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Abstract We develop a new approach for pricing European-style contingent claims
written on the time 7" spot price of an underlying asset whose volatility is stochastic.
Like most of the stochastic volatility literature, we assume continuous dynamics for
the price of the underlying asset. In contrast to most of the stochastic volatility liter-
ature, we do not directly model the dynamics of the instantaneous volatility. Instead,
taking advantage of the recent rise of the variance swap market, we directly assume
continuous dynamics for the time T variance swap rate. The initial value of this var-
iance swap rate can either be directly observed, or inferred from option prices. We
make no assumption concerning the real world drift of this process. We assume that
the ratio of the volatility of the variance swap rate to the instantaneous volatility of
the underlying asset just depends on the variance swap rate and on the variance swap
maturity. Since this ratio is assumed to be independent of calendar time, we term this
key assumption the stationary volatility ratio hypothesis (SVRH). The instantaneous
volatility of the futures follows an unspecified stochastic process, so both the under-
lying futures price and the variance swap rate have unspecified stochastic volatility.
Despite this, we show that the payoff to a path-independent contingent claim can be
perfectly replicated by dynamic trading in futures contracts and variance swaps of
the same maturity. As a result, the contingent claim is uniquely valued relative to its
underlying’s futures price and the assumed observable variance swap rate. In contrast
to standard models of stochastic volatility, our approach does not require specifying the
market price of volatility risk or observing the initial level of instantaneous volatility.
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As a consequence of our SVRH, the partial differential equation (PDE) governing the
arbitrage-free value of the contingent claim just depends on two state variables rather
than the usual three. We then focus on the consistency of our SVRH with the standard
assumption that the risk-neutral process for the instantaneous variance is a diffusion
whose coefficients are independent of the variance swap maturity. We show that the
combination of this maturity independent diffusion hypothesis (MIDH) and our SVRH
implies a very special form of the risk-neutral diffusion process for the instantaneous
variance. Fortunately, this process is tractable, well-behaved, and enjoys empirical
support. Finally, we show that our model can also be used to robustly price and hedge
volatility derivatives.

Keywords Option pricing - Stochastic volatility

1 Introduction

In this article, we consider the standard problem of valuing and hedging a contin-
gent claim written on the price at expiry of some underlying asset. In contrast to
the standard model of Black and Scholes (1973) and Merton (1973), we assume that
both the spot price and the instantaneous volatility of the claim’s underlying asset are
stochastic and imperfectly correlated. The standard approach to derivative security
valuation under stochastic volatility specifies the statistical dynamics and derives the
risk-neutral dynamics of both quantities. As is well known, this approach requires
specifying the market price of volatility risk. This specification is fraught with diffi-
culty since this market price is not directly observable. Even if one manages to achieve
the correct parametrization of the market price of volatility risk, the identification of
these parameters and the initial instantaneous volatility from option prices can be
problematic in practice.

Fortunately, there is an alternative approach which bypasses the need to specify the
dynamics of the market price of volatility risk. It also bypasses the need to observe
or infer the instantaneous volatility. The approach is to model the statistical dynamics
of some process which is a known function of option prices. As the instantaneous
volatility of the underlying asset is intrinsic to option valuation, this function should
have the property that this instantaneous volatility can be expressed in terms of this
process. Since the risk-neutral relative drift of an option price is just the riskfree rate,
the risk-neutral drift of the process can be calculated through 1t6’s formula. If the sta-
tistical process describing the function of options prices is assumed to be continuous
over time, then all that remains is to model the statistical volatility of the process.

This approach was pioneered in Dupire (1992). Inspired by the pioneering contri-
bution of Heath et al. (1992) to the analysis of interest rate derivatives, the function
of the option prices which Dupire chose was the entire term structure of forward
variance swap rates. Assuming only positivity and continuity of the underlying asset
price, Dupire showed that a forward variance swap rate can be determined from the
cost of forming a particular static position in options involving a continuum of strike
prices. As a result, the risk-neutral drift of the forward variance swap rate is zero. Once
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one specifies the volatility of all forward variance swap rates, one also determines the
risk-neutral dynamics of the instantaneous variance of the underlying.

