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Question 1 

 

Function 
 

function [CorrectText]=CorrectText_(Text) 

len=length(Text) %Length of text 

for i=1:(len-1) 

    cond1=(Text(i)=='.')|(Text(i)=='?')|(Text(i)=='!')|(Text(i)==',') %Punctuation to 

look for 

    cond2=(Text(i+1)~=' ')%Checking that there is no space after 

    if cond1 & cond2 %if for punctuation sign followed by no space 

        Text(i+2:end+1)=Text(i+1:end) %Shifting text up, and increasing length of text 

        Text(i+1)=' ' % Setting position after punctuation equal to space 

        len=length(Text) %Redefining length since Text is extended to add space 

    end 

end 

first=1 %Idx for first position 

len=length(Text) %Final length after all spaces have been added 

if (Text(first)<='z') & (Text(first)>='a') 

   Text(first)=Text(first)-'a'+'A' % Making sure first letter of script is a capital 

letter 

End 

   

for i=1:(len-2) 

    cond3=(Text(i)=='.')|(Text(i)=='?')|(Text(i)=='!') % Punctuations requiring 

capitalization 

    cond4= (Text(i+2)<='z') & (Text(i+2)>='a') % Checking if lowercase after 

punctuation 

    if (cond3 && cond4) 

        Text(i+2)=Text(i+2)-'a'+'A' %Correcting from lowercase to capital 

    end 

end 

CorrectText=Text %Defining output variable 

 

 

  



Question 2 

Script 
% Any way to create these two vectors is fine 

clear; clc; format short; 

n = 10 

Enz = 'CCAA' 

len = length(Enz); 

a=.4;t=.1;c=.2;g=.3; 

Seq = makeDNA_(a,t,c,g,n); 

Size = 0; % same as doing Size=[] 

for j = 1:length(Seq)-len+1 

    if Seq(j:j+len-1) == Enz 

        Size = [Size (j+1) - sum(Size)]; %since j is where the cut is, its not 

necessarily the length of the cut 

    end 

end 

Size = [Size length(Seq) - sum(Size)]; %makes sure if the loop didnt work at the end it 

is included 

Size(1) = []; %part of the same method of doing Size=[] 

if Size(end) == 0 

    Size(end) = []; 

end 

Seq 

avg = mean(Size)eedles = [0 2 4 6]  

Haystack = [0 4 8 7 4 9 4 3 0] 

  

NumberOfTimes = NeedlesHaystack_(Needles,Haystack) 

 

 

Function 
 

function [Seq] = makeDNA(a,t,c,g,n) 

for i = 1:n 

    x = rand() 

    if x < a 

        Seq(i) = 'A' 

    elseif x < (a + t) 

        Seq(i) = 'T' 

    elseif x < (a + t + c) 

        Seq(i) = 'C' 

    else 

        Seq(i) = 'G' 

    end 

end 

 

 

  



Question 3 

Script 
% Any way to create the vector is fine 

Clear; clc;  

Vec = input(‘Enter a string containing uppercase letters and digits’); 

kVal = 4; 

[notEnough,startingAt] = ConsecutiveK_(Vec,kVal); 

 

if notEnough 

    disp(['Less than ' num2str(kVal) ' consecutive letters or digits!']); 

    disp('The value of the second output has no meaning.'); 

else 

    disp(['Has at least ' num2str(kVal) ' consecutive letters or digits.']); 

    disp(['Starting at location: ' num2str(startingAt)]); 

end 

 

 

Function 
 

function [notEnough, atLocation] = ConsecutiveK_(Vec,minConsecutive) 

 

lVec = length(Vec); 

notEnough = true;  

conscCounter = 1;  

idx = 1 

theElement = Vec(idx) 

 

while notEnough && idx < lVec 

     idx = idx + 1 

     nextElement = Vec(idx) 

     if nextElement - theElement == 1 

        consecutiveCounter = consecutiveCounter + 1;  

        notEnough = consecutiveCounter < minConsecutive; 

     else 

        consecutiveCounter = 1; 

    end 

    theElement = nextElement; 

end 

 

atLocation = idx – minConsecutive + 1; 

 

return 

 

 

 

  



Question 4 

 
clear; clc; rng(5); 

 

nJumps = 9; 

maxValue = 6;  

RESULTS = zeros(nJumps,3); 

 

going2Right = true; 

 

jumpBy = ceil(maxValue*rand); 

xSquare = jumpBy; 

 

RESULTS(1,:) = [1 jumpBy, xSquare]; 

 

for n = 2:nJumps 

    newJump = ceil(maxValue*rand); 

    if newJump > jumpBy  % then reverse direction  

        going2Right = ~going2Right; 

    end 

     

    if going2Right % Yes: moving the the right  

        xSquare = xSquare + newJump; 

    else % Moving to the left 

        xSquare = xSquare - newJump; 

    end 

    % To get ready for the next move [6 pts] 

    jumpBy = newJump; 

    RESULTS(n,:) = [n jumpBy, xSquare]; 

end 

 

disp(RESULTS); 

 

 


