

**ECE-9253 Robot Localization and Navigation**

**ME-7933 Fundamentals of Robot Mobility**

**Spring 2019 Monday 3:20-5:50 pm**

**Instructor Giuseppe Loianno**

**Agile Robotics and Perception Lab**

<https://wp.nyu.edu/arpl/>



## **Introduction**

This course aims to provide new theory, tools, and concepts to allow flying and ground robots to autonomously navigate, reason, and take actions in unstructured environments.

## **Prerequisites**

Linear Systems ECE-GY 6253 or ME-GY6923 or ME-GY6703 or prior instructor approval.

## **Course Description**

This course presents the concepts, techniques, algorithms, and state-of-the-art approaches for robot perception, mapping and localization. The course will show the theoretical foundations and will also have a considerable experimental component based on Matlab/ROS.

The course will start from basic concepts in probability and then introduce probabilistic approaches for data fusion such as Bayes Filters, Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter, and Particle Filter. Then, the course will introduce the SLAM problem showing how this has recently been solved using batch optimization and graph methods. Finally, mapping algorithms will also be briefly discussed.

## **Class Material**

Slides distributed during the class. These will have most of the details needed by the students to successfully pass the class.

Optional

- Thrun, Burgard, Fox, Probabilistic robotics, MIT Press
- R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile robots, MIT press
- Simo Särkkä, Bayesian Filtering and Smoothing, Cambridge University Press
- Yaakov Bar-Shalom, Estimation with Applications to Tracking and Navigation, Wiley

## **Project**

There is a plan to give 2 projects to the students. The final grade will depend also on the results of these projects. Projects will be discussed at the end of the semester, in the form of a short

presentation and a report. These projects are intended to take the material taught in the course in a new and insightful direction of your choosing, for instance by incorporating the course into your research. Specific details on the project will be available mid-semester.

## Schedule

**Week 1 and 2:** Introduction to perception: the perception problem, review of probability notions, orientation parametrization, and basic kinematics, differential kinematics

**Week 3:** Bayes Filter and Kalman filter

**Week 4 and 5:** Extended Kalman filter vs. Error state Kalman filter. Example: ground robot or cart

**Week 6:** Unscented Kalman filter. Example: ground robot or cart nonlinear model

**Week 7:** Particle filter or Introduction to Vision and Laser sensors

**Project 1:** Fuse inertial and Vicon data

**Week 8:** Midterm

**Week 9 and 10:** Introduction to SLAM, Sfm, and mapping approaches

**Week 11:** EKF SLAM

**Week 12:** Pose Graph SLAM

**Week 13 and 14:** Laser-based vs. Vision-based SLAM, and the future in this area  
ROS packages, 3D navigation example

**Week 15:** Project presentation

**Project 2:** Fuse Robot sensor data

## Grading Policy

Homeworks 30%

Project 20%

Midterm 30%

Final Report and Presentation 20%