Polytechnic Tutoring Center
Midterm 2 REVIEW - CS1133, Fall 2020

Disclaimer: This mock exam is only for practice. It was made by tutors in the Polytechnic Tutoring Center
and is not representative of the actual exam given by the Academic Department.

Question 1

clear; clc;
isMem input("The customer has an account on the store website: ");
timEl 1; timE2 = 3; timE3 = 5;
switch isMem
case true
% customers who are members
isPre = input("The customer is a premium member: ");
memTime = input(“Number of years for which the customer has been a ...
member: ");
disp("The customer receives the following prize(s): °);
disp(®™ pencil®);
if memTime>=timEl && memTime<timE2
disp(" pen®); % customers between 1 and 3 years
elseif memTime>=timE2 && memTime<timE3
disp(® keychain®); % customers between 3 and 5 years
elseif memTime>=timE3
disp(® teddy bear®); % customers 5 years or over
end
switch isPre
case true
% premium customers
disp(® water bottle");

end
otherwise
disp("The customer receives no prize.");
end

Question 2

clear; clc;
% you can use any matrix, including the one provided with the problem

MTX = [-40 79 31 53 5 -9
64 36 -72 53 78 54
-74 2 -67 38 26 -65
0 -3 5 -54 50 -57
-51 -69 -63 28 -5 -51];

[nRows, mCols] = size(MTX); % size is only vectorized operation allowed
evenCount = 0; % initialize count of even numbers to zero
for 1 = 1:nRows
for J = 1:mCols
% one of many ways to see if a value iIs even:
isEven = ceil(MTX(i,J)/2) == MTX(1,J)/2;

if isEven
evenCount = evenCount+l; % iIncrease count of even numbers
MTX(i,J) = -MTX(i,j); % change the value
else
% 1If statement to see if the odd number is positive
it MTX(i,j)>0
MTX(i,J) = 3*sqret(MTX(i,J)); % change positive odd numbers
end
end
end
end
toT = nRows*mCols; % total number of elements in the matrix
oddCount = toT-evenCount; % # of odds is total number minus # of evens

Question 3

clear; clc;
nTrials = 1le7; % some large number of trials for the Monte Carlo simulation
% minimum and maximum amount of candy a single niece or nephew will have
leastCandy = 12; mostCandy = 30;
nNib = 17; % number of nieces and nephews
maxCount = 350; % number of candies at which Evan will stop counting
soLittleCandy = 300; % number of candies Tor which Evan buys them more candy
% Initialize variables for the number of times Evan counts all the nieces/
% nephew®"s candy without stopping, and the number of times Evan gives his
% nieces and nephews extra candy.
countTilEnd = O;
giveThemCandy = 0;
% each time this for loop runs represents a single trial
for i = 1:nTrials
% initialize the total number of candies for a single trial to zero
nCandies = 0O;
% initialize the count of the number of times each loop runs to 1
% each time this while loop runs represents Evan counting how much
% candy a single child gets
nChild = 1;
while (nChild<=nNib) && (nCandies<=maxCount)
% randomly generate the number of candies a single child collected
nThisKid = randi([leastCandy mostCandy]);
% add the number of pieces of candy
% this niece/nephew to the total for all the kids that have been
% counted so far
nCandies = nCandies+nThisKid;

% increase the counter by one to move on to the loop for the next child

nChild = nChild+1;

end

ifT nCandies>maxCount
% when Evan does not count all the pieces of candy
countTilEnd = countTilEnd+1;

elseif nCandies<=soLittleCandy
% when the total number of pieces of candy is small, so Evan buys
% them extra candy
giveThemCandy = giveThemCandy+1;

end

end

ratiOl = countTilEnd/nTrials; % fraction of times Evan counts to the end

perCentl = ratiO1*100; % make the ratio a percentage

ratiO2 = giveThemCandy/nTrials; % fraction of times Evan counts to the end

perCent2 = ratiO2*100; % make the ratio a percentage

disp(["Evan will finish counting all of his nieces"" and nephews®"" . . .
candy " num2str(perCentl) "% of the time."]);

disp(["Evan will buy his nieces and nephews candy
num2str(perCent2) "% of the time."]);

