
 - Classification & clustering
 - Sentiment Analysis

 o Homework
• Design and build a NLP model in R / Python

Week 11: (Tyler)

○ First neural nets
 • Examine basic theory and practice of neural nets.
 • Kolmogorov-Arnold representation theorem, and various analytic approximations.
 • Common pitfalls.
○ Homework
 • Build Neural Net using spark, compare to previous rounds of semi-parametric models.

Week 12: (Ken)

○ DL & Big Data Applications
 • Retail Banking
 • Marketing / Call Center
 • Mortgage Risk
 • Lead Generation
○ Homework
 • Review what has been taught in the whole semester

Week 13: (Tyler)

○ Deep learning models
 • Examine image recognition as a problem, look at neural nets built for this problem.
○ Homework
 • Build a CNN to perform image recognition.

Week 14: (either)

• Review homework, prepare for final exam/project.
• Review current state of the art and research in this field.

The NYU Tandon School values an inclusive and equitable environment for all our students. I hope to foster a sense of community in this class and consider it a place where individuals of all backgrounds, beliefs, ethnicities, national origins, gender identities, sexual orientations, religious and political affiliations, and abilities will be treated with respect. It is my intent that all students’ learning needs be addressed both in and out of class and that the diversity that students bring to this class be viewed as a resource, strength, and benefit. If this standard is not being upheld, please feel free to speak with me.