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Abstract. The replication of any European contingent claim by a static portfolio of calls and puts with

strikes forming a continuum, formally proven by Carr and Madan (1998), is part of the more general theory
of integral equations. We apply spectral decomposition techniques to show that replication may also be

achieved with a discrete portfolio of special options. We propose a numerical application for fast pricing of

vanilla options that may be suitable for large option books or high frequency option trading, and we use a
reflected Brownian motion model to show how pricing formulas for the special options may be obtained.

1. Introduction

We consider the general problem of replicating a target European option1 with a static portfolio of cash,
underlying asset and a selection of “replicant” European options. Replication problems arise in many areas
of finance, such as asset pricing theory where an asset is replicated with a finite number of other assets (e.g.,
Černý, 2016, ch. 1, 2) using the techniques of finite-dimensional linear algebra, or option pricing theory,
where Carr and Madan (1998) formally proved that any European option may be replicated with a portfolio
of cash, forward contracts, and European call and/or put options with a continuum of strike prices. A key
consequence of payoff replication is that if the prices of the replicant options are known, then the price of
the target European option is also known and enforced by no-arbitrage considerations.

Specifically, given a target European option’s payoff F (x) to be replicated, where x ∈ X ⊆ R+ is the
terminal price of the option’s underlying asset, and a family of replicant European options’ payoffs G(x, y)
indexed by y ∈ Y ⊆ R, we are looking for portfolio quantities or weights such that, for all x ∈ X ,

F (x) = c+ q x+

∫
y∈Y

G(x, y)φ(y)dµ(y), (1)

where c, q and φ(y) are the respective quantities of cash, underlying asset and replicant option with index
y, and µ is an appropriate measure. In particular, if Y is discrete and µ is the counting measure, the above
equation becomes F (x) = c + q x +

∑
y∈Y G(x, y)φ(y) or, with the more habitual subscript notations for

discrete sums,

F (x) = c+ q x+
∑
n∈Y

φnGn(x).
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We will especially focus on the case where both variables x, y belong to a continuous interval such as
[a, b] or (a, b) where a, b ∈ R ∪ {−∞,∞} may be infinite, and µ is the Lebesgue measure, so that we may
write equation (1) as

f(x) =

∫ b

a

G(x, y)φ(y)dy, (2)

where f(x) := F (x)− c− q x is the target payoff function F (x) up to linear terms. Observe how the second
and higher derivatives of f and F coincide.

The origin of the Carr and Madan (1998) replication formula may be traced back to the work of Breeden
and Litzenberger (1978) which showed that the terminal distribution of the underlying asset implicit in option
prices, also known as the implied distribution, could be recovered by differentiating call prices twice against
the strike price. This elegant theoretical result allowed to price any other European option payoff consistently
with existing vanilla options. However, it was not until the 1990s that practitioners and researchers became
particularly interested in replication and hedging strategies for non-vanilla option payoffs, on the back of the
expansion of option markets and the search for option contract innovation. Evidence of such interest can be
found in the works of Derman, Ergener, and Kani (1994), discussing static replication of especially barrier
options, and Dupire (1993).

Much research (e.g., Demeterfi, Derman, Kamal, and Zou, 1999) has been devoted to the static replication
of the log-contract first introduced by Neuberger (1990), leading to the development of volatility and variance
swap markets. In this context, Carr and Madan (1998) offered a general replication result that did not solely
apply to the log-contract and was also probability- and model-free. To this day, option practitioners refer to
the idea that any European option payoff can be replicated with a continuous portfolio of vanilla calls and
puts as the “Carr-Madan result”. Its most visible impact may be seen in the new calculation methodology
of the VIX (see The CBOE volatility index—VIX 2009), which was adopted in 2002 by the Chicago Board
Options Exchange.

In other related literature, Carr and Wu (2013) consider the static hedging of a longer-dated vanilla option
using a continuum of shorter-term options. Balder and Mahayni (2006) expand on this work and explore
various discretization strategies when the strikes are pre-specified and the underlying price dynamics are
unknown, and recently Wu and Zhu (2017) propose a model-free strategy of statically hedging options with
nearby options in strike and maturity dimensions. Madan and Milne (1994) price options under Gaussian
measure using Hermite polynomials as a basis. Carton de Wiart and Dempster (2011) use wavelet theory
for partial differential equations used in derivatives pricing. Papanicolaou (2018) expresses a consistency
condition between SPX Stochastic Volatility and VIX Market Models as an integral equation and solves it
using an eigenseries decomposition.

Our main contribution is to show that perfect replication can be achieved with a discrete portfolio of
special options forming an orthogonal eigensystem, rather than a continuous portfolio of vanilla options with
overlapping payoffs. In practice, a satisfactory approximation may be achieved with a smaller number of
these special options compared to integral discretization schemes.

The remainder of our paper is organized as follows: In Section 2, we show that the Carr-Madan result
is part of the general theory of integral equations. In Section 3, we present key results of the theory about
the existence and uniqueness of solutions, with particular focus on spectral decomposition within Hilbert
spaces. In Section 4, we proceed with the spectral decomposition of the “straddle kernel”, and we interpret
our results in terms of option replication in Section 5. In Section 6, we propose a numerical application for
fast pricing of vanilla options. In Section 7, we propose a theoretical application to derive pricing formulas



A FUNCTIONAL ANALYSIS APPROACH TO STATIC REPLICATION OF EUROPEAN OPTIONS 3

when the underlying asset follows a reflected Brownian motion. Finally, in Section 8 we consider the case of
the “straddle kernel” and derive equations for its eigensystem that may be solved numerically.

2. Carr-Madan as part of the theory of integral equations

In functional analysis, equation (2) is known as a Fredholm linear integral equation of the first kind, and
G(x, y) is called the integral kernel or, with slight abuse of terminology, the integral operator. A shorthand
notation for the equation is often f = 〈G,φ〉 or simply f = Gφ. When f(x) is identically zero the equation
is called homogeneous; otherwise it is called inhomogeneous. Many authors further categorize an integral
equation as singular when it has a convergent improper integral, as in equation (2) when either bound a, b
is infinite.

Many integral kernels that are relevant to finance vanish for y ≥ x or y ≤ x, in which case equation (2)
respectively simplifies to

f(x) =

∫ x

a

G(x, y)φ(y)dy, or f(x) =

∫ b

x

G(x, y)φ(y)dy.

These equations are known as a Volterra integral equations of the first kind and they have special properties
and methods (e.g., Polyanin and Manzhirov, 2008, ch. 10, 11).

