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Abstract

We present a new approach for positioning, pricing, and hedging in incomplete
markets that bridges standard arbitrage pricing and expected utility maximization. Our
approach for determining whether an investor should undertake a particular position

involves specifying a set of probability measures and associated floors which expected
payoffs must exceed in order for the investor to consider the hedged and financed
investment to be acceptable. By assuming that the liquid assets are priced so that each
portfolio of assets has negative expected return under at least one measure, we derive a

counterpart to the first fundamental theorem of asset pricing. We also derive a
counterpart to the second fundamental theorem, which leads to unique derivative
security pricing and hedging even though markets are incomplete. For products that are

not spanned by the liquid assets of the economy, we show how our methodology
provides more realistic bid–ask spreads. r 2001 Published by Elsevier Science S.A.
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1. Introduction

Opportunities to transform initial certain wealth into random future wealth
abound in a thriving economy. Thus, a fundamental problem in investment
theory concerns the issue of whether or not to undertake such an opportunity.
To simplify the problem, one often assumes that the opportunity vanishes
forever if it is initially rejected. For further simplification, the scale of the
opportunity is usually taken to be fixed, at least at the outset.
The purpose of this paper is to propose a new approach for deciding whether

or not to accept opportunities of this type. Our approach is intermediate
between expected utility theory and arbitrage pricing theory in terms of both
the initial information required and the power of the conclusions derived.
Hence, to place our approach in the proper context, we now review these two
fundamental paradigms.
Expected utility maximization is a powerful tool for deciding whether or not

to accept a project at a given time and scale. So long as an investor’s behavior
is consistent with the von Neumann Morgenstern axioms (see Varian, 1984), an
investor accepts an opportunity if and only if it increases her expected utility.
While expected utility maximization has a long history and a strong theoretical
appeal, it has had limited acceptance in practice. While this negative result
could be due to real-world violation of the behavioral axioms, a more
compelling reason involves the difficulty inherent in specifying the required
inputs to the optimization. These inputs include the current endowment, the
joint stochastic process over all assets, and the utility function over all certain
wealth levels. In practice, corporations typically fail to fully specify these three
fundamental constructs in making capital budgeting decisions, and our
experience is that even professional investors are generally unwilling to
explicitly specify these three inputs when making investment decisions. Even if
the constructs are inferred through past decisions, the revealed constructs are
often inconsistent over time and across assets.1 This inconsistency would be
benign if the recommended action were robust to the particular specification of
endowments, beliefs, and preferences. Unfortunately, the maximization is
notoriously sensitive to these inputs, whose formulation is suspect at the outset.
This shortcoming renders the methodology potentially useless, primarily
because the decisions consistent with the inputs used in the optimization may
be seriously disputed by other perspectives.
To draw some inferences on these other perspectives, it is widely acknowl-

edged that market prices of related instruments provide useful informational
inputs for the decision process. So long as these prices are liquid, their levels
reflect a panoply of endowments, beliefs, and preferences. If an opportunity is
undertaken, the relevance of related liquid market prices is enhanced by the

1See the substantial literature on the Allais (1987) paradox.
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observation that unforeseen contingencies can often induce the liquidation of a
position prior to the anticipated exit time. The possibility of early exit
underscores the advantages of developing a marking model, which links future
market prices of these instruments to the associated liquidation value of the
proposed opportunity. This pricing function imbues initial market prices with
additional significance, in that these prices are closely related to their expected
future values. Furthermore, the historical variability of these prices are often
used in conjunction with the pricing model in order to assess the future
variability of liquidation levels. When this variability is deemed to be too large,
opportunities which increase a decision-maker’s expected utility over a
particular horizon are sometimes rejected in practice. Since the decision
maker’s endowments, preferences, and subjective probabilities are not market-
determined constructs, reliance on them may be subsequently regretted if the
position is reversed prematurely. As a consequence, methods that place greater
emphasis on market observables provide greater protection against early
reversals.
Arbitrage pricing is an example of a theory that relies heavily on the

existence of related market prices. The decision of whether or not to undertake
a specific opportunity is easily solved in this framework when the payoffs from
the opportunity are spanned by the payoffs from traded assets. When the
opportunity’s payoff is spanned, an associated present value can be determined
and compared to the initial cost of the opportunity. An investor preferring
more to less takes those and only those spanned opportunities that result in a
positive net present value (NPV). By undertaking the opportunity and
assuming an opposite position in a replicating portfolio, the investor
synthesizes an arbitrage opportunity. Note that the identification of the
opportunity as an arbitrage does not require the investor to specify personal
constructs such as positions, probabilities, and preferences. Instead, the
investor specifies certain market constructs such as price processes and trading
opportunities. Part of the appeal of this approach is that the policy of accepting
all arbitrage opportunities is known to be consistent with expected utility
maximization for any combination of endowments, beliefs, and increasing
preferences. Thus, the difficulties inherent in specifying these constructs are
neatly bypassed whenever the payoffs from the opportunity are spanned by the
payoffs from the traded assets.
One is assured that the payoffs to any opportunity are in fact spanned

whenever the market is taken to be complete. This feature likely explains the
prevalence in practice of models which presume market completeness.
Unfortunately, the conditions required for models to produce market
completeness are generally quite stringent. For example, in the models of
Black and Scholes (1973), Merton (1973), and Heath et al. (1992), the state
space is reduced significantly by requiring continuous price processes, while the
asset space is inflated substantially by allowing continuous trading. Unfortu-
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nately, empirical work seems to suggest that realistic price processes and
trading opportunities do not typically permit market completeness. For
example, Figlewski and Green (1999) recently document the substantial risks
involved in hedging the sale of options using the Black-Scholes model, even
when optimal forecasts of volatility are used in pricing and hedging.
Furthermore, it is likely that the artifices inherent in complete market models
cannot be alleviated by generalizations that expand the state space to include
stochastic volatility and jumps, since these models must also expand the asset
space to accommodate continuous trading in options. As the latter markets are
not liquid enough at present to support even an approximation of continuous
trading, it is widely appreciated both in academia and in practice that market
incompleteness is a pervasive phenomenon that must be addressed in order to
actualize any proposed theory of asset allocation.
Unfortunately, when the payoffs from an opportunity do not lie in the span

of the traded assets, the investment decision becomes more complicated.
Although the present value operator is not unique, it can nonetheless happen
that the investment opportunity can be combined with the traded assets so as
to become an arbitrage. When this incidence occurs, an investor should
definitely accept the opportunity. However, when an arbitrage cannot be
formed, then it is not clear that the opportunity under consideration should be
rejected. Thus, the complications that arise in incomplete markets essentially
surround the rejection criterion. An investor who rejects all opportunities that
cannot be converted to arbitrages is likely to be foregoing opportunities that
would increase expected utility for a wide range of plausible beliefs and
preferences. Empirical work suggests that the bid–ask spreads observed in
practice reflect the willingness of market-makers to accept controlled risks (see
Figlewski, 1989). Essentially, market-makers who can measure their risks can
set their spreads to levels at which the potential for losses by competitors is
inevitable.
The asset pricing literature has attempted to identify the nature of

opportunities that should be accepted, despite their potential for losses. For
example, Cochrane and Sa!a Requejo (2000), Ledoit (1995), and Bernardo and
Ledoit (2000) all use the Sharpe ratio as a criterion for acceptability. As an
alternative Bernardo and Ledoit (1999) consider investments with high ratios
of gains to losses. These approaches require the investor to specify subjective
probabilities, and minimize the role of related market prices.
To avoid these drawbacks, alternative work has focussed on selecting a

present value operator out of the arbitrage-free set, and then using this
operator to operationalize the standard NPV rule. For example, Rubinstein
(1994) chooses the risk-neutral density that minimizes the distance to a prior
lognormal density among those consistent with observed option prices.
Similarly, Buchen and Kelly (1996), Stutzer (1996), and Avellaneda et al.
(1997) minimize cross-entropy relative to a prior density. Alternatively, Hull
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and White (1990), Heston (1993), Bates (1996), and Madan et al. (1998) all
specify a tractable and flexible family of risk-neutral processes and then
estimate parameters from option prices. A.ıt-Sahalia and Lo (1998) take a non-
parametric approach to the same problem. In all of these papers, the relevance
of the selected density remains an important issue. Empirical work is needed to
assure that alternative criteria are not being used by the market in selecting a
risk-neutral density from the possible set.
The purpose of this paper is to propose a new criterion for deciding when the

rewards received from accepting an opportunity outweigh the accompanying
risks. Our starting point is the observation that an arbitrage is an opportunity
that absolutely everyone would accept. It follows from the continuity of
preferences that opportunities exist, with mild risks, which would be considered
acceptable to all but the most risk-averse. For example, in a simple economy
with a riskless asset and a single risky asset with a positive risk premium,
Huang and Litzenberger (1988) show, every investor invests a positive amount
in the risky asset, unless they have infinite risk aversion. Thus, so long as there
are a finite number of individuals each with finite risk aversion, then there
always exists a risky investment acceptable to every individual. Hence, we
propose to generalize the concept of an arbitrage opportunity to include such
risky opportunities. We term an opportunity that is agreeable to a wide variety
of reasonable individuals to be an acceptable opportunity. The precise definition
of acceptable opportunity controls for the reasonableness of the individuals
involved by endogenizing this requirement into the definition. We note that this
concept contains the class of arbitrage opportunities as an important special
case.
The central idea in our definition of acceptability is that every reasonable