Unfortunately, the determination of the initial curve of forward variance swap rates
can be tricky in practice due to the discreteness of strikes and maturities in options
markets. Now that variance swaps trade outright, one can overcome the discrete strikes
issue by direct observation of variance swap rates. However, the discreteness of matu-
rities in the relatively nascent variance swap market still makes observation of the
initial continuum of variance swap rates tricky in practice.

To circumvent this problem, Duanmu (2004) proposes modelling the spot variance
swap rate of a single maturity.! He assumes a particular diffusion process for the vari-
ance swap rate and shows that the payoff to volatility derivatives of the same maturity
can be replicated by dynamic trading in variance swaps.

Like Duanmu, Potter (2004) also proposes completing markets by dynamic trading
in variance swaps of a single maturity. Like us, Potter examines the implications of
this assumption for the valuation of contingent claims on price as well as for volatility
derivatives. To value these claims, he assumes that the instantaneous variance of the
underlying asset is an affine function of the variance swap rate. He then shows that this
assumption is a consequence of the dynamics assumed in several popular stochastic
volatility models. He also analyzes Duanmu’s model and shows that it is a special case
of his framework in which the instantaneous variance of the underlying asset is just
the variance swap rate.

Our analysis is similar to that of Duanmu and Potter in that we model the dynamics
of a variance swap rate of a single maturity. Like them and Dupire, we do not have to
specify the market price of volatility risk. The major difference between our work and
all previous work is that we impose a special structure on the assumed dynamics of
the variance swap rate. In particular, we assume that the ratio of the volatility of the
variance swap rate to the instantaneous volatility of the underlying asset just depends
on the variance swap rate and the variance swap maturity. Since this ratio is assumed to
be independent of calendar time, we term this key assumption the stationary volatility
ratio hypothesis (SVRH).

The instantaneous volatility of the futures follows an unspecified stochastic pro-
cess, so both the underlying futures price and the variance swap rate have unspecified
stochastic volatility. Despite this, we show that the payoff to a path-independent con-
tingent claim can be perfectly replicated by dynamic trading in futures contracts and
variance swaps of the same maturity. As a result, no arbitrage implies that the contin-
gent claim is uniquely valued relative to its underlying’s futures price and the assumed
observable variance swap rate. Under the SVRH, parsimony is achieved in that our
valuation PDE depends only on two independent variables rather than the usual three.
This speeds up numerical solution by an order of magnitude. The PDE to be numeri-
cally solved is a second order linear elliptic PDE and hence standard solution methods
are available.

A standard assumption in the stochastic volalatility literature is that the statistical
process for instantaneous variance and the market price of variance risk are such that

! The spot variance swap rate corresponds to the area under Dupire’s forward variance rate curve between
the valuation time and the option maturity.
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the risk-neutral process for instantaneous variance is a diffusion. Assuming that a
money market account acts as numeraire, the coefficients of this risk-neutral diffusion
process are independent of the variance swap maturity. In order to determine whether
our approach can be rendered consistent with this now standard approach, we inves-
tigate the implications of this maturity independent diffusion hypothesis (MIDH) and
our SVRH for the risk-neutral process followed by the instantaneous variance. We
show that MIDH and SVRH together dictate that the risk-neutral drift of the instanta-
neous variance must be a quadratic function of the instantaneous variance (with zero
intercept). Furthermore, the normal volatility of the instantaneous variance must be
proportional to its level raised to the power 3/2. Fortunately, we document that this
quadratic drift 3/2 process is tractable, well behaved, and enjoys a surprising amount
of empirical support.

Although the MIDH and our SVRH determine the form of the risk-neutral drift
of the instantaneous variance, they do not specify the statistical drift of this process.
As a result, our pricing model places no restrictions on the market price of volatility
risk. This is a big advantage of our approach over standard stochastic volatility models
which require that the market price of volatility risk be specified in order to uniquely
price contingent claims.

The quadratic drift 3/2 process for instantaneous variance has many desirable prop-
erties. For example, the instantaneous variance is always positive and never explodes.
Also, the process is mean-reverting, where the speed of mean-reversion is propor-
tional to the level of the process. The process yields closed form formulas for the joint
Fourier Laplace transform of returns and their quadratic variation. As a result, many
derivative securities on price and/or realized volatility can be valued. In particular,
standard options on price can be valued via (fast) Fourier inversion. The quadratic
drift 3/2 process also yields closed form formulas for the variance swap rate and its
volatility. Since the general formulas for these quantities are complicated, we focus on
the proportional drift subcase, which has very simple formulas for the variance swap
rate and its volatility. Although this proportional drift risk-neutral process does not
mean-revert to a positive level, we show that its statistical counterpart can have this
property, where the speed of mean-reversion is proportional to the level.