We will see in Section 3 that solving equation (2) is considerably easier when the integral kernel G(x, y)
is symmetric and injective, as defined later. Table 1 on p.4 lists several examples of kernels that are relevant
to quantitative finance and indicates whether they are symmetric and/or injective. Note that, to a degree,
log contracts and options trade on derivatives markets as options, futures and swaps on VIX and realized
variance. Note also that, thanks to the development of electronic option markets, many option strategies
combining vanilla options, such as straddles or butterfly spreads, quote and trade directly on dedicated
platforms usually known as complex order books.

2.1. Carr-Madan kernel. The kernel G(x, y) := (x − y)+ corresponds to the payoff replication problem
with call options of various strike prices y ∈ Y. When all strike prices form the continuum Y = R+, the
solution to equation (2) is then φ(y) = f ′′(y) as shown by Carr and Madan (1998) using standard calculus
techniques. In fact, this solution can be viewed as a corollary of Taylor’s theorem with remainder in integral
form,

F (x) = F (0) + F ′(0)x+

∫ x

0

(x− t)F ′′(t)dt.

Substituting (x− t)+ which is identically zero for t > x yields the Carr-Madan formula at origin:

F (x) = F (0) + F ′(0)x+

∫ ∞
0

(x− t)+F ′′(t)dt.

The general Carr-Madan formula involves both call and put options whose strike prices are respectively
above or below an arbitrary split level x0 ≥ 0:

F (x) = F (x0) + F ′(x0)(x− x0) +

∫ x0

0

F ′′(y)(y − x)+dy +

∫ ∞
x0

F ′′(y)(x− y)+dy. (3)

Observe how the second term F ′(x0)(x − x0) corresponds to a long or short position in forward contracts
with delivery price x0. A convenient choice for practical applications is to set x0 to the underlying asset’s
current forward price (respectively its current spot price), in which case all call and put options are out-of-
the-money-forward (respectively out-of-the-money-spot).
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Table 1. Examples of integral kernels†

European option payoff kernels

Kernel G(x, y) Symmetric Injective

Forward contracts x− y No No
Calls and puts (x− y)+, (y − x)+ No Yes
Straddles |x− y| Yes Yes
Powers of the above G(x, y)c

Strangles (|x− y| − c)+ Yes Yes ( 1
c ∈ 2N)

Butterfly spreads (c− |x− y|)+
Yes Yes

Binary options H(x− y), H(y − x) No Yes
Risk reversals (x− y − c)+ − (y − x− c)+ No Yes ( 1

c ∈ 2N)
Log contracts lnx/y No No
Log calls and puts (lnx/y)+, (ln y/x)+ No Yes

Mathematical kernels

Kernel G(x, y) Symmetric Injective

Power xy No Yes

Gaussian 1√
2π
e−(x−y)2/2 Yes Yes

Laplace transform e−xy Yes Yes
Fourier transform e−2iπxy Yes Yes

† c > 0 is a constant parameter, H(·) is Heaviside’s step function,
and i is the imaginary number.

The Carr-Madan formula (3) may be viewed as the solution φ(y) = f ′′(y) to the integral equation (2)
with target function f(x) := F (x)− F (x0)− F ′(x0)(x− x0) and Carr-Madan kernel

G(x, y;x0) := (x− y)+H(y − x0) + (y − x)+H(x0 − y), (4)

where H(·) is Heaviside’s step function. An alternative proof to Taylor’s theorem is to carefully differentiate
both sides of equation (2) twice, either with the help of Dirac’s delta functions or by invoking Leibniz’s
integral rule.

2.2. Alternative expression. It is worth noting that the Carr-Madan kernel (4) may be rewritten as

G (x, y;x0) = (x− y) [H(x− y)−H(x0 − y)] ,

by substituting H (y − x0) = 1 − H (x0 − y) and then (x − y)+ − (y − x)+ = x − y into equation (4).
Substituting the above into (2), we obtain the Volterra equation of the first kind,

f(x) =

∫ x

x0

(x− y)φ(y)dy,

which is forward for x > x0 and backward for x < x0.

2.3. Limitations. The Carr-Madan formula has two major limitations:

(1) In practice, only a finite number of vanilla option strikes are available and the formula must be
discretized accordingly. Hedging is imperfect and approximation errors get in the way.
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(2) In the theory of integral equations, the Carr-Madan kernel G(x, y;x0) (equation 4) is not symmetric
and therefore it does not have an orthonormal decomposition.

In this paper we address the above limitations by substituting the “better” straddle kernel G(x, y) :=
|x− y| which is symmetric and therefore admits an orthonormal decomposition. This kernel remains tractable
in terms of practical applications as it corresponds to the family of all straddles with a continuum of strikes
y ∈ R+. Moreover, the following identity shows that the straddle kernel has a one-to-one correspondence
with the Carr-Madan kernel:

G(x, y;x0) =
|x− y|

2
+
x− y

2
[H(y − x0)−H(x0 − y)] .

This identity is straightforwardly established by substituting (±u)+ = |u|±u
2 into equation (4).

3. Existence and uniqueness of solutions

3.1. Solving first-kind Fredholm equations. Early theory for integral equations was developed by
Volterra (1896), Fredholm (1903), Hilbert (1905), Schmidt (1907), and Riesz (1916). It turns out that
first-kind Fredholm equations are very much related to second-kind equations,

f(x) = λφ(x)−
∫ b

a

G(x, y)φ(y)dy,

where λ is a nonzero complex parameter2.

Much of the literature about integral equations is dedicated to the theoretical and numerical resolution
of second-kind equations with a continuous kernel operating on continuous or square-integrable functions.
Famously, the Fredholm alternative states that, for any λ 6= 0, either the homogeneous Fredholm integral
equation of the second kind,

0 = λφ(x)−
∫ b

a

G(x, y)φ(y)dy,

has a nontrivial solution φ 6≡ 0 and λ is called an eigenvalue, or the inhomogeneous equation,

f(x) = λφ(x)−
∫ b

a

G(x, y)φ(y)dy,

always has a unique solution for any f(x) and λ is called a regular value. Note that when λ is an eigenvalue,
the second-kind inhomogeneous equation has either no solution or infinitely many solutions.

First-kind equations can be significantly more challenging to solve. It is worth emphasizing that there
may be no solution at all, and that the theory about the existence and uniqueness of solutions is very limited
compared to the Fredholm alternative available for second-kind equations. Fundamentally, the difficulty for
finding a solution results from the smoothing property of integration. To illustrate this point, consider a
well-behaved continuous kernel G(x, y) and an input function φ(y) that is only piecewise continuous. The

resulting output
∫ b
a
G(x, y)φ(y)dy will be smoother than φ(y). Therefore, if f(x) is a continuous target

function, it is very possible that solutions φ(y) are all discontinuous, and that no solution exists within the
class of continuous functions (e.g., Section 8 and Figure 4 p.18).