person would take the view that the benefits engendered by the gains
adequately compensate for the costs imposed by the losses. One can regard
these persons as counterparties willing to take the other side should one decide
to exit after entering. By requiring that each person in a specified set finds the
trade agreeable, one can enter the trade assured that there are multiple avenues
for exit. Since an expected gain of negative infinity under any probability
measure will clearly obviate the required unanimity, a necessary condition on
acceptability by the group is that the expected gain under each measure be
bounded from below by a finite constant. This constant should furthermore
not be allowed to be positive, since requiring that expected gains exceed a
positive constant would rule out the acceptability of certain arbitrages.
Formally, then, our concept of acceptability requires the specification of a set
of probability measures called test measures, and an associated set of non-
positive constants called floors. An investment is accepted if and only if the
expected gain under each measure at least weakly exceeds its associated floor,
for each measure in the specified set. We recognize that many investments
require financing. Further, we recognize that investments should be judged
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from a portfolio context rather than in isolation. As a result, we define an
investment to be acceptable if it can be financed and hedged so that the
expected gain under each measure weakly exceeds its associated floor, for each
probability measure in the specified set.
In terms of input requirements, our acceptability criterion is intermediate

between expected utility maximization and arbitrage pricing theory. In contrast
to expected utility maximization and much of the previous literature, we do not
require the investor to specify endowments, beliefs, or preferences in the
standard manner. We do require a specification of test measures and floors,
which can be interpreted as a mechanism for expressing preferences and beliefs.
However, our experience suggests that this mechanism is more natural than
specifying a single probability measure and utility function. Nonetheless, our
input requirements are stronger than those required by arbitrage pricing
theory, which merely requires a specification of the state space and the asset
space.
Our acceptability criterion is intermediate beween arbitrage pricing theory

and expected utility maximization in terms of the power of its implications as
well. In contrast to arbitrage pricing theory, our approach can decide which
risky investments are worth pursuing. However, when compared to expected
utility maximization, our approach is comparatively silent with respect to
many important economic questions. For example, we do not attempt to solve
the difficult problem of determining optimal positions to be taken by one or
more market participants. Thus, we do not solve individual decision problems,
nor do we offer a general equilibrium theory of market price determination.
Instead, our limited focus is on the development of criteria which can be used
to support a particular investment decision.
We note that the decisions obtained by applying either traditional arbitrage

pricing theory or expected utility maximization to the investment decision can
be obtained as special limiting cases of our theory. The policy of accepting only
arbitrage opportunities is enacted by having one zero floor measure for each
state, such that each measure places unit mass on its associated state and zero
mass on all others. Furthermore, the policy of accepting only opportunities
which increase expected utility can always be obtained by equating the convex
set generated by our test measures with the set of investments which increase
the expected utility of the decision-maker. Thus, one can regard our approach
as endogenizing the determination of an indifference curve at the decision
maker’s present endowment level. The approach differs from expected utility
theory in that the specification of indifference curves at other wealth levels is
not required.
We use our definition of an acceptable opportunity to refine the notion of

market efficiency. We define a market to be efficient if there is no portfolio of
the liquid assets that would be viewed as beneficial under all of our test
measures. Since the restrictions imposed by measures with strictly negative
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floors can be nullified by scaling down the portfolio, only the measures with
zero floors play any role in determining whether or not a market is efficient by
our definition. Measures with a strictly negative floor are termed stress test
measures, since their only role is to prevent the excessive scaling up of
opportunities which are acceptable on the margin. Measures with a floor of
zero are termed valuation test measures since we will show that they play an
important role in determining the values to be assigned to opportunities on the
margin.
Treating our definition of an acceptable opportunity as a generalization of

an arbitrage opportunity, we revisit the two fundamental theorems of Harrison
and Kreps (1979). Their first fundamental theorem showed that if the liquid
assets are priced so that there are no free lunches, then there exists a positive
state pricing function. In the single-period context, a state pricing function is a
vector of positive weights summing to one, whose inner product with each
asset’s payoffs across states yields the asset’s forward market price. In analogy
to the first fundamental theorem presented in Harrison and Kreps (1979), we
examine the implications of the liquid assets being priced so that there are no
strictly acceptable opportunities among them. We show that this condition is
equivalent to the existence of a vector of positive weights summing to one,
whose inner product with each asset’s expected payoff across valuation
measures yields the asset’s forward market price. Thus, just as the first
fundamental theorem from Harrison and Kreps (1979) reduces the valuation
problem down to the selection of a vector of positive weights to attach to the
states, our version of this theorem reduces the valuation problem down to the
determination of the vector of positive weights to attach to the valuation
measures. The weight on each measure may be viewed as reflecting the
importance of that measure in determining the market prices of the liquid
assets. In fact, the weight on each measure is the forward price of a portfolio
that has an expected payoff of one dollar under that measure and no expected
payoff under any other valuation measure. We can thus interpret this portfolio
as an Arrow Debreu security whose payoff is defined over the space of
valuation measure outcomes, instead of over the original state space.
The importance of the first fundamental theorem stems from its restriction

on the range of valuations for new securities that are consistent with the prices
of liquid assets. In general, the fewer are the number of states relative to the
number of independent liquid asset payoffs, the smaller will be the range of
such market consistent values. In our analog of the first fundamental theorem,
the payoff in each state is replaced with the expected payoff under each
valuation test measure. Thus, when the number of valuation test measures is
significantly smaller than the number of states, one would expect a tighter
range for the values of new securities. Since prohibiting acceptable
opportunities is stronger than banning arbitrage opportunities, this outcome
is to be expected.
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The second fundamental theorem of Harrison and Kreps (1979) examines
the implications for the state pricing function when the number of states equals
the number of non-redundant assets. In the single-period context, the result of
this market completeness is that the state pricing function is unique. In our
context, markets are said to be acceptably complete when the number of non-
redundant assets weakly exceeds the number of independent valuation
measures. We show that, when markets are acceptably complete, the convex
combination of valuation test measures which is consistent with market prices,
is uniquely determined. As a result, we are able to uniquely value and hedge
assets. When the number of non-redundant assets weakly exceeds the number
of independent valuation measures, but is less than the number of states, then
one can uniquely value and hedge claims on cash flows, even though the
market is classically incomplete. This powerful result arises because our hedges
do not eliminate all risk, and instead require that the remaining risk form an
acceptable opportunity.
We go on to consider the question of the pricing of claims for non-marginal

trades. In incomplete markets, arbitrage pricing theory can be used to
determine the bid–ask spread for such trades. The minimum asking price for a
derivative security is obtained by determining the smallest initial cost of
forming a portfolio of the liquid assets which super-replicates the claim’s
payoff. Similarly, the maximum bid for a derivative security can be obtained by
determining the largest initial inflow received from shorting a portfolio of the
liquid assets which sub-replicates the claim’s payoff. We generalize these ideas
by replacing the non-negativity of the difference between the claim’s payoff and
its hedge by the acceptability of this difference. The resulting theory is shown to
deliver spreads that are substantially smaller than those generated by arbitrage
pricing theory, and are thus closer to the spreads observed in practice. We also
find that the size of the spread increases with the proposed size of the trade,
which is consistent with market practice.
The plan of the paper is as follows. Section 2 presents a simple example

illustrating our main ideas. Section 3 sets out the economic model. Section 4 is
devoted to the first fundamental theorem, while the second fundamental
theorem is considered in Section 5. Section 6 presents our ideas in a continuous
state lognormal setting. Section 7 considers the market-maker’s problem of
determining the bid and ask prices of derivative securities. Section 8
summarizes and concludes.

2. Two example economies

In this section, we present two examples illustrating the operation of our
methodology. The first example shows how derivative securities may be
uniquely priced in our approach, even when markets are incomplete. Consider

P. Carr et al. / Journal of Financial Economics 62 (2001) 131–167138



a simple single-period economy, with dates 0 and 1: For simplicity, we consider
a model with three states, o1; o2; o3 and two assets, a unit bond and a stock
with payoffs [3, 1, 0] across states. Suppose that each asset costs one dollar
initially, and that both assets are financed by borrowing.
Table 1, Panel A displays the net payoff matrix. With 3 states and only 2

opportunities, the market is clearly incomplete. However, one can create any
payoff proportional to [2, 0,�1]. Additionally, the economy has no arbitrage
opportunities.
To determine whether or not there are any acceptable opportunities, we

consider two valuation measures, Measure 1 and 2 (see Table 1, Panel B).
Recall that a valuation measure has a zero floor by definition. An opportunity
has zero cost by definition. By definition, then, an opportunity is acceptable
when its expected payoff is non-negative under both measures. An opportunity
is strictly acceptable if the expected payoff is also positive under at least one
measure. We observe that the second measure, Measure 2, forces acceptable
payoffs to have non-negative payoffs in the third state. We further note that all
arbitrage opportunities are strictly acceptable. The expected payoff from the
financed bond position is zero under each measure, and so it is not strictly
acceptable. The expected payoff from the financed stock position is 1/3 under
Measure 1 and �1 under Measure 2, so it is not strictly acceptable. Any
portfolio of l stocks and k bonds has expected value under Measure 1 of l=3
and expected value under Measure 2 of �l: Hence, as one of these must be
negative, there are no acceptable opportunities in this economy.
Just as the absence of arbitrage implies that no zero-cost portfolio has a

payoff in the positive orthant of the space generated by the 3 states, the absence
of acceptable opportunities implies that no zero-cost portfolio has expected
payoffs in the positive orthant of the space generated by the two valuation
measures. Our generalization of the fundamental theorems implies the
existence of a pair of weights, which sum to one, and which re-price the

Table 1

Net payoff and weighting matrices for the single-period economy

Panel A describes the payoffs to two assets in the three states and Panel B describes the weighting

by two measures on three states.

