
A
variance swap is a contract that pays the realised variance of the
returns of a specified underlying asset over a specified period of
time. It has been shown that under certain conditions, the pay-
outs to a continuously monitored variance swap can be synthe-
sised by combining continuous trading in the underlying with

static positions in standard options maturing with the swap (Neuberger
(see bibliography reference 12), Dupire (see bibliography reference 7),
and Carr & Madan (see bibliography reference 5)). It has also been
shown that the covariance of returns between two currencies can be repli-
cated in this manner (Carr & Madan (see bibliography reference 4)).

But there are three problems with this proposed replication strategy,
which are that it:
�� replicates perfectly only if there are no jumps in the underlying;
�� assumes the variance swap is continuously monitored, even though all 

variance swaps are discretely monitored in practice; and
�� requires continuous trading in the underlying, which is problematic in the 

presence of transaction costs and market closings.

SOLUTION
Here we propose a solution to the drawbacks.We suggest changing the defi-
nition of variance in the swap from the realised variance of returns to the
realised variance of price changes.This shows that the new payout can be
perfectly replicated in the presence of jumps, discrete monitoring and dis-
crete trading opportunities. It further shows that a contract paying the
realised covariance of price changes can also be synthesised in this setting.

We will iillustrate this in the context of commodity options. This is
because the markets for commodity option structures have many of the fea-
tures we require. In particular, to synthesise covariance swaps, we will use
spread options, which represent one of the few options written on two assets
and listed on an organised exchange.

Previous articles on the valuation of spread options include Broadie and
Detemple (see bibliography reference 2), Grabbe (see reference 8),Heenk,
Kemna & Vorst (see reference 10), Pearson (see reference 13), Ravindran
(see reference 14), and Shimko (see reference 13).

All these papers assume the covariance between the two commmodities
in the spread is constant. In contrast, this article assumes the covariance
between the two commodities is random, and furthermore that the stochas-
tic process governing covariance is unknown.

Rather than pricing spread options in terms of a fixed covariance, we
turn the problem around.We show how the covariance between the price
changes in two commodity futures can be traded, given the ability to trade
dynamically in the futures and to take static positions in spread options and
in options written on each component of the spread.

REVIEW OF STATIC HEDGING USING OPTIONS
Consider a single period setting in which investments are made at time t0
with all payouts received at time tn. In contrast to the standard intertem-
poral model, we assume there are no trading opportunities other than at
times t0 and tn.We assume there exists a futures market in a commodity
for delivery at some date T ≥ tn.

We also assume that markets exist for European-style futures options1

of all strikes.While the assumption of a continuum of strikes is far from
standard, it is essentially the analogue of the standard assumption of con-
tinuous trading.

Continuous trading is generally regarded as a reasonable approximation
of an environment where investors can trade frequently, but not infinitely
often. By analogy, we regard static positioning in a continuum of strikes as a
reasonable approximation of a market environment with a large but finite
number of option strikes.

This market structure allows investors to create any smooth function
f(Fn) of the terminal futures price Fn by taking a static position at time 0 in
options.2 When this theory is used to generate desired volatility exposures,
here we show that it is only the second derivative of the payout that governs
such exposures.

Consequently, we will always choose f so that its value and slope vanish
at the initial futures price F0 (that is to say, f(F0) = f ′(F0) = 0). In this case,
the results of Carr & Madan (see bibliography reference 3) imply that any
twice differentiable payout can be spanned by the following position in out-
of-the-money options:

(1)

That is, to create a twice differentiable payout with value and slope van-
ishing at F0, buy f″(K)dK puts at all strikes less than F0 and buy f″(K)dK
calls at all strikes greater than F0.

In the absence of arbitrage, a decomposition similar to that in equation
(1) must prevail among the initial values. Specifically, if we let V0

f, P0(K) and
C0(K) denote the initial prices of the payout f(.), the put and the call respec-
tively, then the no-arbitrage condition requires that:

(2)

Thus, the value of an arbitrary payout can be obtained from the option
prices. Given the spectrum of European-style options on the spread of two
futures prices S = F1 – F2, one can also create any smooth function of this
spread g(S).

If we assume that the value and slope vanish at the initial spread S0 ∈ ℜ,
that is to say, g(S0) = g′(S0) = 0, then the analogous expression for the value
of this payout is:

(3)

where P0
s(K) and C0

s(K) are the initial prices of European-style put and call
spread options struck at K. Note that no assumptions were made regarding
the stochastic processes governing the futures prices.

CREATING A CONTRACT PAYING THE VARIANCE OF A COMMODITY
Consider a finite set of discrete times {t0, t1,…, tn} at which one can trade
futures contracts. For simplicity, we will take these times to be closing times
of trading days, but this restriction is not necessary. Fi denotes the price
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traded at on day i, for i = 0,1,…,n. By day n, a standard estimator of the
realised annualised variance of price changes will be:

where N is the number of trading days in a year.
The purpose of this section is to demonstrate a strategy whose terminal

payout matches the above estimator of variance.
By Taylor’s series, we note that:

Rearranging and summing implies:

The first sum on the left telescopes to Fn
2 – F0

2. So, multiplying both
sides by N—n implies:

(4)

The first term on the right-hand side can be regarded as a function φ(.)
of Fn, where:

(5)

The first derivative is given by:

(6)

Thus the value and slope both vanish at F = F0. It follows from equation
(1) that the payout φ(Fn) can be replicated using options.The number of
options held at each strike is proportional to the second derivative of φ ,
which is simply:

(7)

Substituting equation (1) into (4) results in:

(8)

The initial cost of creating the first term on the right-hand side of equa-
tion (8) is:

(9)

If we assume interest rates are constant at r, then the second term on the
right-hand side of equation (8) can be regarded as the cumulative marking-
to-market proceeds arising from holding:

futures contracts from time ti–1 to time ti. Since futures positions are cost-
less, the theoretically fair price to charge for this variance contract is V0
given in (9).