This observation is relevant to our payoff replication problem wherein a continuous solution is neither
required nor expected; in fact, we will be mostly interested in square-integrable solutions.

2Observe that when λ = 0 we have a first-kind equation.
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3.2. Formal framework. Let E denote the infinite-dimensional vector space of the payoff functions under
consideration, such as C([a, b]) or L2([a, b]). Define the linear operator:

G : E → E

φ 7→ Gφ : x 7→
∫ b
a
G(x, y)φ(y)dy.

With these notations, the first-kind linear integral equation (2) may be written as Gφ = f . The existence
of solutions for all f ∈ E then corresponds to G being a surjective operator, i.e., G(E) = E, while the
uniqueness of any solution corresponds to G being an injective operator, i.e. G−1(0E) = {0E} where 0E is
the null function of E.

A standard theoretical requirement is for G to be a compact operator (see Kress, 2014, pp. 25—6, for
a formal definition). It turns out that compact operators are never surjective (Kress, 2014, pp. 297—8),
and thus there always are infinitely many target functions f ∈ E for which the first-kind equation has no
solution at all. In contrast, the identity operator I : E → E, φ 7→ φ is trivially surjective and thus never
compact (Kress, 2014, p. 27), and it can be shown that the second-kind operator λI −G, λ 6= 0 is surjective
if and only if it is injective (Kress, 2014, p. 38). Within this framework, the Fredholm alternative translates
into a discussion whether λI − G is injective.

On the topic of eigenvalues, it is worth noting that three classic important properties from finite-
dimensional linear algebra extend to infinite-dimensional Hilbert spaces E:

(1) For a large class of integral operators, the series of eigenvalues
∑
λn converges to the operators’s

trace
∫ b
a
G(x, x)dx (Lax, 2002, p. 329).

(2) Perron-Frobenius theorem: if the integral operator G is positive3, it has a positive eigenvalue which
is the largest in absolute value among all eigenvalues, and its eigenfunction is positive (Lax, 2002,
p. 253).

(3) Mercer’s condition: if the integral operator G is symmetric and satisfies
∫ b
a

∫ b
a
φ(x)G(x, y)φ(y)dxdy ≥

0 then it is a positive-semidefinite operator and all its eigenvalues are nonnegative (Lax, 2002, p.
343).

3.3. Spectral decomposition of continuous symmetric kernels. When the vector space of payoff
functions is the Hilbert space of square-integrable functions on a finite segment E = L2([a, b]), the linear
map G corresponding to the square-integrable kernel G ∈ L2 ([a, b]× [a, b]) is called a Hilbert-Schmidt integral
operator. If the kernel G(x, y) is continuous, the operator G is always compact and therefore never surjective,
i.e. there always are target functions f ∈ L2([a, b]) for which the first-kind integral equation Gφ = f has no
solution at all.

By Hilbert-Schmidt theory, when the kernel G(x, y) is continuous and symmetric, all eigenvalues of G are
real and form a finite or countable subset of R and there is an orthonormal system of eigenfunctions (φn).
In practical applications, we can find all nonzero eigenvalues λn of G and their associated eigenfunctions
φn by solving the homogeneous integral equation of the second kind (λnI − G)φn ≡ 0, for which numerous
methods exist. Moreover, we have the spectral decomposition (Eidelman, Milman, and Tsolomitis, 2004, p.
94),

G(x, y) =
∑
n

λnφn(x)φn(y), (5)

where the convergence of the series is understood in the sense of L2 ([a, b]× [a, b]). As a corollary,
∑
n λ

2
n =∫ b

a

∫ b
a
G(x, y)2dxdy. Substituting the above spectral decomposition identity (5) into equation (2) we obtain

3Here, an operator is positive when the function Gφ is positive for any nonnegative and nonnull function φ.
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that, when a solution φ exists, the target function f is attained by a linear combination of all eigenfunctions
φn,

f(x) =
∑
n

λnφn(x)

∫ b

a

φn(y)φ(y)dy.

The financial interpretation of the above equation is that the target option payoff F (x) discussed in Section
1 is perfectly replicated by a combination of cash and underlying asset together with a discrete portfolio of
independent “spectroreplicant” options, i.e.,

F (x) = c+ q x+
∑
n

wnφn(x), (6)

where c, q are the quantities of cash and underlying asset, and wn := λn
∫ b
a
φn(y)φ(y)dy is the weight or

quantity of the nth spectroreplicant option paying off φn(x).

3.4. Unique square-integrable solution for continuous, symmetric and injective kernels. In some
cases an explicit solution φ(y) to a first-kind equation with symmetric kernel may be obtained using non-
spectral techniques, such as the convolution method for difference kernels (e.g., Srivastava and Buschman,
2013, ch. 3). However, many equations do not solve in this manner. Fortunately, theory provides for
a criterion about the existence of a unique solution when the continuous and symmetric kernel G(x, y)
induces an injective integral operator G on the Hilbert space of square-integrable functions E = L2([a, b]) or
E = L2((a, b)).

Indeed, when G is symmetric and injective the orthonormal eigensystem (φn) is complete and therefore

a basis of E, and all eigenvalues are real. Denoting fn :=
∫ b
a
f(x)φn(x)dx the coordinates of any target

function f ∈ E in the basis, it is then easy to see that the function

φ(y) :=
∑
n

fn
λn
φn(y)

is a well-defined element of E if and only if the series
∑
f2
n/λ

2
n converges, in which case it is the unique

solution to the first-kind integral equation f = Gφ.

Note that if G is symmetric but not injective, its nullspace is necessarily of finite dimension n0 and
solutions exist if and only if the series

∑
n>n0

f2
n/λ

2
n converges. The solution set is then the affine space

φ̂ + G−1(0E) where φ̂ :=
∑
n>n0

fnφn/λn. In the context of payoff replication it is worth emphasizing that

the nullspace portfolios (φn)0≤n≤n0
replicate the null payoff and thus always have zero cost. As such, they

do not change the economics of replicating the target payoff and may be ignored. For ease of exposition we
only consider injective kernels.