States

State 1 State 2 State 3

Panel A: Payoffs by asset choice

Bond 0 0 0

Stock 2 0 �1

Panel B: Weighting by measures

Measure 1 1/3 1/3 1/3

Measure 2 0 0 �1
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financed stock, as follows:

w
1

3
þ ð1� wÞð�1Þ ¼ 0: ð1Þ

The solution to Eq. (1) is w ¼ 3=4; which implies that the weight vector is
½3=4; 1=4�: To value a call struck at two, note that the payoff is [1, 0, 0]. The
expected value of this payoff under Measure 1 is 1/3 and under Measure 2 is 0,
so the call value is (3/4) (1/3)+(1/4) (0)=1/4.
Our second example considers a more general setting in which assets are also

uniquely priced by our approach. This example illustrates one technique which
can be used to generate the test measures and associated floors that are needed
to determine whether an opportunity is acceptable. Although our technique
uses the same constructs as an expected utility maximization, one should not
interpret the use of these constructs as necessary. Consider a simple single-
period economy with dates 0 and 1: To delineate the issues involved in defining
acceptable opportunities with minimal complexity, we consider a model with
five states and three assets. Uncertainty is completely resolved at Time 1 in one
of five states labeled j ¼ 1;y; 5: The three assets are a unit bond, a stock, and
an at-the-money straddle written on the stock. The Time 1 payoff matrix of the
three assets over the five states is displayed in Panel A of Table 2. Let this 3� 5
payoff matrix be denoted by A: With five states and only three assets, the
market is clearly incomplete. The Time 0 prices of the three assets are given by
the 3� 1 column vector p ¼ ½p1; p2; p3�0 ¼ ½0:9091; 88:1899; 12:3173�0:
An arbitrage opportunity is a column vector a ¼ ½a1; a2; a3�0 representing the

number of units of the assets held over the period, such that p0a ¼ 0; a0AX 0;
and a0Aa0: One can verify that this economy has no arbitrage opportunities.

Table 2

Cash flows for three assets and wealth levels of three individuals in five states of a single-period

economy

Panel A describes the cash flows in five states and Panel B describes the wealth for three individuals

in five states.

States

State 1 State 2 State 3 State 4 State 5

Panel A: Cash flows

Bond 1 1 1 1 1

Stock 80 90 100 110 120

Straddle 20 10 0 10 20

Panel B: Wealth

Individual 1 100 100 100 100 100

Individual 2 80 90 100 110 120

Individual 3 120 110 100 90 80
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However, our interest is in defining a larger class of opportunities, which we
term acceptable opportunities.
For this purpose, we consider three valuation test measures on our five

dimensional space of cash flows. To generate these valuation measures, we
consider a set of three investors who have reasonable positions, reasonable
preferences, and reasonable prior probability beliefs. The first holds the bond,
the second holds the stock, while the third holds the bond and is short the
stock. The time one wealth levels of these three positions are given by the
matrix shown in Table 2, Panel B.
For simplicity, we assume that all three investors regard all five states as

equally likely. We also assume that all three investors have the same utility
function, given by �ðW=100Þ�4; whereW is the level of their wealth at Time 1
and the coefficient of relative risk aversion is 5: Under this assumption, the
respective state contingent marginal utilities are proportional to the three
column vectors, shown in Table 3.
Let B denote the above 5� 3 matrix, shown in Table 3, Panel A, of state

contingent marginal utilities for our three individuals. We note that the elements
of each column of B are all positive and thus can be made to sum to one upon
normalizing. Up to a constant, the columns of B represent the valuation test
measures in our economy. Since the valuation test measures are being employed
to define sets using non-negativity conditions, it is not necessary to perform the
renormalization. If B were to correspond to spot prices, then we would
normalize the vector such that the entries would sum to the price of a bond,

Table 3

Marginal utility based and stress motivated measures for five states

Panel A describes the B matrix for three utility based measures and Panel B describes the

augmented B matrix with two stress measures.

Marginal utility Stress

Indiv. 1 Indiv. 2 Indiv. 3 1 2

Panel A: Marginal utility

First state 1 3.05 0.40

Second state 1 1.69 0.62

Third state 1 1 1

Fourth state 1 0.62 1.69

Fifth state 1 0.40 3.05

Panel B: The augmented B

First state 1 3.05 0.40 1 0

Second state 1 1.69 0.62 0 0

Third state 1 1 1 0 0

Fourth state 1 0.62 1.69 0 0

Fifth state 1 0.40 3.05 0 1
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while for futures prices the entries in B would sum to unity. From the viewpoint
of defining acceptability, neither transformation is necessary.
Our example should not be construed as the only possible way to generate

valuation test measures. The example uses heterogeneity in initial positions as a
way to generate heterogeneous valuation measures. Clearly, heterogeneous
beliefs or preferences, or both, could also have been used. For example, the
three columns of B could have employed differing risk aversion coefficients in
each column, as well as differing subjective state probabilities across columns in
place of our illustrative use of a uniform relative risk aversion coefficient of 5
and state probabilities of 0.2.
The valuation measures are not risk-neutral measures, nor do they

necessarily represent the historical frequency with which states occur. Each
measure merely represents a plausible map from payoffs to values which an
individual might use to assess the desirability of an investment. For example, in
robustly approximating an arbitrage, an investor may wish to require that
expected values are positive for each of a set of possible regimes deemed
relevant from historical experience, without adopting a single measure that
further averages across these regimes.
An opportunity is acceptable when all three individuals view the benefits

from potential gains in a marginal position as outweighing the costs of
potential losses. Hence, for our individuals, a zero cost portfolio with payoff
vector x ¼ ½x1;x2;y;x5�0 satisfies this property if

x0BX 0: ð2Þ

Our hypothetical investors may also be concerned that losses not exceed 50
dollars in the extreme states o1 and o5: Letting e1 and e5 denote the first and
last columns of the 5� 5 identity matrix shown in Table 2, Panel B, we thus
add the further restrictions:

x0e1X � 50 and x0e5X � 50: ð3Þ

Any payoffs meeting conditions shown in Eqs. (2) and (3) are regarded as
acceptable, since benefits outweigh costs at the margin and losses are
controlled. This restriction leads to an augmented matrix B that is 5� 5 with
the vectors e1 and e2 being the additional two columns. The augmented 5� 5
matrix is shown in Table 3, Panel B. Acceptability requires that x0BX f where
f ¼ ð0; 0; 0;�50;�50Þ0:
We note that all non-negative cash flows xX0 are acceptable. Hence

arbitrage opportunities are always acceptable. However, there are acceptable
opportunities with possible losses, such as the payoff x ¼ ½�1; 2; 2; 2;�1�: On
the other hand, the payoff ½1;�2;�2;�2; 1� is not acceptable.
All acceptable opportunities should be executed in our economy, as all

individuals regard them as worthwhile. Once the prices of liquid assets have
responded to these trades, we anticipate that no acceptable opportunities will
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remain among the traded assets. This expectation means that if a portfolio has
zero cost, p0a ¼ 0; then it is not the case that it has a positive expected payoff
under some specific valuation measure, and a non-negative payoff under all
other valuation measures, such that

a0ABX 0; a0ABa0: ð4Þ

These are the only conditions that are necessary, since by scaling down the
position, one can also ensure that the conditions expressed in Eq. (3) are also
met.
Just as the absence of arbitrage implies that no zero cost portfolio has a

payoff in the positive orthant of the space generated by the 5 states, the absence
of acceptable opportunities implies that no zero cost portfolio has expected
payoffs in the positive orthant of the space generated by the three valuation
measures. In our context, the valuation operator for a portfolio is given by the
3� 3 matrix AB; and so classical results imply the existence of a non-negative
vector of weights w; such that

p ¼ ABw: ð5Þ

The vector q ¼ Bw is, by construction, a state price vector assembled from the
columns of B; which are the valuation test measures. Since this state price
vector is determined by averaging over the valuation test measures, we term it a
representative state pricing vector. When our results are specialized so that the
only excluded opportunities are arbitrages, then the matrix B becomes
the identity matrix. The vector w is then classically interpreted as yielding
the prices of the Arrow Debreu securities, which pay a dollar in a particular
state and zero otherwise. Under the stronger hypothesis of no acceptable
opportunities, the columns of B; shown in Table 3, Panel A, represent
valuation test measures. The vector w now yields the prices of securities with an
expected payoff of one under a particular test measure, and no expected payoff
otherwise. We note that the normalization of B is appropriately adjusted for by
the valuation prices w; for if we were to double the entries in B; then the prices
of the valuation measures in w would appropriately be halved. If the columns
of B are normalized to sum to unity, then the vector w includes time
discounting and represents spot prices of securities with unit expected payoffs
under a particular measure, and zero under others. However, if B is normalized
to sum to the price of a bond, then the entries of w sum to unity and represent
forward prices in period 1 for these securities.
Since the matrix AB is 3� 3 and invertible, we must also have that w is

