
 Polytechnic Tutoring Center

Final Exam REVIEW – CS1133, Spring 2020

Disclaimer: This mock exam is only for practice. It was made by tutors in the Polytechnic Tutoring Center
and is not representative of the actual exam given by the Academic Department.

Question 1

Function

function [CorrectText]=CorrectText_(Text)

len=length(Text) %Length of text

for i=1:(len-1)

 cond1=(Text(i)=='.')|(Text(i)=='?')|(Text(i)=='!')|(Text(i)==',') %Punctuation to

look for

 cond2=(Text(i+1)~=' ')%Checking that there is no space after

 if cond1 & cond2 %if for punctuation sign followed by no space

 Text(i+2:end+1)=Text(i+1:end) %Shifting text up, and increasing length of text

 Text(i+1)=' ' % Setting position after punctuation equal to space

 len=length(Text) %Redefining length since Text is extended to add space

 end

end

first=1 %Idx for first position

len=length(Text) %Final length after all spaces have been added

if (Text(first)<='z') & (Text(first)>='a')

 Text(first)=Text(first)-'a'+'A' % Making sure first letter of script is a capital

letter

End

for i=1:(len-2)

 cond3=(Text(i)=='.')|(Text(i)=='?')|(Text(i)=='!') % Punctuations requiring

capitalization

 cond4= (Text(i+2)<='z') & (Text(i+2)>='a') % Checking if lowercase after

punctuation

 if (cond3 && cond4)

 Text(i+2)=Text(i+2)-'a'+'A' %Correcting from lowercase to capital

 end

end

CorrectText=Text %Defining output variable

Question 2

Script
% Any way to create these two vectors is fine

clear; clc; format short;

n = 10

Enz = 'CCAA'

len = length(Enz);

a=.4;t=.1;c=.2;g=.3;

Seq = makeDNA_(a,t,c,g,n);

Size = 0; % same as doing Size=[]

for j = 1:length(Seq)-len+1

 if Seq(j:j+len-1) == Enz

 Size = [Size (j+1) - sum(Size)]; %since j is where the cut is, its not

necessarily the length of the cut

 end

end

Size = [Size length(Seq) - sum(Size)]; %makes sure if the loop didnt work at the end it

is included

Size(1) = []; %part of the same method of doing Size=[]

if Size(end) == 0

 Size(end) = [];

end

Seq

avg = mean(Size)eedles = [0 2 4 6]

Haystack = [0 4 8 7 4 9 4 3 0]

NumberOfTimes = NeedlesHaystack_(Needles,Haystack)

Function

function [Seq] = makeDNA(a,t,c,g,n)

for i = 1:n

 x = rand()

 if x < a

 Seq(i) = 'A'

 elseif x < (a + t)

 Seq(i) = 'T'

 elseif x < (a + t + c)

 Seq(i) = 'C'

 else

 Seq(i) = 'G'

 end

end

Question 3

Script
% Any way to create the vector is fine

Clear; clc;

Vec = input(‘Enter a string containing uppercase letters and digits’);

kVal = 4;

[notEnough,startingAt] = ConsecutiveK_(Vec,kVal);

if notEnough

 disp(['Less than ' num2str(kVal) ' consecutive letters or digits!']);

 disp('The value of the second output has no meaning.');

else

 disp(['Has at least ' num2str(kVal) ' consecutive letters or digits.']);

 disp(['Starting at location: ' num2str(startingAt)]);

end

Function

function [notEnough, atLocation] = ConsecutiveK_(Vec,minConsecutive)

lVec = length(Vec);

notEnough = true;

conscCounter = 1;

idx = 1

theElement = Vec(idx)

while notEnough && idx < lVec

 idx = idx + 1

 nextElement = Vec(idx)

 if nextElement - theElement == 1

 consecutiveCounter = consecutiveCounter + 1;

 notEnough = consecutiveCounter < minConsecutive;

 else

 consecutiveCounter = 1;

 end

 theElement = nextElement;

end

atLocation = idx – minConsecutive + 1;

return

Question 4

clear; clc; rng(5);

nJumps = 9;

maxValue = 6;

RESULTS = zeros(nJumps,3);

going2Right = true;

jumpBy = ceil(maxValue*rand);

xSquare = jumpBy;

RESULTS(1,:) = [1 jumpBy, xSquare];

for n = 2:nJumps

 newJump = ceil(maxValue*rand);

 if newJump > jumpBy % then reverse direction

 going2Right = ~going2Right;

 end

 if going2Right % Yes: moving the the right

 xSquare = xSquare + newJump;

 else % Moving to the left

 xSquare = xSquare - newJump;

 end

 % To get ready for the next move [6 pts]

 jumpBy = newJump;

 RESULTS(n,:) = [n jumpBy, xSquare];

end

disp(RESULTS);