4. Spectral decomposition of the straddle kernel

The straddle kernel G(x, y) := |x − y| is continuous and symmetric and thus admits a spectral de-
composition over any finite segment [a, b]. Moreover, there must be at least one negative and one positive

eigenvalue since the kernel trace vanishes:
∫ b
a
|x− x|dx = 0. In fact, since the straddle kernel induces a

positive operator, it must have a positive eigenvalue which is the largest among all eigenvalues.
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For ease of exposure, and without loss of generality, we first derive the spectral decomposition of the
straddle kernel on the unit interval [a, b] = [0, 1] with corresponding integral equation

f(x) =

∫ 1

0

|x− y|φ(y)dy, 0 ≤ x ≤ 1.

The decomposition for an arbitrary interval [a, b] is then straightforwardly obtained through the affine map
x 7→ a + (b − a)x and similarly for y. Note that differentiating the above integral equation twice against x
yields the solution φ(x) = 1

2f
′′(x) which is unique4. In particular, the homogeneous equation only has the

trivial solution and thus the kernel is injective. Furthermore, we can see that when f(x) ≡ 0, i.e. the target
payoff function F (x) is purely linear, the integral equation only has the trivial solution.

To find the eigensystem we must solve the homogeneous second-kind equation

λφ(x) =

∫ 1

0

|x− y|φ(y)dy, (7)

for λ 6= 0. Again, differentiating twice against x yields that eigenfunctions must satisfy the homogeneous
second-order linear differential equation

λφ′′(x) = 2φ(x), 0 ≤ x ≤ 1,

whose general solution is of the form

φ(x) =

{
αe2ωx + βe−2ωx if λ > 0, (8a)

α cos 2ωx+ β sin 2ωx if λ < 0, (8b)

where α, β are real coefficients and ω := 1/
√

2|λ| is the semi-angular frequency associated with λ.

Following the notations of Section 3.3 we index eigenelements by nonnegative integers n ∈ N from
largest to smallest absolute eigenvalue |λn|. In the next section 4.1 we will see that there is only one positive
eigenvalue λ0 which is the largest among all absolute eigenvalues.

4.1. Eigenfunction associated with the positive eigenvalue. Substituting (8a) into equation (7) and
simplifying, the straddle integral operator maps an eigenfunction φ0 with positive eigenvalue λ0 > 0 to∫ 1

0

|x− y|φ0(y)dy = λ0

[
φ0(x) +

(
β − αe2ω

) (
1 + e−2ω

)
ωx

−α
2
e2ω

(
1− 2ω + e−2ω

)
− β

2
e−2ω

(
1 + 2ω + e2ω

)]
. (9)

For the remainder terms which are linear in x to vanish we must have β = αe2ω. After substitution into
equation (9) and simplifications, we obtain that ω must be the only fixed point of the hyperbolic cotangent
ω0 ≈ 1.19968; equivalently, the only positive eigenvalue of the straddle kernel is:

λ0 =
1

2ω2
0

≈ 0.34741.

Finally, solving
∫ 1

0
φ2

0(y)dy = 1 for α we obtain the normalized eigenfunction

φ0(x) =

√
2

coshω0
coshω0(1− 2x) ≈ 0.78126× cosh[1.19968× (1− 2x)], (10)

4For a formal proof of uniqueness, suppose that φ̃ is another solution; then
∫ 1
0 |x− y|

(
φ(y)− φ̃(y)

)
dy = 0 and differentiating

twice against x yields φ̃ ≡ φ.
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which is a positive function as expected from the Perron-Frobenius theorem.

4.2. Eigenfunctions associated with negative eigenvalues. Substituting (8b) into equation (7) and
simplifying through trigonometric identities, the straddle integral operator maps an eigenfunction φn, n ≥ 1
with negative eigenvalue λn < 0 to∫ 1

0

|x− y|φn(y)dy = λn [φn(x) + 2ω cosω (α sinω − β cosω)x

+
(
βω − α

2

)
cos 2ω −

(
αω +

β

2

)
sin 2ω − α

2

]
. (11)

The remainder terms linear in x vanish when either

(a) β = 0 and ω = π
2 + kπ, k ∈ Z; or

(b) β = α tanω, where ω 6= π
2 + kπ, k ∈ Z satisfies cosω + ω sinω = 0, i.e. it is an opposite fixed point of

the cotangent function.

Solving
∫ 1

0
φ2
n(y)dy = 1 for α and simplifying through trigonometric identities, we obtain the alternating

system of normalized eigenfunctions

φn(x) =


√

2 cosnπx if n ≥ 1 is odd,
√

2

cosωn
cosωn(1− 2x) if n ≥ 2 is even,

(12)

where ωn is the only opposite fixed point of the cotangent function in the interval
(

(n−1)π
2 , (n+1)π

2

)
when

n ≥ 2 is even. With the convention ωn := nπ
2 when n ≥ 1 is odd, the negative eigenvalues λn are indexed

from largest to smallest in absolute value:

λn = − 1

2ω2
n

, n ≥ 1.

Asymptotically, when n ≥ 2 is even, we have ωn ∼ nπ
2 as n→∞. Indeed, inverting the opposite fixed point

equation cotωn = −ωn produces ωn = − arccotωn + nπ
2 , and the inverse cotangent function is bounded.

Therefore, for large n, we have ωn = nπ
2 if n is odd and ωn ∼ nπ

2 if n is even.

4.3. Remarks about the straddle eigensystem. Note the following with regard to the eigensystem
derived in sections 4.1 and 4.2:

(a) The eigenfunctions φn, n ≥ 1 take positive and negative values. This may have a numerical benefit when
replicating a target payoff f(x) which is small in absolute value.

(b) The eigensystem is consistent with the spectral decomposition of linear and symmetric Toeplitz matrices
(Bünger, 2014) which are a discrete version of the straddle kernel.

(c) All eigenfunctions satisfy φn(0) =
√

2 and φn(1) = (−1)n
√

2.
(d) Since the kernel trace vanishes, we have:

∞∑
k=0

λ2k+2 =
2

π2

∞∑
k=0

1

(2k + 1)2
− λ0 =

2

π2

π2

8
− λ0 ≈ −0.09741.

(e) By definition, for each eigenfunction we have φ′′n = 2
λn
φn = −4ω2

nφn for n ≥ 1 and φ′′0 = 4ω2
0φ0
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4.4. Spectral decomposition on the unit interval. Substituting the normalized eigenfunction expres-
sions of equations (10) and (12) into the spectral decomposition equation (5), and then simplifying, the
spectral decomposition of the straddle kernel on the unit interval [0, 1] is

|x− y| = c0 coshω0(1− 2x) · coshω0(1− 2y)

+

∞∑
k=0

c2k+1 cos[(2k + 1)πx] · cos[(2k + 1)πy]

+

∞∑
k=0

c2k+2 cosω2k+2(1− 2x) · cosω2k+2(1− 2x),

(13)

where cn are the scaling coefficients:

cn :=


1/(ω0 coshω0)2 if n = 0,

−4/(nπ)2 if n ≥ 1 is odd,

−1/(ωn cosωn)2 if n ≥ 2 is even.