uniquely given by

w ¼ ðABÞ�1p: ð6Þ

The invertibility of AB is not essential. In general for the uniqueness of w: We
present such a case for simplicity. All that is required is that AB have full
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column rank. More generally, we would then have w given by
ðB0A0ABÞ�1B0A0p:
For our sample economy, one may explicitly evaluate that the non-negative

weight vector is

w ¼ ½0:0085; 0:085; 0:0427�: ð7Þ

The representative state pricing function is given by Bw; which in our example
equals

q ¼ ½0:2861; 0:1796; 0:1366; 0:1338; 0:1731�: ð8Þ

We note that this representative state pricing function is negatively skewed, as
reflected by the relatively greater weight given to lower states relative to the
corresponding higher states. The U-shaped structure of the function follows
from the positive weighting received by the short stock position. The relatively
greater weighting of the long stock position accounts for the asymmetry.
The intuition behind our reformulation of the two fundamental theorems

arises from recognizing that the objects of choice are not dollars in particular
states, but rather the expected values under particular valuation measures. Just
as the absence of arbitrage forces all non-trivial zero cost portfolios to be
exposed to states in which payoffs are negative, so it is that the absence of
acceptable opportunities forces all non-trivial zero cost portfolios to be
exposed to a probability measure in which the expected gain is negative.
Furthermore, just as a complete market has the property that the hedging error
is zero in every state, so it is that our acceptably complete market has the
property that the hedging residual is just acceptable for every valuation
measure.
Acceptable completeness does differ from completeness, in that the residuals

are non-zero whenever a claim’s payoff is not in the span of the liquid assets.
Mirroring this property is the fact that our acceptably complete markets
renders uniqueness to only w; the market prices of the valuation test measures,
and not to the full set of state prices. Our uniqueness and completeness results
reside only in the reduced space of valuation test measures. Portfolios with the
same outcomes under the valuation test measures are regarded as equivalent,
and hence their difference vanishes in this space, even if it does not vanish in
the original state space. If the decision-maker is not indifferent between two
such portfolios, then additional measures should be introduced to differentiate
them. While acceptable completeness may be lost as a result, the ranges of
values consistent with no acceptable opportunities is still likely to be much
tighter than the range of values consistent with the weaker hypothesis that
excludes arbitrage opportunities.
It is clear from the example that the uniqueness of the representative state

pricing vector arises from the number of non-redundant assets weakly
exceeding the number of valuation test measures. What is at issue here are
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the dimensions of the matrix AB: The number of states is irrelevant. In fact,
one may have a continuum of states, and obtain the elements of the analog to
the product AB by integrating over this continuous state space. In the interests
of focusing on the main ideas, we restrict attention here primarily to the case of
a finite state model, but we will outline the extension to continuous states in
passing.

3. The economic model

We first discuss the two classes of measures central to defining acceptable
opportunities. The first class of measures collectively constitute a rational view
responsible for determining when marginal benefits exceed marginal costs.
It is useful to keep in mind the special case of no arbitrage, which arises when
the valuation measures place unit mass on one state and zero on all others.
We note that accepting an opportunity with a positive expected value under
one such measure is by itself neither rational nor particularly reasonable. But
when such a result is available for the entire collective of measures, then the
case for action is strong indeed. Analogously, it is the collective of the
valuation measures which makes the case for the rationality of the proposed
action.
To capture the notion of risk aversion to larger trades, this collective is

enhanced by adding in the second class of measures, called stress test measures.
These measures seek to limit expected losses for non-marginal trades. This
second class of measures are irrelevant for pricing, as is illustrated in our
example. The reason is that the constraints these measures impose can always
be avoided by scaling down the position, so long as the number of stress test
measures is finite. The role of these limits on expected losses will become
important in Section 7, when we consider the problem of determining
reservation prices for derivative securities whose payoffs cannot be perfectly
replicated. The size of the proposed position is then a critical determinant of
the level of the bid and ask prices derived.

3.1. Probability measures and floors

We initially consider the task of deciding whether to accept or reject a
derivative security at a given price and at a marginal scale. Such a decision is
strongly supported in the affirmative if, from a variety of perspectives, one
evaluates that the benefits outweigh the costs at the margin. One is essentially
inquiring into the size of the community of individuals who would approve the
deal in small quantities, and on a financed and hedged basis. In incomplete
markets, personal valuations will vary across market participants, reflecting the
risk aversion, probability beliefs, initial endowments, transactions costs, or

P. Carr et al. / Journal of Financial Economics 62 (2001) 131–167 145



other constraints of the individuals considering the trade. As a result, the
collection of valuation test measures could be chosen to vary broadly over the
relevant dimensions of preferences, beliefs, and endowments. As in our
example, endowments that are short to the market may evaluate potential
opportunities differently from those that are long. Similarly, delta-neutral
endowments that display long gamma properties will evaluate the opportunity
differently from those that display short gamma properties. If the evaluation is
positive from all of these perspectives, then the opportunity may be safely
executed at the margin. In aiming at robustness, one may combine these
elements across each other, as well as across the historical experience on these
entities. After defining the valuation test measures, one may consider whether
the size involved may be safely increased.
Size considerations introduce the second class of measures, which we term

stress test measures. The stress test measures may, by design, be concentrated
on situations in which one only has expected losses, and it is therefore
unreasonable to demand that these valuations be non-negative. Instead, the
concern shifts to limiting the size of potential losses. Thus, outcomes with
disastrous consequences in certain states can explicitly be avoided by placing a
negative lower bound on the expected gain. Given the focus on limiting
expected losses, these stress tests are specified in terms of probability measures,
reflecting conditional probabilities that are influenced by preferences and
endowments. For example, losses which arise in situations where one is
otherwise well covered are not as important as losses which arise when one
already has a considerable exposure. Alternatively, one may have a greater
concern for one of two equivalent loss outcomes, as a matter of personal
preference. For example, one may be more concerned about a loss which would
be borne in isolation, rather than an equally sized loss which is incurred by
many parties.
For the purpose of deciding whether to accept an opportunity, we assume

the existence of a set S; consisting of indexes for MX1 probability measures
that we refer to as test measures. Note that these measures correspond to the
columns of the B matrix, shown in Table 3, Panel B, in our example. However,
to invoke the idea of probability measures the measures in B have been
normalized to a unit column sum. As already noted, this transformation occurs
without loss of generality. With this convention, discounting to reflect time
value of money is not required for the measures. Thus, the prices we determine
via these measures are forward prices. Associated with each measure Pm; mAS;
is a real number, fm p 0; that we refer to as the associated floor which we will
use in defining acceptability. Measures paired with floors of zero are termed
valuation test measures, while measures paired with negative floors are termed
stress test measures. Let Sv denote the set of valuation test measures and let Ss

denotes the complementary set of stress test measures. We assume there is at
least one valuation test measure in Sv; so that no anti-arbitrage cash flows can
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become acceptable. We also let lpM � 1 be the number of stress test
measures in Ss:
It is important to require that the stress test measures evaluate outcomes

believed possible by some valuation test measure. Otherwise, one would accept
opportunities with no payoff in states supporting the valuation test measures
and which also generate acceptable losses under the stress test, even though
such opportunities have non-positive cash flows over all states. To prevent the
acceptability of such anti-arbitrage cash flows, we require that every state
believed possible by a stress test measure is also believed possible by some
valuation test measure. Thus, for m ¼ 1;y; l; let

Osm ¼ o1m;o2m;y; oKm

� �
ð9Þ

be the set of states charged with positive probability mass by the mth stress test
measure. Let Os ¼ ,l

m¼1O
s
m be the aggregate support of the stress test

measures. Similarly, for m ¼ 1;y; M � l; define Ovm as the set of states
charged with positive probability mass by the mth valuation test measure, and
let O ¼ ,M�l

m¼1O
v
m be the aggregate support of the valuation test measures. We

require that OsDO; and we let K be the total number of states in O:

3.2. Payoffs and traded assets

A payoff is a real-valued function defined on O that describes the state
contingent cash flows received. This payoff is said to be risky if it is not
constant on O: In our finite state economy, a generic payoff is denoted by a K
dimensional vector x: We denote the set of all possible payoffs by X :
We assume the economy has a riskfree bond, with payoff x0ðoÞ ¼ 1 and

initial price p0 > 0: The economy also has NX1 traded risky assets, indexed by
n ¼ 1;y; N; all of which payoff xnðoÞ at time t ¼ 1: Further, all market prices
pn are determined at time t ¼ 0: An opportunity is a payoff xAX which is being
offered to the decision-maker for zero-cost. To apply our results to potential
investments with non-zero initial cost, simply combine the investment with a
position having an offsetting initial cost, and adjust the payoffs accordingly.
Given the ability to borrow or lend, our focus on zero-cost opportunities is
without loss of generality, and is merely used to equate gains with payoffs in
time 1. The method of financing an investment can also include trading in other
risky assets, which would, in general, change the risk profile of the investment.
Thus, an opportunity is defined not only by the payoffs offered by the
derivative security in question, but also by the specific financing and hedging
mechanisms available through investing in the traded assets. The problem of
choosing a financing and hedging strategy is considered in greater detail in
Section 7.
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3.3. Defining acceptable opportunities

For an opportunity to be acceptable, it must have a non-negative expected
value under each valuation test measure. To limit the scale of the positions
taken in acceptable opportunities, we also require consistency with the limits
on expected losses imposed by the set of stress test measures.
We define an opportunity with payoff xAX as being acceptable if, for all

mAS X
oAO

PmðoÞxðoÞXfm; fm p 0: ð10Þ

Let A denote the set of acceptable opportunities. For an opportunity to be
acceptable, the expectation of the payoff ðxðoÞ;oAOÞ with respect to each set
of valuation test measures ðPmðoÞ;oAOÞ must exceed the associated value for
the floor fm: Equivalently, one may define acceptability by writing

EPm x½ � X fm for all mAS: ð11Þ

It is important to note that it is the universal domination of the associated
floors across all the test measures that gives an opportunity its acceptability. It
is the collective that defines acceptability, and not the measures taken
individually, no matter how reasonable or unreasonable they may be when
considered on an individual basis. We observe that all classical arbitrages meet
these requirements for acceptability.

