
FRE6831

COMPUTATIONAL FINANCE LABORATORY (PYTHON)

Edward D. Weinberger, Ph.D., F.R.M

Adjunct Professor

Dept. of Finance and Risk Engineering

edw2026@nyu.edu

Office Hours by appointment

This half-semester course introduces the Python programming language. Interest in Python is

growing faster than any other major programming language, according to a survey conducted by

Stack Overflow, a widely consulted programming website. While much of this interest is due to

Python’s many extensions (NumPy, SymPy, and a variety of AI tools, for example), Python is of

particular interest in finance because a version of it is being used as the “glue” that holds

together the computing infrastructure of several major financial institutions (Bank of America,

JP Morgan Chase, and Goldman Sachs have working systems, and I’m told that Barclays is

working on it.).

Python is sufficiently quirky that a half-semester course must necessarily focus on the language

itself, as opposed to specific financial applications. A half-semester course must also choose one

of the two incompatible versions of Python, i.e. Python 2 and Python 3; this course will focus on

Python 3. Python basics, just like the basics of English, are reasonably easy to learn. However,

just as there is a world of difference between a native English speaker and one that is merely

fluent, there is a world of difference between mastering the basics and becoming a true

Pythonista. Hopefully, there will be time to present some of this advanced material towards the

end of the course

Prerequisites:

Students will be expected to have fluency in an object oriented language, such as C++, Java, or

C#, as this course is intended to introduce students to Python, not programming in general, or to

the object oriented paradigm in particular.

Required text:

The Quick Python Book by Naomi Cedar, 3rd Ed., Manning, 2007, ISBN-10: 1617294039.

Recommended Reading

Just about everything there is to know about Python can be found somewhere on the web by

Googling “Python <name of feature>”. Often, the answers can be found on

stackoverflow.com or in the standard documentation maintained by the Python Software

Foundation, https://docs.python.org/3/, which is surprisingly readable.

mailto:edw2026@nyu.edu

Grading:

Grades will be assigned based on the preparation of a Python program that computes USD

LIBOR discount factors and forward rates from text files containing the standard inputs, namely,

rates on LIBOR cash deposits, Eurodollar futures prices, and USD LIBOR swap prices (More

details provided during the first lecture and in a project description on the course website.).

Lectures will include a discussion of how to build pieces of this program.

Detailed Course Outline

Note: Placement of topics in lectures is only approximate

Lecture 1

Topic 1: Introduction to the Course and to Python

I. Course “Mechanics”

II. Observations on the FinTech eco-system

a. 50 years of coding:

i. what has and what hasn’t changed

ii. Pictorial Programming

b. A few insights from Computer Science 101

i. Interpreted vs compiled languages

ii. Objects

iii. O(N) vs O(log N) vs O(1) implementations

iv. Hashing

v. Sorting: an example of efficiency

c. Data, data, everywhere!

i. Input sources

ii. Databases

iii. Need to process disparate data elements

d. Industrial strength programming

e. Need well known language to interface with machine learning, symbolic

calculation

III. How Python fits in

a. Why Python?

i. Elementary Python easy to learn, but also “expert friendly”

1. Addresses some annoying things in other languages

2. Can do a lot in a few lines

a. “batteries included” libraries

b. Expressive syntax, most notably lists and dictionaries

ii. Intended to be readable

iii. Free, but very well supported

iv. Many, many extensions (SciPy, NumPy, SymPy, AI libraries, etc.)

v. Multi-platform (no platform dependencies)

vi. Full support for object-oriented programming, including operator

overloading, but without

1. explicit garbage collection

2. explicit pointers

b. Problems with Python (primarily because Python is interpreted)

i. Slower than C/C++

IV. Characteristics and Quirks of Python

a. Readability is key; hence indents used as block identifiers

b. Python 2.x vs Python 3.x (to be discussed more fully later on)

c. Python is interpreted, but …

d. Python uses “duck typing” and automated garbage collection

e. Everything is an object; object oriented programming fully supported

f. Lots of introspection

V. Installing Python

a. “Hello, world!”

b. Libraries

VI. The very beginnings

a. Numbers: int float complex

b. Strings

c. Booleans

d. None

e. Built-in functions: https://docs.python.org/3/library/functions.html

f. Dates via datetime

Reading: Cedar, Introduction and Chapters 1 – 4

Assignments: Write interpolation function and discount factor function for CD’s

Topic 2: Lists, Tuples, and Sets

I. Lists

a. “Declaring” a list

b. Arrays, but with a twist!

i. Length unspecified beforehand; entries added at end

ii. List operators (append, indicies/slices, etc.)

iii. List operations

iv. Lists as queues and stacks

v. Nested lists and deep copies

II. Tuples

a. Mutability vs Immutability

b. Declaration

c. List-tuple conversion

d. Packing/unpacking tuples

III. Sets

a. Uniqueness of elements

b. Set operations

https://docs.python.org/3/library/functions.html

Reading: Cedar, Chapter 5

Lecture 2

Topic 3: Strings

I. Strings as immutable sequences of characters, including special characters

II. str vs repr

III. String methods

a. split and join

b. Conversions

c. Other string methods

IV. The many ways of formatting and printing strings

V. The bytes data type

VI. Unicode basics

Reading: Cedar, Chapter 6

Topic 4: Dictionaries

I. Review: Hashing

II. Definition as an associative array with immutable

III. Dictionary operations

IV. Some applications

Reading: Cedar, Chapter 7

Assignment: Trial implementation of discount factor storage

Lecture 3

Topic 5: Control Flow

I. Statements, blocks, and indentation

II. Boolean values and expressions

III. Standard stuff: if and while

IV. Loops over sets

a. The range function

b. break and continue

c. tuple unpacking

d. enumerate and zip

e. list comprehensions

f. generators

Reading: Cedar, Chapter 8

Topic 6: Python Functions

I. Definition and scoping

II. Function parameter options

III. Lambda expressions

IV. Functions assignment to “pointer” variables

V. Decorators

VI. Generator functions

VII. The dir function

VIII. Comments and doc strings

Reading: Cedar, Chapter 9

Topic 7: Input and output

I. Variants of the print statement

II. File objects

III. Reading command line parameters

Reading: Cedar, Chapter 13 (optionally Chapter 12)

Assignment: Reading market data from flat files

Lecture 4

Topic 8: Basics of Objects in Python

I. Basics of object definitions

a. Attributes and methods

b. The __init__() method

II. Member vs class variables

III. Static and class methods

IV. Inheritance

V. Private variables and methods

Reading: Cedar, Chapter 15 and 17

Topic 9: Modules

I. Setting up a module

II. Local and global variables

III. The import statement

IV. The main statement

V. Scoping rules

Reading: Cedar, Chapter 10

Assignment: Trial design of USDYieldCurve class

Lecture 5

Topic 9: More About Classes

I. Multiple inheritance

II. Operator overloading

III. Making a class callable

IV. Get/set attrib

V. @property

Reading: Cedar, Chapter 17

Topic 10: Exceptions

Reading: Cedar, Chapter 14

Topic 11: Regular expressions (if time permits)

Reading: Cedar, Chapter 16

Topic 12: NumPy

Reading: https://numpy.org/

Lecture 6

Various advanced topics, chosen from the following:

I. Multi-threading

II. Unit testing and the mock library

III. New features of Python 3.7

a. Sorted dictionaries

b. Ways of declaring variables with a given type

IV. Functional programming

V. Python and SQL databases

VI. SymPy

VII. Other topics, to be determined

Reading: Cedar, chapters to be determined; other sources to be determined

https://numpy.org/