In Table 2 p. 10, we report numerical estimates of λn, ωn, cn together with the L2 norm of the running
spectral decomposition error5 |x−y|−

∑n
i=0 λiφi(x)φi(y). Figure 1 p. 11 illustrates the goodness of fit using

1, 2 and 6 eigenfunctions associated with top eigenvalues. As predicted by the rapidly decaying error norm,
we can see that few eigenfunctions are needed to obtain a visually excellent fit.

Table 2. Top 20 eigenvalues and related coefficients of the straddle kernel

n λn (×10−3) ωn cn Err. Norm

0 347.408 269 0 1.199 678 640 0.212 046 516 0.214 416
1 −202.642 367 3 1.570 796 327 −0.405 284 735 0.070 073
2 −63.849 095 79 2.798 386 046 −0.144 005 020 0.028 871
3 −22.515 818 59 4.712 388 980 −0.045 031 637 0.018 071
4 −13.344 112 79 6.121 250 467 −0.027 400 487 0.012 186
5 −8.105 694 691 7.853 981 634 −0.016 211 389 0.009 099
6 −5.758 866 886 9.317 866 462 −0.011 650 392 0.007 045
7 −4.135 558 516 10.995 574 29 −0.008 271 117 0.005 703
8 −3.206 946 639 12.486 454 40 −0.006 455 031 0.004 716
9 −2.501 757 621 14.137 166 94 −0.005 003 515 0.003 998

10 −2.042 994 806 15.644 128 37 −0.004 102 685 0.003 437
11 −1.674 730 308 17.278 759 59 −0.003 349 461 0.003 001
12 −1.415 208 556 18.796 404 37 −0.002 838 428 0.002 646
13 −1.199 067 262 20.420 352 25 −0.002 398 135 0.002 359
14 −1.038 184 585 21.945 612 88 −0.002 080 680 0.002 118
15 −0.900 632 744 23.561 944 90 −0.001 801 265 0.001 917
16 −0.794 086 718 25.092 910 41 −0.001 590 696 0.001 745
17 −0.701 184 662 26.703 537 56 −0.001 402 369 0.001 598
18 −0.627 008 356 28.238 936 58 −0.001 255 589 0.001 470
19 −0.561 336 198 29.845 130 21 −0.001 122 672 0.001 359

5In the orthonormal eigensystem the error norm is ‖
∑∞

i=n+1 λiφi‖ =
√∑∞

i=n+1 λi
2
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Figure 1. Straddle kernel fit with top eigenfunctions

1a. Top eigenfunction 1b. Top two eigenfunctions

1c. Top six eigenfunctions

4.5. Spectral decomposition on a finite segment [a, b]. Using affine transformations, it is easy to show
that an orthonormal eigensystem for the straddle kernel defined over an arbitrary finite segment [a, b] is
simply

(
1√
b− a

φn

(
x− a
b− a

))
, a ≤ x ≤ b, n ≥ 0,
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with associated eigenvalues (b− a)2λn, where φn, λn are defined in sections 4.1 and 4.2. The corresponding
spectral decomposition is then given as

|x− y| = (b− a)c0 coshω0

(
1− 2

x− a
b− a

)
· coshω0

(
1− 2

y − a
b− a

)
(14)

+ (b− a)

∞∑
k=0

c2k+1 cos

[
(2k + 1)π

x− a
b− a

]
· cos

[
(2k + 1)π

y − a
b− a

]
(15)

+ (b− a)

∞∑
k=0

c2k+2 cosω2k+2

(
1− 2

x− a
b− a

)
· cosω2k+2

(
1− 2

y − a
b− a

)
, (16)

where the coefficients cn are given in equation (13).

5. Consequences for option replication and pricing

Because equation (2) with straddle kernel has the unique solution φ(y) = 1
2f
′′(y) = 1

2F
′′(y) when it

exists, the weights of the spectroreplicant options in equation (6) may be further specified as

wn =
b− a

2
λn

∫ b

a

φn

(
x− a
b− a

)
F ′′(x)dx. (17)

To determine the cash and underlying asset quantities c, q we need two independent conditions. For instance,
integrating the right-hand side of equation (1) by parts and evaluating at the boundaries x = a, b with straddle
kernel G(x, y) := |x− y|, we obtain

F (a) = c+ q a+
1

2

∫ b

a

(y − a)F ′′(y)dy = c+ q a+
1

2
[(b− a)F ′(b)− (F (b)− F (a))] ,

F (b) = c+ q b+
1

2

∫ b

a

(b− y)F ′′(y)dy = c+ q b−1

2
[(b− a)F ′(a)− (F (b)− F (a))] .

Solving for c, q yields {
c = 1

2 [F (a) + F (b)− aF ′(a)− bF ′(b)] ,
q = 1

2 [F ′(a) + F ′(b)] .

When equation (6) holds and all relevant quantities converge in L2, the price of the target option is
simply given as

F = c+ qX +

∞∑
n=0

wnΦn, (18)

where F,X are the respective prices of the target option and underlying asset, Φn is the price of the nth

spectroreplicant option, and all prices are forward (i.e. paid on the common maturity date.)

The above pricing equation can be established using classical arbitrage arguments under the assumptions
that short-selling and the instant trading of infinitely many securities are both feasible. In practice, just
as with the Carr-Madan formula, the latter assumption is not realistic and must be mitigated by selecting
a finite number of replicant options. For example, a proxy of order n + 1 based on the largest absolute
eigenvalues would be

F̂n+1 := c+ qX +

n∑
i=0

wiΦi. (19)
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Since practical implementations of the Carr-Madan formula and the spectral decomposition method
are both approximate, and since the spectroreplicant options induced by the straddle kernel clearly do
not trade, one may wonder what benefit there is in choosing the latter method over the former. The key
benefit here is that spectroreplicant options are orthogonal in the sense of the standard scalar product of
functions 〈f, g〉 =

∫
f(x)g(x)dx. In contrast, the continuum of call and put replicants in Carr-Madan are

very codependent due to their overlapping payoff functions. This suggests that, for non-pathological target
payoff F (x), a limited number of spectroreplicant options should be enough to achieve satisfactory replication
and pricing accuracy.