3.3.1. Further discussion of acceptable opportunities
The set of acceptable opportunitiesA; is a convex set and hence, a blend of

two acceptable opportunities is itself acceptable. Acceptable opportunities also
contain the set of all non-negative payoffs. This feature is built into the
definition by formulating acceptable opportunities as a generalization of
arbitrage opportunities.
Our notion of an acceptable opportunity is inspired by earlier work on

measuring risk by Artzner et al. (1998). In their paper, these authors develop
four criteria that every risk measure should satisfy. The four criteria are sub-
additivity, positive homogeneity, monotonicity, and a risk-free condition.
Measures meeting these criteria are termed coherent. In a significant advance,
they characterize all coherent risk measures as the maximum expected loss
evaluated under a convex set of probability measures, termed generalized
scenario measures and these authors further go on to define acceptable
positions as those for which this maximum expected loss is non-positive, or
stated another way, for which the minimum expected worth is non-negative.
Our definition of an acceptable opportunity reflects this structure and adds one
consideration as well. Under the coherency axioms, the set of acceptable
opportunities is a cone. Our imposition of limits on expected losses through the
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stress test measures reduces this cone to a convex set. If the acceptable
opportunity is not also an arbitrage opportunity, then the imposition of stress
test measures limits the ability to scale the opportunity upwards and retain
acceptability. However, arbitrage opportunities retain their acceptability as
they are scaled upwards without limit. We note that in a later work Artzner
et al. (1999) also extend their definition of acceptability by introducing
constants, that we term floors, associated with their scenario measures to form
general convex sets of acceptable opportunities. In their context, however,
these constants may be positive.
We further comment on the relationship between our acceptable opportunity

set and preference orderings in general. If the origin is identified with an
individual’s current position, then the set of opportunities preferred to the
status-quo by an investor with increasing concave utility is a convex set
containing the positive orthant. These are the investor’s ‘‘better than status-
quo’’ sets. The intersection of several such ‘‘better than status-quo’’ sets for a
number of investors is again such a convex set. Our acceptable opportunities
may be regarded as an approximation of the convex set arising from requiring
unanimity across several investors in preferring opportunities over the status-
quo.
In general, acceptable opportunities do allow arbitrarily large losses in some

states, provided they are compensated for by sufficiently large profits in others.
However, the use of stress test measures does allow one to limit losses in
particular states. For example, one may place a lower bound for a measure Pm
such that PmðoÞ ¼ 1 for a particular o; while it is zero for all other o0s:
By removing the stress test conditions, one obtains a cone containing our

acceptable opportunitiesA: Fig. 1 shows the geometry when there are just two
states. The horizontal axis is measured in State 1 dollars ($1), while the vertical
axis is measured in State 2 dollars ($2). The cone is the set between the outer
two arrows, while the convex set it contains is formed by adding two more
constraints. One of these constraints prevents very negative losses in State 1.
The convex set contains the positive orthant and excludes the negative orthant.
The perimeter of the convex set plays the same role as an indifference curve, in
that opportunities strictly inside the convex set are preferred to those outside
the set. However, we do not require that preferences be specified over all levels
of all goods. In particular, we do not rank two opportunities inside the convex
set of acceptable opportunities. In this regard, our analysis is consistent with
arbitrage pricing theory, which does not rank arbitrages.
We note from Eq. (10) that if an opportunity x is acceptable, then there is no

guarantee that the opportunity lx is also acceptable for l sufficiently greater
than one.2 Conversely, we note that if an opportunity in the cone is not

2To ensure that opportunities are never scaled up arbitrarily high, floors must be imposed on

states like the one imposed on State 1 in Fig. 1.
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acceptable because a floor constraint is violated, then it will be rendered
acceptable by scaling the position downwards, since for a sufficiently small l

EPm lx½ � X fm; all mAS: ð12Þ

Critical to this conclusion is the finiteness of the set of stress test measures.
The next section investigates the implications for derivatives pricing when

the traded assets are priced so that there are no acceptable opportunities
among them.

4. The first fundamental theorem

By definition, acceptable opportunities are widely viewed as sufficiently
meritorious so as to be undertaken at the margin by many market participants.
Hence, just as arbitrage opportunities vanish quickly, one would expect that
these more general opportunities will also disappear in efficient economies. In
this section, we investigate the implications for asset pricing when economies
satisfy the condition of no acceptable opportunities, thereby generalizing the
corresponding result regarding the implications of no arbitrage.

Fig. 1. Graph of acceptable opportunity set created by two valuation measures defining a cone

containing the positive orthant and two further stress test measures reducing the acceptable

opportunity set to a convex set still containing the positive orthant.
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We first note that, if there are no acceptable opportunities, then there are
also no arbitrage opportunities. Hence, the classical result of Harrison and
Kreps (1979) implies that a state pricing function exists:

Definition 1. A state pricing function is a strictly positive vector q of dimension
K satisfying

pn ¼ p0
X
oAO

qðoÞxnðoÞ; n ¼ 0; 1;y; N: ð13Þ

State pricing functions determine asset prices pn as the present value given by
discounting the forward market price by p0: The forward market price is
obtained as the value of an equivalent portfolio that holds xnðoÞ units of the
Arrow Debreu security indexed by o; that pays a dollar in state o and zero
elsewhere. The forward market price of the Arrow Debreu security with index
o is qðoÞ: In incomplete markets, this state pricing function is not unique, and
many authors have proposed a variety of methods for choosing an economic-
ally relevant state pricing function. We will show that the absence of acceptable
opportunities provides us with additional structural restrictions on the state
pricing function, which are contained in the following definition:

Definition 2. A state pricing function q is a representative state pricing function
(RSPF) if there exists a set of strictly positive weights wm;mASv such that

qðoÞ ¼
X
mASv

wmPmðoÞ for all oAO: ð14Þ

The RSPF determines forward Arrow Debreu prices qðoÞ in the cone
generated by the valuation test measures, PmðoÞ; using the forward prices of
valuation test measures wm for the formation of the linear combination. If it
exists, an RSPF derives its name from the observation that every valuation test
measure with positive mass on a given state contributes to the price assigned to
that state. Obversely, we note that stress test measures do not contribute to the
price. This outcome is natural, as prices apply only to marginal units of trade
and, as noted earlier, such trades never violate stress test limits.
The necessity of positive weighting for only the valuation test measures may

be further appreciated on noting that re-arranging Eq. (13) implies:X
oAO

qðoÞxnðoÞ �
pn
p0

¼ 0; n ¼ 0; 1;y; N: ð15Þ

Thus, by the very definition of a state pricing function, the risk-neutral
expected payoff from any zero cost portfolio of the liquid assets just meets a
floor of zero. Placing a positive weight on a stress test measure would be
inconsistent with this property, as such measures by design meet negative floor
values.
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The formulation of the condition of the absence of acceptable opportunities
proceeds in analogy with that of the absence of arbitrage opportunities. Just as
the latter recognizes that the creation of a zero payoff at zero cost is not an
arbitrage, we need to define a strictly acceptable opportunity.

Definition 3. An acceptable opportunity xAA is strictly acceptable if in
addition for some mASvX

oAO

PmðoÞxðoÞ > 0: ð16Þ

Let Aþ denote the set of strictly acceptable opportunities.
For strict acceptability, we only require that the acceptable opportunity have

a strictly positive valuation under some valuation test measure. In other words,
an opportunity is strictly acceptable if and only if it is acceptable and some
valuation test measure assigns it a positive value. Our interest is then in the
asset pricing implications for economies that meet the condition of eliminating
all strictly acceptable opportunities.

Condition 1. The economy satisfies the condition of no strictly acceptable
opportunities (NSAO), if there is no portfolio of the traded assets holding an
units of asset n such that

ðiÞ
PN
n¼0

anpn ¼ 0;

ðiiÞ
PN
n¼0

anxnAAþ:

ð17Þ

Under this condition, the liquid assets are priced so that no zero-cost
portfolio exists that is strictly acceptable. Note that when strictly acceptable
opportunities have payoffs restricted to the positive orthant, then the condition
of No Acceptable Opportunities reduces to the classical condition of No
Arbitrage Opportunities.

