1 Course Overview

This course focuses on the quantitative foundations of portfolio management. The course builds on the economic theory of choice under uncertainty. The Markowitz mean-variance framework is developed in detail as the main approach to characterize the opportunity set and the efficient frontier of portfolios, from which the optimum portfolio is selected. It discusses the issues related to the implementation of these models in practice to different types of portfolios. It will also introduce the topics of sensitivity to uncertain inputs and portfolio robust design and Black-Litterman allocation. R, Matlab and Python will be used interactively during the lectures. The final evaluation will be given as the design and backtesting of a investment strategy using modern portfolio theory.

2 Student Learning Outcomes

After successful completion of this course, students will

- Understand the basics of Utility functions such as Absolute Risk Aversion (ARA) and Certainty Equivalent of Risky (CER) of risky gamble;
- Understand the fundamentals allocation models such as Markowitz and its relation to the CAPM and APT Solve Optimal Decision Problems arising in Modern Portfolio Theory and implement the solution using a high level language such as R, Matlab or Python;
- Solve Markowitz efficient portfolios problems and use the One-fund Theorem and the Two-fund theorem to build efficient Portfolios with Target Return or Target Risk;
- Apply Markowitz Allocation to design, implement and backtest Optimal Portfolios

3 Organization

- Lecture periods: 2 1/2 hours
- Laboratory periods: 0 hours
- Recitation periods: 0 hours
- Credits: 1.5
3.1 Prerequisites
Matriculation into a graduate program sponsored by the Department of Finance & Risk Engineering, or permission of the Department & FRE-GY 6083

3.2 Recommended Texts

- Francis and Kim, *Modern Portfolio Theory* Wiley Finance

3.3 Grading
There will be about 3 homework assignments, 3 quizzes and 1 final project.

- 10% Class Participation
- 30% Homework
- 20% Quizzes
- 40% Final Project

4 Tentative Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction
Utility Functions. Risk Aversion - Certainty Equivalent - Risk Premium</td>
</tr>
<tr>
<td>2</td>
<td>Review of Algebra and Calculus and Probability for Portfolio
Non Linear Optimization and Quadratic Optimization
KKT conditions and sensitivity analysis</td>
</tr>
<tr>
<td>3</td>
<td>Markowitz Mean-Variance Optimization
Geometry of Efficient Frontiers, Tangent Portfolio, CML, CAPM
Diversification, Risk Decomposition, Beta as Risk Measure</td>
</tr>
<tr>
<td>4</td>
<td>Multi-factor Models for Asset Pricing and Risk
Arbitrage Pricing Theory
Alternative Risk Measures: VaR, CVAR, …
Portfolio Characteristics</td>
</tr>
<tr>
<td>5</td>
<td>Robust Allocation Models
Black-Litterman Allocation</td>
</tr>
<tr>
<td>6</td>
<td>Market Neutral Portfolio Strategies
Active Portfolio Strategies
Performance Measurement and Attribution</td>
</tr>
<tr>
<td>7</td>
<td>Portfolio Backtesting and Stress-Testing
Presentation of the Final Project</td>
</tr>
</tbody>
</table>