An obvious practical disadvantage of equation (19) is that the fair prices (Φi)0≤i≤n of spectroreplicant
options must be discovered by another method. One such method could simply be the Carr-Madan formula
for option prices, either discretized along listed option strikes or using a numerical integration scheme together
with the Black and Scholes (1973) formula and a model of the implied volatility smile.

Here, it is worth emphasizing that the weights wi and fair prices Φi only need to be precomputed once
for a limited selection of spectroreplicant options with largest absolute eigenvalues, based on the desired level
of accuracy. Once this preliminary step is done, computing the proxy F̂n+1 for the target option price is
immediate. The corresponding gain of speed is likely to be very relevant for electronic market-making, risk
management of large portfolios of options or high frequency option trading. Moreover, the computational
cost of refreshing the prices Φi throughout the trading day can be mitigated using Greek sensitivities.

6. Numerical application: Fast vanilla option pricing

6.1. Proxy formula for vanilla option prices. For the vanilla call target payoff F (x) := (x−K)+ where
K is the strike price, the second-order derivative is Dirac’s delta function F ′′(x) = δ(x −K); substituting
into equation (17) we obtain the proxy formula for the call price

ĉn+1(K) =
X −K

2
+

n∑
i=0

wn(K)Φn, (20)

with weights

wn(K) =
b− a

2
λnφn

(
K − a
b− a

)
.

Similarly, the put proxy formula is given as

p̂n+1(K) =
K −X

2
+

n∑
i=0

wn(K)Φn

with the same weights wn(K).

6.2. Numerical results. We repriced 30-day out-of-the-money options on the S&P 500 index using the
top 20 spectroreplicant options, based on sample bid and offer data as of 20 November 2018. We report
the spectroreplicant option prices Φn in Table 3 obtained with a VIX-style discretization of the Carr-Madan
formula (3). Then, we compute the proxy option prices for strike prices ranging from a = 1225 to b = 3075
using the formulas above.

In Figure 2a p.15 we plot our results for listed strikes between 1225 and 3075 on a scale from 0 to 1,
where 0 corresponds to the market bid and 1 corresponds to the market offer price. Remarkably, all but two
proxy option prices lie within the bid-offer range.
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Table 3. Spectroreplicant option prices for the S&P 500 option market as of 20 November 2018

n Φn n Φn

0 0.963 625 844 3 10 −0.215 640 803 7
1 −1.010 953 323 11 0.230 884 669 6
2 −0.086 058 597 69 12 −0.177 179 030 5
3 0.562 828 561 13 0.099 073 697 14
4 −0.873 351 989 5 14 −0.025 792 482 18
5 0.682 335 075 15 −0.031 588 463 23
6 −0.353 171 368 4 16 0.057 404 496 08
7 0.083 213 913 68 17 −0.065 055 145 40
8 0.138 417 330 6 18 0.052 725 231 43
9 −0.215 640 803 7 19 −0.031 390 284 03

A valuable additional benefit of the spectral decomposition method is to provide a natural “fit” of the
implied volatility smile for arbitrary strikes a ≤ K ≤ b. In Figure 2b, we show our results in the slightly
extended range [1000, 3300]. We can see that the fit is visually pleasing and the extrapolated values on the
left and right regions of the chart look plausible.

6.3. Arbitrage considerations. It is worth emphasizing that the proxy formula of equation (20) is not
theoretically free of arbitrage due to the oscillatory nature of the spectroreplicant options. Indeed, the tails
of the corresponding implied distribution hn+1(K) := ĉ′′n+1(K) can become negative as shown in Figure 3
p.18, indicating the theoretical existence of butterfly arbitrages. However, our empirical results shown in
Figure 2a suggest that such arbitrages are unlikely to have any practical relevance once bid-offer spreads are
taken into account.

As expected, in the limit as n → ∞, the proxy formula is arbitrage-free as long as all spectroreplicant
prices Φn are known and priced off a valid implied distribution h(K). This can be verified by substituting

Φn =
∫ b
a
φn

(
x−a
b−a

)
h(x)dx into (20) to get

c(K) :=
X −K

2
+

∞∑
n=0

wn(K)Φn =
X −K

2
+

∫ b

a

h(x)dx

∞∑
n=0

wn(K)φn

(
x− a
b− a

)
.

Substituting into the above the expression for wn(K), recognizing the spectral decomposition (5) of the
straddle kernel |x −K|, and differentiating both sides twice against K we recover the implied distribution
c′′(K) = h(K). In addition, note that the truncated implied distribution hn+1(K) has the simple expression:

hn+1(K) := ĉ′′n+1(K) =

n∑
i=0

Φiφi

(
K − a
b− a

)
,

which is obtained by differentiating (20) twice against K using φ′′n(y) = 2
λn
φn(y).

7. Theoretical application: formulas for spectroreplicant option prices when the
characteristic function is known

Consider an option pricing model where the characteristic function ϕ(z) := E(eizXT ), z ∈ C of the

terminal underlying value XT at time T is known in closed form. The characteristic function for X̃T := XT−a
b−a
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Figure 2. Proxy OTM option prices and corresponding proxy implied volatility smile

2a. Proxy prices on a market bid-offer 0-1 scale

1500 2000 2500 3000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2b. Proxy implied volatility smile

1000 1500 2000 2500 3000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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is then

ϕ̃(z) = e−i
a

b−a zϕ

(
z

b− a

)
,

and we may recover pricing formulas for spectroreplicant options through the identities

E coshω(1− 2X̃T ) =
1

2
eω[ϕ̃(2iω) + ϕ̃(−2iω)], (21a)

E cosωX̃T =
1

2
[ϕ̃(ω) + ϕ̃(−ω)], (21b)

E cosω(1− 2X̃T ) =
1

2
eiωϕ̃(−2ω) +

1

2
e−iωϕ̃(2ω)]. (21c)

While the characteristic function of the log-price is known for many classical models such as Black and
Scholes (1973), Heston (1993), and Merton (1976), we cannot use this knowledge here because the spectral
decomposition (14) assumes a finite segment (a, b) for the range of underlying values. Instead, we turn to a
model where the stochastic process for the underlying level (Xt)t≥0 is a reflected Brownian motion initiated
at x0 with constant drift µ, volatility σ and reflecting bounds a, b. This type of model would be suitable
for mean-reverting underlyings such as interest rates, energy, or the VIX. Note that, for option pricing, the
model parameters x0, µ, σ must be chosen such that EXT = X, i.e. the expected terminal underlying level
must match the futures price.