4.1. Equivalence of existence of RSPF and NSAO

This subsection demonstrates and discusses the implications of the following
fundamental theorem:

Theorem 1. The economy has no strictly acceptable opportunities (NSAO) if and
only if there exists a representative state price density (RSPF)

The proof of the theorem is contained in Appendix A. Theorem 1 tells us
that when the liquid assets are priced so that there are no strictly acceptable
opportunities among them, then one can take a convex combination of the
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valuation test measures to be a state pricing function. Thus, the NSAO
restriction reduces the problem of identifying a state pricing function down to
that of identifying the strictly positive set of forward prices for the valuation
test measures wm;mASv that define the representative state pricing function.
We note in this regard that Artzner et al. (1998) argue in their Condition 4.3
that it would be desirable if some convex combination of their scenario
measures was a pricing measure. Theorem 1 shows that this property is implied
by our NSAO condition.
If the fair value of a derivative security is assessed using all of the different

permitted weight assignments, then in general a range of fair values will result.
In general, this range will be narrower than the one generated by requiring no
arbitrage as the relevant state price densities are now restricted to being
representative. If the market price for buying the derivative is below the
smallest fair value, then the derivative should be purchased. Furthermore, a
hedging strategy should be undertaken so that the hedged derivative position is
strictly acceptable. Conversely, if the market price for selling the derivative is
above the largest fair value, a sale and a hedge should ensue. In either case, the
investor should also investigate both whether the scale of the transaction can
be increased, and if the opportunity remains acceptable at the new price and in
the new scale.
When the number of liquid assets equals or exceeds the number of valuation

test measures in Sv; then the representative state pricing function can,
potentially, be uniquely identified. The NSAO condition therefore offers a
significant advance in solving the problem of choosing a state pricing function
in incomplete markets. Recall that under the weaker no arbitrage condition,
the number of non-redundant assets must equal the number of states for
unique identification of the state pricing function. The next section derives the
implications of uniqueness of the RSPF. Before proceeding on to this issue, the
next subsection comments briefly on the extension of Theorem 1 to the
important case of a one-period model with a continuous state space.

4.1.1. Continuous state extension
For simplicity, we have restricted attention so far to finite state spaces.

However, as the example of Section 2 indicates, the states are being integrated
out, and thus Theorem 1 easily generalizes to infinite state spaces for the one-
period model with finitely many assets and valuation test measures. We sketch
an outline of the proof in this subsection. First, we fix a reference probability
measure R with respect to which all of the valuation test measures are
presumed absolutely continuous on some infinite state space. Let this
probability space be ðO;J;RÞ: Let the set of valuation measures be given by
J measurable R integrable densities qmðoÞ for mASv; and suppose that all
assets have payoffs xnðoÞ that are J measurable random variables integrable
with respect to all of the valuation test measures. We may then define the
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matrix C of asset valuation test measure outcomes by

Cnm ¼
Z
xnðoÞqmðoÞRðdoÞ ð18Þ

and the NSAO condition would state that a0p ¼ 0 implies that it is not the case
that a0CX 0 and a0Ca0: Classical results allow us to deduce that

p ¼ Cw ð19Þ

for some positive vector w; or equivalently that

pn ¼
Z
xnðoÞqðoÞRðdoÞ; ð20Þ

where qðoÞ ¼
X
m

wmqmðoÞ: ð21Þ

The converse also holds for if an RSPF exists, then we have a strictly positive
solution to p ¼ Cw: Hence it is not possible that a0p ¼ 0; a0CX 0; and a0Ca0;
so NSAO fails.
The extension to infinite asset spaces or to dynamic trading in finitely many

assets is more involved, and we leave these matters to future research.

5. The second fundamental theorem

The second fundamental theorem of asset pricing, which is due to Harrison
and Kreps (1979), shows that completeness is equivalent to the uniqueness of
the state pricing function, which exists under the no arbitrage condition as a
consequence of their first fundamental theorem. In a complete market with no
arbitrage opportunities, the residual risk after hedging is zero. Acceptable
opportunities are designed to allow investors to undertake opportunities which
result in a non-zero residual after hedging. This idea suggests a modification of
the idea of completeness that we shall term acceptable completeness. We have
already seen that a representative state pricing function exists whenever there
are no strictly acceptable opportunities. The question then arises as to whether
the uniqueness of a representative state pricing function is associated with some
modified concept of market completeness. This section derives an affirmative
answer to this question. We begin by defining acceptable completeness.

5.1. Acceptable completeness

With the concept of an acceptable opportunity well-defined, a liability can
reasonably be regarded as hedged if the residual is regarded as acceptable. By
definition, the expected payoff of the hedged and financed investment is then at
or above the floor associated with each test measure. In an economy with a
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sufficiently rich array of assets, it may be possible that the floor on the expected
payoff from the hedged opportunity is just reached for all test measures. An
acceptably complete market is defined to have exactly this property:

Definition 4. The market is acceptably complete if for all xAX ; there exists a
hedge portfolio an; n ¼ 0;y; N such that for all mAS

X
oAO

PmðoÞ �xðoÞ þ
XN
n¼0

anxnðoÞ

" #
¼ fm: ð22Þ

In acceptably complete markets, liabilities may be hedged by strategies that
make the hedging residual just acceptable. The residual will typically be non-
zero, but it will just meet the requirements to be acceptable.
We view x as a liability that has been issued and has been hedged with

positions in the traded assets given by an: An economy which is acceptably
complete has a sufficient number of assets relative to the number of test
measures, so that the hedged investment is just acceptable for each test
measure. The hedging error being zero in classically complete markets is
weakened to the requirement that the excess of the expected payoff over the
floor be zero for each test probability.
When concerned with the hedging of claims at the margin in the sense of the

size of ones position the definition of acceptability may be restricted to just the
valuation measures with the zero floors. Such a reduced acceptable
completeness is of course easier to attain than having acceptable completeness
with respect to all measures including the stress test measures. The wider
acceptability is relevant for hedging positions in size. The arguments for
equivalence of the reduced acceptable completeness to the uniqueness of a
representative state pricing function, that is in the span of the valuation
measures, are identical to those for the equivalence of the expanded acceptable
completeness to the uniqueness of a state pricing function in the larger space
spanned by all the measures including the stress test measures. The existence by
the first fundamental theorem of a representative state pricing function in the
smaller space spanned by the valuation measures coupled with the uniqueness
in the larger space spanned by all the measures also yields uniqueness in the
smaller space of the valuation measure span. In some practical circumstances it
may well be the case that one only has the reduced form of acceptable
completeness and this condition is sufficient for trading at the margin. In the
interests of some generality we study the concept in the expanded form.

5.2. Uniqueness of the representative state pricing function

This subsection defines what is meant by uniqueness of the representative
state pricing function.
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Definition 5. The representative state pricing function is unique in the wide
sense if there exists at most one set of positive weights wm; mAS such that

qðoÞ ¼
X
mAS

wmPmðoÞ ð23Þ

is a state pricing function.

The choice of a state pricing function is a crucial component of risk
management as it is necessary for assessing profitability and evaluating
exposures. In an incomplete market, the many choices for the state pricing
function can lead to radically different derivative security prices. As noted in
the introduction, this has led many authors to propose a variety of criteria for
selecting a state pricing function from among the class of solutions.

5.3. Equivalence of acceptable completeness and uniqueness of RSPF

This subsection establishes the equivalence of acceptable completeness and
the uniqueness of an RSPF, assuming that the asset space is richer than the
space of test measures. Specifically what is needed is that the asset space span
the space of test results. What we do not want is the situation of over-testing,
which occurs for example, if the asset space has 3 dimensions and is tested
using 10 measures. In such a case the space of achievable test results is at most
a three dimensional subspace of the space of test results. In this case acceptable
completeness is not sufficient to derive uniqueness of the representative state
pricing function. For most practical situations, we expect the asset space to be
much richer and capable of generating all possible test results. We term this
condition under testing the asset space.

Condition 2. The tests measures satisfy the condition of under testing (UT), if
for any set of potential test results c ¼ ðcm;mASÞ; there exist a cash flow x such
that

x0B ¼ c: ð24Þ

Condition 2 leads us to the statement of Theorem 2, as follows.

Theorem 2. Under UT, markets are acceptably complete if and only if the
representative state pricing function is unique in the wide sense.

The proof of Theorem 2 can be found in Appendix B. For a price-taker
contemplating whether or not to accept a derivative security, the existence of a
unique representative state price vector means that the derivative’s fair price
can be determined and compared to the market price. If the market price paid
for entering a long position is below the fair price, then the derivative should be
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accepted and a hedging strategy enacted so that the resultant opportunity is
strictly acceptable. Conversely, if the market price received for entering a short
position is above this fair price, then the short position should be accepted and
a hedging strategy should again be enacted, so as to lock in the strictly
acceptable opportunity.

5.3.1. Continuous state space considerations
For the case of the single-period model with a continuous state space, the

UT condition is much easier to satisfy. This model only requires that, for all
test results c ¼ ðc1;y; cMÞ; there exists an J measurable random variable such
that Z

xðoÞqmðoÞRðdoÞ ¼ cm: ð25Þ

Uniqueness of an RSPF is equivalent to the null space of C being f0g; where C
is the asset valuation test measure outcome matrix defined in Eq. (18).
Acceptable completeness is equivalent to the existence of a such that

a0C ¼ cþ f 0;

where c is defined by (25) and x is the claim to be hedged. Under UT,
acceptable completeness is equivalent to the the range of C0 being RM : This
requirement in turn, is equivalent from linear algebra to the null space of C
being f0g; or equivalently to the uniqueness of the RSPF.