The dynamic strategy in futures can be interpreted as an attempt to
hedge the payout φ(Fn) made at tn, conducted under the false assump-
tion of zero volatility. Given this ridiculous assumption, the value func-
tion is:

( )− −
−− n ir t t
i 1

N
e 2 F

n

( ) ( )0F
0 00

N N
V 2 P K,T dK 2 K,T dK

n n
− ∞

+= +∫ ∫
0

0F
C

( ) ( ) ( )

( )

Var 0

0

F
n n0 F

n

i 1

N
F 2 K F dK F K dK

n
N

2
n

+ +− ∞
+

− −
−

 ∆ = − + −  

− −

∫ ∫

∑ i 1 i i 1F F F

( ) N
F 2

n
′′φ =

( ) ( )0
N

F 2 F F
n

′φ = −

( ) ( )φ = − 2
0

N
F F F

n

( ) ( ) ( )Var 2 2
n 0

N
F F F

n − −∆ = − − −∑
n

i 1 i i 1
i=1

N
2 F F F

n

( ) ( ) ( )
n

2 2
i i 1F F , i 1,...,n− − − −− − − = − =∑ ∑ ∑

n n 2
i 1 i i 1 i i 1

i=1 i=1 i=1
2F F F F F

( ) ( )22 2
i i 1 i ii 1 i 1 i 1F F 2F F F F F , i 1,...,n− − − −= + − + − =

( ) ( )Var F −
=

∆ = −∑
n 2

i i 1
i 1

N
F F

n
for i = 1,…, n.

Recognising that the marking-to-market proceeds are realised one trad-
ing day after the position is put on, the zero volatility hedger holds:

futures contracts from time ti–1 to time ti.This is exactly the dynamic strat-
egy needed to create the last term in equation (8). Since realised volatility
will in fact be positive, an error arises, and the magnitude of this error is
given by the left side of equation (8).

CONTRACT PAYING THE COVARIANCE OF TWO FUTURES PRICES
Recall that:

Si = F1,i – F2,i , i = 0,1,...,n (10)

denotes the spread on day ti, where F1,i and F2,i denote the contemporane-
ous futures prices of the two components of the spread.

This section shows how to create a contract paying:

at time tn by combining static positions in options with dynamic trading in
the underlying futures.

We begin by recalling the well known3 result that:

Rearranging this expression gives:

(11)

Thus, one can synthesise a covariance swap by selling half a variance
swap on the spread and buying half a variance swap on each of the spread
components. As these variance swaps are unlikely to be explicitly available,
they can be synthesised. Substituting equation (8) in each term on the right-
hand side of equation (11) implies:

From equation (10), the second term on the right-hand side can be cre-
ated by dynamic trading in futures on the spread components:

(13)

Substituting equations (10) and (13) in (12) and simplifying implies:
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COMMODITY PRICING
Finally, it would be interesting to develop contracts on other statistics of

the sample path, such as the standard deviation, the Sharpe ratio, skewness
or correlation. In the interests of brevity, such enquiries are best left for
future research. ��

NNootteess
1 Note that listed futures options are generally American-style. However, by setting T = tn, the
underlying futures will converge to the spot at tn and so the assumption is that there exists
European-style spot options in this special case
2 This observation was first noted in Breeden & Litzenberger (bibliography reference 1) and
established formally in Green & Jarrow (bibliography reference 9) and Nachman (bibliography
reference 11)
3 See Zerolis (bibliography reference 16) for a geometric derivation derived from the law of
cosines

PPeetteerr  CCaarrrr  iiss  aa  pprriinncciippaall aatt  iinnvveessttmmeenntt  bbaannkk  aanndd  bbrrookkeerraaggee  
ffiirrmm  BBaanncc  ooff  AAmmeerriiccaa  SSeeccuurriittiieess  iinn  NNeeww  YYoorrkk

ee--mmaaiill::  ppccaarrrr@@bbooffaasseeccuurriittiieess..ccoomm

AAnntthhoonnyy  CCoorrssoo  iiss  aa  vviiccee--pprreessiiddeenntt  aatt  iinnddeeppeennddeenntt  ppoowweerr  
pprroodduucceerr  SSiitthhee  EEnneerrggiieess  iinn  NNeeww  YYoorrkk

ee--mmaaiill::  ttccoorrssoo@@ssiitthhee..ccoomm  
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Since futures positions are costless, the fair price to charge for the covari-
ance swap is the cost of creating the static options position:

The investor must also trade futures on a daily basis, holding
–e–r(tn–ti)F2,i–1 units of the first futures contract and –e–r(tn–ti)F1,i–1 units of
the second from time ti–1 to time ti.

FUTURE RESEARCH
We have shown that by combining static positions in options with
dynamic trading in futures, investors can synthesise contracts paying the
realised variance of a commodity or paying the realised covariance
between two commodities. Importantly, these contracts were created
without assuming anything about the underlying price.

It would be interesting to extend our results to other payouts besides
variance and covariance. Indeed, Carr, Lewis & Madan (see bibliography
reference 6) characterise the entire set of continuously paid cashflows that
can be spanned in our structure.

We could perhaps consider non-linear functions of realised variance or
covariance, such as options on these moments.
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