Polytechnic Tutoring Center
Midterm II REVIEW – CM 1024, Spring 2020

Disclaimer: This mock exam is only for practice. It was made by tutors in the Polytechnic Tutoring Center and is not representative of the actual exam given by the Academic Department.

ANSWER KEY

1. pH = 7.19; Find concentrations after mixing, use Hasselbach equation to solve for pH

2. pH - 9.11; Use definition of Kw to solve for Kb, plug into Kb equation to solve for concentration of OH. Calculate pOH and subtract from 14 to find pH

3. \(\text{H}_2\text{CO}_3 \text{ (aq)} = 0.0037\text{M} \)

\(\text{HCO}_3^- \text{ (aq)} = 4.0 \times 10^{-5} \text{M} \)

\(\text{CO}_3^{2-} \text{ (aq)} = 5.6 \times 10^{-11} \text{M} \)

\(\text{H}^+ \text{ (aq)} = 4.0 \times 10^{-5} \text{M} \)

pH = 4.40

4. .68%, pKb=4.74; ICE table, assume %5 rule, plug into Kb expression

5. Q = 1, [H\(_2\)] = [I\(_2\)] = .066M, [HI] = .528M; ICE table and plug into expression for Kc

6. P\(_{co}\) = .92 atm; Make an ICE table, use expression for Kp and dalton’s law

7. Kc = .139, Kp = 14; use equation for Kp as a function of Kc

8. T = 770s; use equation for decay and set A\(_0\) to .125A

9. 7.6; clapeyron equation

10. Worked on the board

 a) \(2\text{NO} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{N}_2\text{O} \)

 b) \(\text{ra} = k \ [\text{NO}]^2 \)

 c) \(\text{ra} = (k_1 k_2 / k_{-1}) \ [\text{NO}]^2 / [\text{H}_2] \)

 d) \((k_1 k_2 [\text{H}_2] [\text{NO}]^2) / (k_{-1} + k_2 [\text{H}_2])\)