6. Example in a single-period lognormal economy

This section applies our pricing theory to a single-period continuous state
economy with lognormal valuation test measures. Thus, consider an economy
open for trading only at date t ¼ 0 and at date t ¼ T : The economy consists of
a non-dividend paying stock with stock price realizations at time T on the
positive half-line, and a bond paying one unit at time T : The current prices of
these two assets are S0 for the stock and e

�rT for the bond. For simplicity, we
have just two valuation test measures. These measures are given by a
lognormal distribution for the stock with a mean continuously compounded
rate of return of mdor and volatility sd > 0; and another lognormal
distribution for the stock with a continuous compounded mean rate of return
mu > r and volatility su > sd : These measures are consistent with two prior
lognormal distributions for the stock price with means zu; zd and volatilities
su; sd ; respectively. Suppose further that the two perspectives are those of two
individuals. The first investor evaluates wealth in dollars, while the other uses
the stock as the numeraire asset and measures wealth in the number of shares.
With coefficients of relative risk aversion of gu; gd ; respectively, one may

P. Carr et al. / Journal of Financial Economics 62 (2001) 131–167 157



determine the valuation measures as described in Brennan (1979) or Rubinstein
(1976) to get mu ¼ zu � gus

2
u; while md ¼ zd � gds

2
d : For further simplicity, we

have no stress test measures in this example.
This economy is grossly incomplete, as there are only two assets and an

infinite number of terminal states. Suppose that an investor wishes to value a
European call of maturity T written on the stock. The matrix of asset valuation
test measure outcomes C in this case is given by taking the appropriate
expectations:

C ¼
S0e

ðmu�rÞT S0e
ðmd�rÞT

e�rT e�rT

 !
:

For any zero cost trading strategy a ¼ ða0; a1Þ; we must have

a0S0 þ a1e�rT ¼ 0

or

a1 ¼ �a0S0erT :

Hence, we have that

a0C ¼ a0S0½ðeðmu�rÞT � 1Þ; ðeðmd�rÞT � 1Þ�:

Since mu > r > md ; no strictly acceptable opportunities exist. By the continuous
state extension of Theorem 1, discussed in Section 4.1.1, the representative
state pricing density exists, and has the form

qðS;TÞ ¼wd
expf�ð1=2s2dTÞ lnðS=S0Þ � ðmd � s2d=2ÞT


 �2gffiffiffiffiffiffiffiffiffi
2pT

p
sdS

þ wu
expf�ð1=2s2uTÞ lnðS=S0Þ � ðmu � s2u=2ÞT


 �2gffiffiffiffiffiffiffiffiffi
2pT

p
suS

; ð26Þ

where wd and wu are both positive.
Since the number of assets equals the number of valuation measures in this

economy, the representative state pricing density could potentially be uniquely
determined. It is simple to see that UT holds. Furthermore, as C is invertible,
we have uniqueness of the RSPF. To determine it, one deduces from the fact
that bonds are correctly priced that wu and wd sum to one. To simplify
notation, let wu ¼ w and wd ¼ 1� w: The condition that the stock be priced by
the density expressed in Eq. (26) leads to the solution for w of

w ¼
erT � emdT

emuT � emdT
: ð27Þ

European calls are then uniquely priced in this economy by

CðKÞ ¼ w BSu þ ð1� wÞBSd ; ð28Þ
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where

BSu � BSðS0;K ; r; r� mu;su;TÞ; BSd � BSðS0;K ; r; r� md ;sd ;TÞ: ð29Þ

In Eq. (29) BS represents the Black-Scholes formula for a spot price of S0; a
strike of K ; an interest rate of r; a dividend yield of r� m; a volatility of s; and
an expiration of T : Thus, the acceptability-free price of the call is obtained by
averaging the Black-Scholes value in a high expected growth rate, high
volatility environment with the Black-Scholes value in a low expected growth
rate, low volatility environment. This pricing model has 4 free parameters,
namely mu;md ;su; and sd :
To calculate the number of shares held, a; and the amount invested in the

riskless asset, b; we require that the hedged and financed portfolio be just
acceptable as defined by Eq. (22) of Theorem 2. These conditions yield one
solution:

a ¼
BSu � BSd

S0ðe mu�rð ÞT � e md�rð ÞT Þ
and b ¼

�e md�rð ÞTBSu þ e mu�rð ÞTBSd
e mu�rð ÞT � e md�rð ÞT

: ð30Þ

It is interesting to observe that the hedge position in stock is a proper delta type
calculation, except that the changes in the stock price and the call price result
from changes in expected value across measures rather than across states. If we
set su ¼ sd ¼ 0; then the number of states reduces to two and both valuation
measures degenerate into indicator functions. The representative state pricing
function given by Eq. (27) turns into the state pricing function implied by the
absence of arbitrage in the single-period binomial model, with the upward
jump u � emuT and the downward jump d � emdT : Similarly, the call value in
Eq. (28) and the hedges in Eq. (30) turn into those obtained by excluding
arbitrage in the single-period binomial model.

7. Pricing derivative securities

The focus thus far has been on deciding whether to accept or reject a
proposed opportunity at a given market price and the associated implications
of market efficiency. We now address the question of how this market price
might be determined. We assume that market prices are being determined by a
competitive set of market-makers, who must set the bid price and the ask price
at each scale of the investment. These prices represent the demand schedule and
the supply schedule, respectively. The decision to accept or reject the
investment is then reserved for the potential clientele attracted to the
market-makers. This section examines the implications of our framework for
a market-maker who must determine a pricing schedule and a hedging strategy
for a derivative security.
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7.1. Definition of bid and ask

Whether or not markets are acceptably complete, a market-maker can
usually charge enough for issuing a liability so that the hedged liability is
acceptable. This result is merely the consequence of a finite set of test measures,
even if the state space is infinite. In a competitive market, it is useful for a
market-maker to know the minimum amount which can be charged to be
consistent with acceptability. If the market-maker sets his ask price to this
reservation price, then the market-maker can be assured that all liabilities
issued can be hedged so that the residual is acceptable. Thus, although the
market maker does not directly accept or reject the opportunity, all
opportunities taken up by the market-maker are nonetheless accepted by him.
Consider some derivative security with non-negative payoff vector xX0 at

some fixed scale. The competitive market-maker wishes to find the lowest
amount which must be charged for selling the derivative, so that the hedged
liability is acceptable. The problem of determining the asking price for this
derivative can be formulated as the following linear program:

min
a

a0p subject to� x0Bþ a0ABX f 0; ð31Þ

where all quantities are defined in the proof to Theorem 1 (see Appendix A). If
a solution a* exists to this problem, then the ask price aðxÞ ¼ a* 0p: The
objective in this linear program, shown in Eq. (31) is to minimize the cost of
setting up a hedge portfolio of riskless and risky assets. The constraint in this
linear program is that the hedged liability is acceptable. Equivalent
formulations for continuous state spaces require working directly with the
matrix of asset valuation test measure outcomes, C; as defined by Eq. (18) and
replacing x0B by the vector c as given by Eq. (25).
One can also find the bid price for buying a derivative security. Here the

market-maker must find the largest amount of cash which can be generated
immediately by issuing liabilities, so that the payoff from the offset derivative
asset is still acceptable. The problem of determining the bid price for a
derivative can be formulated as the following linear program:

max
a

a0p subject to x0B� a0ABX f 0: ð32Þ

If a solution a* exists to this problem, then the bid bðxÞ ¼ a* 0p: The objective
in this linear program is to maximize the cash received from issuing liabilities
which potentially includes riskfree borrowing. The constraint in this linear
program is that the portfolio of the derivative and these liabilities is acceptable.

7.2. Properties of the bid–ask spread

Let sðxÞ � aðxÞ � bðxÞ be the bid–ask spread for a derivative security with
non-negative payoff x: We first prove the following sensible result:
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Theorem 3. The bid–ask spread is non-negative:

sðxÞX0:

The proof of Theorem 3 is contained in Appendix C. If a derivative security
is valued using an RSPF, then the resulting value will lie between the bid and
the ask. The reason for this condition is that the dual solution Eq. (C.1) from
Appendix C, to the ask problem makes it clear that the ask is determined by
maximizing over RSPFs. Similarly, the dual solution from Eq. (C.2) of
Appendix C, to the bid problem shows that the bid is being determined by
minimizing over RSPFs. By setting his bid–ask spread in the manner indicated
in the proof of Theorem 3, the market-maker is ensuring that any transactions
he is forced into are acceptable.
In an acceptably complete market, Theorem 2 implies there is only one

RSPF and thus the bid and the ask are equal. In an acceptably complete
market with no strictly acceptable opportunities among the liquid assets, the
requirement that derivatives be priced so that no strictly acceptable
opportunities are introduced induces a unique price. The hedging strategy is
also identified and amounts to ensuring that the hedged position is just
acceptable.
When markets are not acceptably complete, a derivative security may still

have the property that the hedged investment is just acceptable. The following
theorem shows that in this case, the spread is still zero.

Theorem 4. For a given opportunity x; if there exists a vector a such that

ð�x0 þ a0AÞB ¼ f 0; ð33Þ

then sðxÞ ¼ 0:

The proof of Theorem 4 is contained in Appendix D. When markets are not
acceptably complete and the derivative security cannot be hedged so as to be
just acceptable, then the bid must be below the ask for the derivative security to
be acceptable. In this case, a market-maker may find that his spread is too
wide. The following theorem shows that the bid–ask spread decreases if the
scale is decreased and the market-maker could consider reducing the scale of
the trade.

Theorem 5. The bid–ask spread is an increasing function of the scale

sðlxÞp sðxÞ for lAð0; 1Þ:

The proof to Theorem 5, contained in Appendix E, shows that the role of the
stress test measures is to cause the bid–ask spread to widen as the scale
increases. We are thus able to generate imperfect liquidity in derivatives as a
consequence of our theory.