The spectral expansion of the characteristic function of the terminal level X̃T ∈ (0, 1) can be found in
Appendix A with the substitutions r = 1, T 7→ σ2T, µ 7→ µ

σ2 . Substituting the expansion into the identities
(21) and simplifying, we can obtain formulas for spectroreplicant option prices as desired; for example, the
formula for odd-indexed eigenfunctions φ2k+1, k ∈ N simplifies to:

Eφ2k+1(X̃T ) =
√

2E cos (2k + 1)πX̃T

=

√
2

2
[ϕ̃((2k + 1)π) + ϕ̃(−(2k + 1)π)]

= − m2
√

2 cothm

m2 + (2k + 1)2π2/4
− 4m

√
2 (2k + 1)2π2e−mx0×

∞∑
n=1

nπ [1 + (−1)nem]ψn(x0) e−(m2+n2π2)σ2T/2

(m2 + n2π2) (m2 + (n− 2k − 1)2π2) (m2 + (n+ 2k + 1)2π2)

where m := µ
σ2 must be nonzero.

8. Spectral decomposition of the butterfly kernel

To further underscore the generality of our approach, in this final section we consider the butterfly kernel

G(x, y; c) := (c− |x− y|)+
= (x− y + c)+ − 2(x− y)+ + (x− y − c)+

for finite domain [a, b] and fixed call spread parameter 0 < c ≤ 1
3 (b− a). As stated in Table 1 p.4 this kernel

is symmetric and injective. Indeed, we can write G(x, y; c) = cK(x − y) where K(z) := (1 − |z|/c)+, and
G is a positive-definite kernel if and only if K is a positive-definite function. By Bochner’s theorem (Lax,
2002, p. 144) a function is positive-definite if and only if it is the Fourier transform of a probability density,
and it is easy to verify that

K̂(u) :=
1

cπ
· 1− cos cu

u2
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is such a density. Indeed, by Fubini and then the property that the real number φ(y) is equal to its conjugate,
we may write∫ b

a

∫ b

a

φ(x)K(x− y)φ(y)dx dy =

∫ b

a

∫ b

a

φ(x)φ(y)

∫ ∞
−∞

ei(x−y)uK̂(u)du dx dy

=

∫ ∞
−∞

K̂(u)du

∫ b

a

φ(x)eiuxdx

∫ b

a

φ(y)eiuydy ≥ 0,

and equality implies φ ≡ 0. Therefore, the butterfly kernel only has strictly positive eigenvalues and it is
injective.

For ease of exposure, and without loss of generality, we assume [a, b] = [0, 1], 0 < c ≤ 1
3 as we did in

Section 4. Differentiating the integral equation (2) with butterfly kernel G(x, y; c) twice against x we obtain
the linear recurrence equation for φ

f ′′(x) = φ(x− c)− 2φ(x) + φ(x+ c),

with the convention φ(x) ≡ 0 for x < 0 or x > 1. When c = 1
N , N ∈ N \ {0, 1, 2}, the solution is

φ(x) = −N − n
N + 1

n∑
k=0

(n+ 1− k)f ′′(x− kc)

− n+ 1

N + 1

N−n−1∑
k=1

(N − n− k)f ′′(x+ kc),

x = nc+ r, 0 ≤ r < c, n ∈ {0, 1, · · · , N − 1},

(22)

wherein n is the Euclidean quotient of x by c with remainder r (i.e., x modulo c). In particular, the
homogeneous equation with f(x) ≡ 0 only has the trivial solution φ(x) ≡ 0, thereby confirming that the
butterfly kernel is injective when c = 1/N .

It is worth noting that the solution (22) is typically discontinuous at every step c, and that the integral∫ 1

0
G(x, y; c)φ(y)dy matches f(x) up to linear terms. Figure 4 p.18 shows the solution obtained for F (x) = ex

and c = 1/6.

In the fashion of Section 4, it is possible to identify the general form of eigenfunctions φ(x) satisfying

λφ′′(x) =


−2φ(x) + φ(x+ c) for 0 ≤ x < c,

φ(x− c)− 2φ(x) + φ(x+ c) for c ≤ x ≤ 1− c,
φ(x− c)− 2φ(x) for 1− c < x ≤ 1,

for an eigenvalue λ > 0. This may be done by splitting the domain [0, 1] at every step c and solving the
system of second-order ordinary linear differential equations

λu′′(x) = −A.u(x), 0 ≤ x < c,

where u(x) := (φ(x), φ(x+ c), · · · , φ(x+ 1− c))T is a vector of length N and A is the familiar N × N
tridiagonal matrix

A :=


2 −1 (0)
−1 2 −1

. . .
. . .

(0) −1 2

 ,
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Figure 3. Implied distribution tails corresponding to proxy call prices
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which is positive-definite with principal square root A
1
2 ; formulas for the spectral elements of A can be

found in e.g., Smith (1985), pp. 55, 154–156. The homogeneous second-kind integral equation with butterfly
kernel may then be written in terms of u as

λu(x) =

∫ c

0

G(x, y).u(y)dy (23)

where G(x, y) := ((c− |x− y + (n− p)c|)+)0≤n,p≤N−1 is a N ×N matrix defined for 0 ≤ x, y < c.

The general solution to the system of second-order ordinary linear differential equations λu′′ = −A.u is
known to be

u(x) = cos

(
x√
λ

A
1
2

)
.k1 + sin

(
x√
λ

A
1
2

)
.k2,

where k1,k2 are two column vectors of N constant coefficients. Substituting into (23) and integrating by
parts twice we obtain6

λu(x) =− λ
[
G(x, y)A−1u′(y)−Gy(x, y)A−1u(y)

]y→c−
y=0

− λ
∫ c

0

Gyy(x, y)A−1u(y)dy,

where Gy,Gyy are the first- and second-order partial derivatives of G(x, y) against y. Substituting the
identities G(x, c) = xI + (c− x)L,G(x, 0) = (c− x)I + xLT ,Gy(x, c) = −I + L,Gy(x, 0) = I−LT , where L
is the lower shift matrix with ones on the subdiagonal, we may rewrite the bracket in the above equation as
the block matrix expression

bλ(x) :=
[
I− L x(I− L) + cL

] [ Cλ Sλ
− 1√

λ
A

1
2 Sλ

1√
λ
A

1
2 Cλ

] [
A−1k1

A−1k2

]
+
[
I− LT x√

λ
(I− LT )A

1
2 − c√

λ
A

1
2

] [A−1k1

A−1k2

]
where Cλ := cos

(
c√
λ
A

1
2

)
and Sλ := sin

(
c√
λ
A

1
2

)
. The vector bλ(x) is linear in x and will vanish if and

only if the intercept and slope vectors bλ(0),b′λ are zero, leading to the homogeneous block matrix equation
in k1,k2[

0
0

]
=

([
I− L cL

O I− L

] [
Cλ Sλ

− 1√
λ
A

1
2 Sλ

1√
λ
A

1
2 Cλ

]
+

[
I− LT − c√

λ
A

1
2

O (I− LT ) 1√
λ
A

1
2

])[
A−1k1

A−1k2

]
,

where 0 is the null column vector of RN and O is the null matrix of RN×N . It is worth noting that solving
the above equation is difficult: we need to find λ such that the 2N × 2N block matrix between parentheses
is singular, and then find the corresponding nullspace to identify non-trivial solutions k1,k2. However, with
some algebra we can simplify this problem for some eigenvalues λ, as detailed below.

