Syllabus

ECE-GY 6013: Digital Communications

Prof. I-Tai Lu
ECE-GY 6013 Digital Communications

• Credits: 3.00
• Description:

Prerequisites: ECE-UY 3404, ECE-GY 6303. *Online version available.
Pre-requisites

• EL6303 Graduate probability and stochastic processes
 • This is essential
 • Chapters 1-7 and chapter 9 from Papoullis, Pillai
 • This class is offered this semester

• Undergraduate communications theory

• Undergraduate signals & systems
 • Fourier transforms, filters, sampling, bandwidth

• We will review probability, stochastic processes and signals & systems very briefly.
Text and Notes

• Text: “Fundamentals of Digital Communications”, Madhow

• Notes will be provided through emails.
Grading

• Homework: 20%
• Online class participation: 20%
• Midterm: 30%
• Final: 30%
People

• Prof: I-Tai Lu, itl211@nyu.edu
 • Phone: 646-997-3041
 • Office Hour: TBD
Lecture Plan

ECE-GY 6013: Digital Communications
Prof. I-Tai Lu
Lecture 1a Reviews of Signals and Systems

Textbook: Section 2.1 (pp.7-18)

Note: 1a SignalSystemSpectrum (pp. 1-49; matlab programs are optional and will not be tested)
Lecture 2a Complex Signal and RF modulation

Textbook: Sections 2.2 (pp.18-31)

Note: 2a Complex Signal (pp. 1-11)

Lecture 2b Energy and Power Spectrum (deterministic)

Note: 2b Energy and Power (pp. 1-19)

Lecture 2c Reviews of Probability

Note: 2c Probability (matlab programs are optional and will not be tested)
Lecture 3a Reviews of Random Processes

Note: 3a Random Processes (pp. 1-19; matlab programs are optional and will not be tested)

Lecture 3b Energy and Power Spectrum (random)

Textbook: Section 2.3 (pp. 31-41)

Note: 3b Energy and Power

Lecture 3c Gaussian Random Variables and Processes

Textbook: Section 3.1 (pp. 74-88)

Note: 3c The Q-function (pp. 1-3)
Lecture 4 Baseband Modulation (Digital Modulation)

Textbook: Sections 2.4-2.7 (pp.41-60)

Note: 4a Sampling Theorem (pp. 1-3)
Note: 4b Nyquist ISI Criterion (pp. 1-3)
Note: 4c Degrees of Freedom (pp. 1-3)
Lecture 5a Hypothesis testing

Textbook: Sec. 3.2 (pp.88-94)

Lecture 5b Digital Communications Framework

Note: 5a Digital Communications Framework (pp. 1-19)

Note: 5b Performance of Optimum Receiver (pp. 1-21)
Lecture 6a Signal Vector Space I

Note: 6a Signal Vector Space (pp.1-27)

Lecture 6b The Signal Vector Space Version of Optimum Reception in AWGN I

Note: 6b The Signal Vector Space Version of Optimum Receiver (pp.1-32)
Lecture 7a Signal Vector Space II

Textbook: Sec. 3.3 (pp.94-102)

Lecture 7b The Signal Vector Space Version of Optimum Reception in AWGN II

Textbook: Sec. 3.4 (pp.102-109)

Textbook: Sec. 3.5 (pp. 109-127)
Week 8 Midterm
9a. Channel capacity and random coding

Textbook: Sec. 6.1 (pp. 252-263)

Note: 9a Channel capacity and random coding (pp. 1-33)

9b. Shannon Theory Basics I

Note: 9b Capacity_Lu (pp. 1-20)
Lecture 9 – Lecture 10 Channel Capacity (2 lectures)

10a. Shannon Theory Basics II

Textbook: Sec 6.2 (pp. 263-272)

10b Capacity Computation and Optimization

Textbook: Sec 6.3 – 6.4 (pp. 272-286)
Lecture 11 – Lecture 14 Channel Coding (4 lectures)

Lecture 11a. Block & Convolutional Codes

Note: L11a Block and Convolutional Codes (Introduction)

Lecture 11b. Block Code

Note: 11b Block Code (pp.1-38)
Lecture 11 – Lecture 14 Channel Coding (4 lectures)

Lecture 12. Convolutional Code

Note: 12 Convolutional Code (pp.1-37)

Textbook: Sec 7-1 (pp.293-311)
Lecture 11 – Lecture 14 Channel Coding (4 lectures)

Lecture 13 Turbo Code

Textbook: Sec. 7-2 (pp. 311-329)
Lecture 11 – Lecture 14 Channel Coding (4 lectures)

Lecture 14. Low Density Parity Code

Textbook: Sec. 7-3 (pp. 342-354)
Week 15: Final
2020 Fall Schedule

ECE-GY 6013: Digital Communications
Prof. I-Tai Lu
ECE 6013 Schedule
8th Week: Mid-term
15th Week Final