P. Carr et al. / Journal of Financial Economics 62 (2001) 131–167 161



8. Summary and conclusions

We considered the problem of pricing and hedging in incomplete
markets by expanding the role played by arbitrage opportunities to acceptable
opportunities. An acceptable opportunity was defined to be a zero
cost investment, whose expected payoff under each test measure
weakly exceeds a non-positive floor associated with that measure.
We further defined a representative state pricing function as a strict
convex combination of the zero floor test measures. We demonstrate
that there exists a representative state pricing function if and only
if the economy has no strictly acceptable opportunities. The weights attached
to the valuation test measures in defining the representative state pricing
function are interpretable as forward prices of portfolios delivering unit
expected payoff under one test measure and zero expected payoff under all
others.
The concept of hedging is reformulated to one of attaining acceptable

residual risks. Markets are defined to be acceptably complete if all claims
can be hedged in such a way that the floor on expected payoffs is just met under
each test measure in the scenario set. We show that markets are acceptably
complete if and only if the representative state pricing function is unique. When
markets are acceptably complete, prices and hedges are uniquely determined.
When markets are not acceptably complete, a bid–ask spread for derivatives
can still be determined.
Future research in this area would involve extending our results to

multiple periods and to continuous time. Research should also go into
methodologies for determining the set of test measures and associated
floors. It is worth noting that the primitive setting for this unified
view on pricing and hedging in classically incomplete markets is the ue that
notions similar to acceptable opportunities are fundamental to the operation of
financial markets and an inherent part of the formulation of any financial
markets model. We therefore encourage further research on the use of this
approach in financial decision-making, and on its resulting welfare and social
policy implications.

Appendix A

Theorem 1. The economy has no strictly acceptable opportunities (NSAO) if and
only if there exists a representative state price density (RSPF).

Proof of Theorem 1. Let A be the ðN þ 1Þ by K matrix of payoffs to the N þ 1
traded assets indexed n ¼ 0;y; N in each of the K states indexed by the set O:
Let B be the K byM matrix with columns Bm given by theM probability mass

P. Carr et al. / Journal of Financial Economics 62 (2001) 131–167162



functions for mAS: Let f p 0 be the M dimensional vector of floors on
expected payoffs with fm ¼ 0 for mASv and fmo0 for mASs: Let p denote the
N þ 1 dimensional vector of initial asset prices. Under NSAO there does not
exist an N þ 1 dimensional vector a such that a0p ¼ 0 and a0ABXf 0; and
a0ABm > 0 for some mASv: The existence of an RSPF asserts the existence of
an M dimensional vector wX0; with wm > 0 for mASv and wm ¼ 0 for mASs

such that p ¼ ABw: Furthermore, by the construction of the vectors f and w;
we have f 0w ¼ 0:
Suppose that we have an RSPF given by the weights w: It then follows that if

a0p ¼ 0 then a0ABw ¼ 0: Now suppose NSAO fails and a0A is strictly
acceptable. We must then have that a0ABm0 > 0 for some m0ASv; while
a0ABmX0 for all mASv: This contradicts a0ABw ¼ 0 on noting that wm ¼ 0 for
mASs:
For the converse, suppose now that NSAO holds. Let L ¼ a0Aja0p ¼ 0f g be

the linear space of payoffs resulting from zero cost portfolios. Under NSAO, L
does not intersect the convex setAþ: Define the matrix Bv as the submatrix of
B that contains only the columns Bm for mASv: Let C1 � a0ABvja0p ¼ 0f g be
the expected payoffs from zero cost portfolios generated by the valuation
measures. Furthermore, let k ¼M � l be the column dimension of Bv and let
C2 � yjyX 0; 10ky ¼ 1

� �
denote the unit simplex of k dimensional space.

Under NSAO, the convex sets C1 and C2 do not intersect. It follows from the
separating hyperplane theorem (see for example Duffie, 1992) that there exists
a k dimensional vector wvb0 such that p ¼ ABvwv: Thus, the representative
state pricing function exists and is given by Bvwv or Bw defining w to be zero
for the columns corresponding to the stress test measures. &

Appendix B

Theorem 2. Under UT, markets are acceptably complete if and only if the
representative state pricing function is unique in the wide sense.

Proof of Theorem 2. The representative state pricing function is unique in the
wide sense if and only if there is at most one solution in w to the equation
defining the representative state pricing function, i.e.

p ¼ ABw:

This setting is equivalent to the matrix AB introduced having a null space equal
to f0g: Results of linear algebra imply that this property holds if and only if the
range of transpose, B0A0 is all of RM : Now markets are acceptably complete if
for all x; there exists an N þ 1 dimensional vector a such that

a0AB ¼ x0Bþ f 0:
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Since under UT, the range of B0 is RM ; it follows that under acceptable
completeness the range of B0A0 is all of RM : Hence, markets are acceptably
complete if and only if the RSPF is unique in the wide sense. &

Appendix C

Theorem 3. The bid–ask spread is non-negative:

sðxÞX0:

Proof of Theorem 3. The dual to the ask problem (31) is

max
w

x0Bwþ f 0w subject to ABw ¼ p and wX0: ðC:1Þ

The maximand in this dual is reduced if we impose the constraint that f 0w ¼ 0:

max
w

x0Bwþ f 0w ¼ 0 subject to ABw ¼ p and wX0 and f 0w ¼ 0:

The maximand is further reduced if we minimize instead:

min
w

x0Bwþ f 0w subject to ABw ¼ p and wX0 and f 0w ¼ 0:

Since f 0w ¼ 0; the objective is unchanged if f 0w is subtracted rather than added:

min
w

x0Bw� f 0w subject to ABw ¼ p and wX 0 and f 0w ¼ 0:

Finally, the minimand is decreased if the constraint f 0w ¼ 0 is removed:

min
w

x0Bw� f 0w subject to ABw ¼ p and wX 0: ðC:2Þ

This problem is the dual solution to the bid problem of Eq. (32). &

Appendix D

Theorem 4. For a given opportunity x; if there exists a vector a such that

ð�x0 þ a0AÞB ¼ f 0;

then sðxÞ ¼ 0:

Proof of Theorem 4. Let aa solve Eq. (33). Since the ask linear program
describing the ask problem, shown in Eq. (31) is a minimization

aapX aðxÞ: ðD:1Þ
As aa solves Eq. (33) and f 0 p 0; aa also solves the constraints of the linear
program establishing the bid problem in (32). Since Eq. (32) is a maximization

aapp bðxÞ: ðD:2Þ
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The inequalities in Eqs. (D.1) and (D.2) imply

bðxÞXaðxÞ

or equivalently, sðxÞp 0: Combining this result with Theorem 3 gives the
desired result. &

Appendix E

Theorem 5. The bid–ask spread is an increasing function of the scale

sðlxÞp sðxÞ for lAð0; 1Þ:

Proof of Theorem 5. Let aal solve the following ask linear program for lx:

min
a

a0p subject to� lx0Bþ a0ABX f 0 ðE:1Þ

and let a* ðlxÞ � aa
0

l p=l be the asking price per unit of x when the scale is l:
Now aa1 solves the LP in Eq. (31) and consequently satisfies the constraint

aa
0

1 ABX x0Bþ f 0:

Multiplying by lAð0; 1Þ implies that

laa
0

1 ABX lx0Bþ lf 0 X lx0Bþ f 0;

since f p 0: Thus laa1 solves the constraints in Eq. (E.1) and so laa
0

1 p � la* ðxÞ
is greater than the minimand of Eq. (E.1):

aa
0

l pp la* ðxÞ:

Dividing by l implies

a* ðlxÞpa* ðxÞ

so that the asking price per unit of x increases with the scale l:
Similarly, let abl solve the following bid LP for lx:

min
a

a0p subject to lx0B� a0ABXf 0 ðE:2Þ

and let b* ðlxÞ � ab
0

l p=l be the bid per unit of x when the scale of the
transaction is l: Now ab1 solves the LP in Eq. (32) and consequently satisfies the
constraint

ab
0

1 ABp x0B� f 0:

Multiplying by lAð0; 1Þ implies that

lab
0

1 ABp lx0B� lf 0 p lx0B� f 0;
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since f p 0: Thus lab1 solves the constraints in Eq. (E.2) and so lab
0

1 � lb* ðxÞ is
less than the maximand of Eq. (E.2):

ab
0

l pX lb* ðxÞ:

Dividing by l implies

b* ðlxÞXb* ðxÞ

so that the bid for one unit of x decreases as the scale l increases.
As lk0; we know that the dual shown in Eq. (C.1) of Appendix C to the ask

LP reduces to the dual solution without the affine constraints

max
wX0

x0Bw subject to ABw ¼ p; ðE:3Þ

while the dual solution shown in Eq. (C.2) of Appendix C to the bid LP
similarly reduces to

min
wX0

x0Bw subject to ABw ¼ p: ðE:4Þ

The solution to the ask dual of Eq. (E.3) is the total asking price for l units,
while the solution to the bid dual of Eq. (E.4) is the total bid price for l units.
The solution to the maximization is clearly greater than the solution to the
minimization and both solutions scale proportionally with x: Thus, the ask and
bid per unit of x is constant with respect to scale for small l: Once l becomes
sufficiently large, an affine constraint becomes binding. Hence, the ask rises and
the bid falls, so that the spread widens. &
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