FREG831
COMPUTATIONAL FINANCE LABORATORY (PYTHON)
Edward D. Weinberger, Ph.D., F.R.M
Adjunct Professor
Dept. of Finance and Risk Engineering
edw2026@nyu.edu
Office Hours by appointment

This half-semester course introduces the Python programming language. Interest in Python is
growing faster than any other major programming language, according to a survey conducted by
Stack Overflow, a widely consulted programming website. While much of this interest is due to
Python’s many extensions (NumPy, SymPy, and a variety of Al tools, for example), Python is of
particular interest in finance because a version of it is being used as the “glue” that holds
together the computing infrastructure of several major financial institutions (Bank of America,
JP Morgan Chase, and Goldman Sachs have working systems, and I’m told that Barclays is
working on it.).

Python is sufficiently quirky that a half-semester course must necessarily focus on the language
itself, as opposed to specific financial applications. A half-semester course must also choose one
of the two incompatible versions of Python, i.e. Python 2 and Python 3; this course will focus on
Python 3. Python basics, just like the basics of English, are reasonably easy to learn. However,
just as there is a world of difference between a native English speaker and one that is merely
fluent, there is a world of difference between mastering the basics and becoming a true
Pythonista. Hopefully, there will be time to present some of this advanced material towards the
end of the course

Prerequisites:

Students will be expected to have fluency in an object oriented language, such as C++, Java, or
C#, as this course is intended to introduce students to Python, not programming in general, or to
the object oriented paradigm in particular.

Required text:
The Quick Python Book by Naomi Cedar, 3" Ed., Manning, 2007, ISBN-10: 1617294039.
Recommended Reading

Just about everything there is to know about Python can be found somewhere on the web by
Googling “Python <name of feature>". Often, the answers can be found on
stackoverflow.com Or in the standard documentation maintained by the Python Software
Foundation, https://docs.python.org/3/, which is surprisingly readable.

mailto:edw2026@nyu.edu

Grading:

Grades will be assigned based on the preparation of a Python program that computes USD
LIBOR discount factors and forward rates from text files containing the standard inputs, namely,
rates on LIBOR cash deposits, Eurodollar futures prices, and USD LIBOR swap prices (More
details provided during the first lecture and in a project description on the course website.).
Lectures will include a discussion of how to build pieces of this program.

Detailed Course Outline
Note: Placement of topics in lectures is only approximate

Lecture 1

Topic 1: Introduction to the Course and to Python

I. Course “Mechanics”
Il. Observations on the FinTech eco-system
a. 50 years of coding:
i. what has and what hasn’t changed
ii. Pictorial Programming
b. A few insights from Computer Science 101
i. Interpreted vs compiled languages
ii. Objects
iii. O(N) vs O(log N) vs O(1) implementations
iv. Hashing
v. Sorting: an example of efficiency
c. Data, data, everywhere!
i. Input sources
ii. Databases
iii. Need to process disparate data elements
d. Industrial strength programming
e. Need well known language to interface with machine learning, symbolic
calculation
1. How Python fits in
a. Why Python?
i. Elementary Python easy to learn, but also “expert friendly”
1. Addresses some annoying things in other languages
2. Candoalotinafew lines
a. “batteries included” libraries
b. Expressive syntax, most notably lists and dictionaries
ii. Intended to be readable
iii. Free, but very well supported
iv. Many, many extensions (SciPy, NumPy, SymPy, Al libraries, etc.)
v. Multi-platform (no platform dependencies)

Vi.

Full support for object-oriented programming, including operator
overloading, but without

1. explicit garbage collection

2. explicit pointers

b. Problems with Python (primarily because Python is interpreted)

Slower than C/C++

IV. Characteristics and Quirks of Python

S

Readability is key; hence indents used as block identifiers

Python 2.x vs Python 3.x (to be discussed more fully later on)
Python is interpreted, but ...

Python uses “duck typing” and automated garbage collection
Everything is an object; object oriented programming fully supported
Lots of introspection

V. Installlng Python
a. “Hello, world!”
b. Libraries

VI. The very beginnings

Built-in functions: https://docs.python.org/3/library/functions.html
Dates via datetime

a. Numbers: int float complex
b. Strings

c. Booleans

d. None

e.

f.

Reading: Cedar, Introduction and Chapters 1 — 4
Assignments: Write interpolation function and discount factor function for CD’s

Topic 2: Lists, Tuples, and Sets

I. Lists

a. “Declaring” a list
b. Arrays, but with a twist!

i
ii.
iii.
iv.

V.

Il. Tuples

a.

b.

C.

d.
1. Sets

a.

b.

Length unspecified beforehand; entries added at end
List operators (append, indicies/slices, etc.)

List operations

Lists as queues and stacks

Nested lists and deep copies

Mutability vs Immutability
Declaration

List-tuple conversion
Packing/unpacking tuples

Uniqueness of elements
Set operations

https://docs.python.org/3/library/functions.html

Reading: Cedar, Chapter 5
Lecture 2

Topic 3: Strings

I. Strings as immutable sequences of characters, including special characters
II. str VSrepr
I1l. String methods
a. split and join
b. Conversions
c. Other string methods
IV. The many ways of formatting and printing strings
V. Thebytes data type
VI. Unicode basics

Reading: Cedar, Chapter 6

Topic 4: Dictionaries

I. Review: Hashing
Il. Definition as an associative array with immutable
I1l. Dictionary operations
IV. Some applications

Reading: Cedar, Chapter 7
Assignment: Trial implementation of discount factor storage

Lecture 3

Topic 5: Control Flow

I. Statements, blocks, and indentation
Il. Boolean values and expressions
1. Standard stuff: if and while
IV. Loops over sets

a. The range function

break and continue
tuple unpacking
enumerate and zip
list comprehensions
generators

o 00 T

Reading: Cedar, Chapter 8

Topic 6: Python Functions

I. Definition and scoping
Il. Function parameter options
1. Lambda expressions
IV. Functions assignment to “pointer” variables
V. Decorators
VI. Generator functions
VIl. Thedir function
VIIl. Comments and doc strings

Reading: Cedar, Chapter 9

Topic 7: Input and output

I. Variants of the print statement
Il. File objects
I1l. Reading command line parameters

Reading: Cedar, Chapter 13 (optionally Chapter 12)
Assignment: Reading market data from flat files

Lecture 4

Topic 8: Basics of Objects in Python

I. Basics of object definitions
a. Attributes and methods
b. The _init_ () method
II. Member vs class variables
I1l. Static and class methods
IV. Inheritance
V. Private variables and methods

Reading: Cedar, Chapter 15 and 17

Topic 9: Modules

I. Setting up a module

Il. Local and global variables
Ill. The import statement
IV. Themain statement

V. Scoping rules

Reading: Cedar, Chapter 10
Assignment: Trial design of USDY ieldCurve class

Lecture 5

Topic 9: More About Classes

l.
.
M.
V.
V.

Multiple inheritance
Operator overloading
Making a class callable
Get/set attrib

@property

Reading: Cedar, Chapter 17

Topic 10: Exceptions

Reading: Cedar, Chapter 14

Topic 11: Reqular expressions (if time permits)

Reading: Cedar, Chapter 16

Topic 12: NumPy

Reading: https://numpy.org/

Lecture 6

Various advanced topics, chosen from the following:

V.
V.
VI.
VII.

Multi-threading
Unit testing and the mock library
New features of Python 3.7
a. Sorted dictionaries
b. Ways of declaring variables with a given type
Functional programming
Python and SQL databases
SymPy
Other topics, to be determined

Reading: Cedar, chapters to be determined; other sources to be determined

https://numpy.org/