Left-multiplying both sides of the previous equation by

[
I O

O
√
λA−

1
2

] [
I− L cL

O I− L

]−1

, we obtain

[
0
0

]
=

([
Cλ Sλ
−Sλ Cλ

]
+

[
I O

O
√
λA−

1
2

] [
I− L cL

O I− L

]−1
[
I− LT − c√

λ
A

1
2

O (I− LT ) 1√
λ
A

1
2

])[
A−1k1

A−1k2

]
. (24)

6Observe that the matrix versions of cos, sin commute with any power of the argument matrix, and that

−λA−1u′(x),−λA−1u(x) are respectively first- and second-order antiderivatives of u(x).
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It is easy to show that the second term above between parentheses simplifies to[
evT − LT O

O A−
1
2 (evT − LT )A

1
2

]
− c√

λ

[
w
0

] [
0

A
1
2 v

]T
,

where e := (1, · · · , 1)T is the first diagonal vector of RN , v := (1, 0, · · · , 0)T is the first coordinate vector,
and w := (1, 2, · · · , N)T . Equation (24) may thus be rewritten as[

0
0

]
=

(
Mλ −

c√
λ

[
w
0

] [
0

A
1
2 v

]T)[
A−1k1

A−1k2

]
,

where

Mλ :=

[
Cλ Sλ
−Sλ Cλ

]
+

[
evT − LT O

O A−
1
2 (evT − LT )A

1
2

]
.

When Mλ is invertible, the Sherman-Morrison formula (e.g., Golub and Loan, 1996, p. 51) states that(
Mλ −

c√
λ

[
w
0

] [
0

A
1
2 v

]T)
is singular if and only if λ satisfies the scalar equation

1− c√
λ

[
0

A
1
2 v

]T
M−1

λ

[
w
0

]
= 0, (25)

and in this case M−1
λ

[
w
0

]
is in the nullspace, giving a nontrivial solution[

k1

k2

]
=

[
A O
O A

]
M−1

λ

[
w
0

]
.

In Figure 5 p. 21 we plot the top eigenfunction that we obtained by numerically solving equation (25)
for N = 3 and N = 10 and then computing k1,k2 as written above. As expected, the eigenfunctions are
continuous and smooth. Note that there may be eigenvalues λ for which Mλ is not invertible, in which case
equation (25) cannot be relied upon.

Appendix A. Characteristic function of the reflected Brownian motion

The density of a reflected Brownian motion over a finite interval (0, r) with constant drift µ and unit
diffusion coefficient is given as (Linetsky, 2005, equation (25) with our notations)7

p(x) =
2µ e2µx

e2µr − 1
+

2

r
eµ(x−x0)

∞∑
n=1

e−(µ2+n2π2/r2)T/2

µ2 + n2π2/r2
ψn(x0)ψn(x),

where x0, x ∈ (0, r) are respectively the initial and terminal levels, and

ψn(x) :=
nπ

r
cos

nπx

r
+ µ sin

nπx

r
.

7Note that the first term in equation (25) of Linetsky (2005) contains a typo and should depend on y rather than x in the

author’s notations.
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Figure 5. Comparison of top eigenfunctions of the butterfly kernel G(x, y; c), c = 1
N over

the domain [a, b] = [0, 1]

5a. Top normalized eigenfunction for N = 3 and N = 10

N = 3,

λ ≈ 0.1037

N = 10, λ ≈ 0.009925
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5b. Difference after rescaling
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The corresponding characteristic function may then be calculated term by term. Isolating the terms and
factors that only depend on x we have, for any complex number z,

∫ r

0

e2µx+izxdx = 2
e2(µ+iz)r − 1

2µ+ iz
,∫ r

0

eµx+izxψn(x)dx = i
nπz

r

(−1)ne(µ+iz)r − 1

(µ+ iz)2 + n2π2/r2
.

Substituting into p̂(z) :=
∫ r

0
p(x)eizxdx we obtain the spectral expansion of the characteristic function as

p̂(z) =
2µ

2µ+ iz

e(2µ+iz)r − 1

e2µr − 1

+ 2i
πz

r2
e−µx0

∞∑
n=1

n · e
−(µ2+n2π2/r2)T/2

µ2 + n2π2/r2
· (−1)ne(µ+iz)r − 1

(µ+ iz)2 + n2π2/r2
· ψn(x0).

Corresponding formulas for the reflected Brownian motion with constant diffusion coefficient σ may then
be obtained by scaling T 7→ σ2T and µ 7→ µ

σ2 .
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Černý, Aleš (2016). Mathematical Techniques in Finance. Tools for Incomplete Markets. 2nd ed. Princeton
University Press.

Demeterfi, Kresimir, Emanuel Derman, Michael Kamal, and Joseph Zou (1999). More than you ever wanted
to know about volatility swaps. Goldman Sachs quantitative strategies research notes. Goldman, Sachs
& Co New York.

Derman, Emanuel, Deniz Ergener, and Iraj Kani (1994). Static options replication. Goldman Sachs quanti-
tative strategies research notes. Goldman, Sachs & Co New York.

Dupire, Bruno (1993). Arbitrage pricing with stochastic volatility. Tech. rep. Banque Paribas.
Eidelman, Yuli, Vitali D. Milman, and Antonis Tsolomitis (2004). Functional analysis: an introduction.

Vol. 66. American Mathematical Society.
Fredholm, Ivar (1903). “Sur une classe d’équations fonctionnelles”. In: Acta mathematica 27.1, pp. 365–390.
Golub, Gene H. and Charles F. Van Loan (1996). Matrix Computations. 3rd ed. Johns Hopkins University

Press.



REFERENCES 23

Heston, Steven L. (1993). “A Closed-Form Solution for Options with Stochastic Volatility with Applications
to Bond and Currency Options”. In: The Review of Financial Studies 6.2, pp. 327–343.
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