Finally, we examine the pricing of volatility derivatives in our model. Like contin-
gent claims on price, these derivatives can be priced without specifying the market
price of volatility risk or the initial level of the instantaneous variance. In contrast to
contingent claims on price, one need only dynamically trade variance swaps in order to
replicate the payoff of these claims. As a result, the price dynamics for the underlying
asset need not be specified.

An overview of this paper is as follows. The next section lays out our notations
and assumptions including our critical SVRH. The following section shows that a
European-style payoff for a path-independent claim can be replicated by dynamic
trading in futures and variance swaps of the same maturity. It also derives a funda-
mental elliptic PDE which governs the values of all European-style claims in our
model. The subsequent section deals with the issue that variance swaps may not trade
by showing that both the level of the variance swap rate and the gain on a variance swap
position can be accessed through options. The next section addresses the issue of cali-
brating the model to market options prices. The subsequent section shows how Monte
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Carlo simulation can be used to efficiently determine both values and Greeks. The
following section examines the implications of further assuming that the risk-neutral
process for instantaneous variance is a diffusion whose coefficients are independent of
the variance swap maturity. We show that this maturity independent diffusion hypoth-
esis (MIDH) and our SVRH imply a condition on the risk-neutral drift and diffusion
coefficients of the instantaneous variance. The next section shows that this condition
implies that the risk-neutral process for the instantaneous variance is a quadratic drift
3/2 process. The following section focusses on a subcase that yields simple formulas
for the variance swap rate and its volatility. The penultimate section extends our results
to volatility derivatives. The final section summarizes the paper and makes suggestions
for future research.

2 Assumptions and notation

Our objective is to price a path-independent claim of a fixed maturity 7. To accomplish
this objective, we assume that over this period, the underlying asset trades continu-
ously in a frictionless market. For simplicity, we assume zero interest rates over this
period. When one introduces positive interest rates, one needs to model the forward
or futures price of the underlying asset to achieve our results and hence we will model
one of these.

Let F; be the time ¢ futures price for maturity 7, where we assume continuous
marking-to-market for simplicity. Let [P denote the real world probability measure,
also known as the statistical or physical measure. Under this measure, we assume that
the underlying asset’s futures price process {F;, t € [0, T']} is positive and continu-
ous over time. The martingale representation theorem then implies that there exists
stochastic processes u and o such that:

dF,
T = :uldt +Gdel’ 1 e [09 T]’ (1)
13

where B; is standard Brownian motion under P. We refer to o as the instantaneous
volatility. Since futures contracts are costless, p is compensation for o differing from
zero. We leave the processes p and o unspecified for the time being.

Instead, we will partially specify the dynamics of a variance swap rate. A variance
swap is an over-the-counter contract which now trades liquidly on several stock indi-
ces and stocks. This contract has a single payoff occuring at a fixed time, which we
require to be 7. The floating part of the payoff on a continuously monitored variance
swap on one dollar of notional is:

1 (T (dF\? 1T
—/ —L) dr = —/ oldt, 2)
TJo \ F T Jo

from (1). At initiation, a variance swap has zero cost to enter. Since the floating part

of the payoff is positive, a positive fixed amount is paid at expiration. When expressed
as an annualized volatility, this fixed payment is called the variance swap rate. Letting
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so be the initial variance swap rate, the final payoff of a variance swap on one dollar
of notional is:

1 T
?/0 a,zdt —sg. (3)

Neuberger (1990) and Dupire (1992) independently show that if the underlying
price process is positive and continuous as in (1), then the payoff to a variance swap
can be replicated without making any assumption on the dynamics of the instantaneous
volatility 0. However, the replicating strategy requires a static position in European
options of all strikes K > 0.

Following Duanmu (2004), we reverse the approach taken in Neuberger (1990) and
Dupire (1992). We treat a variance swap of a fixed maturity as the fundamental asset
whose price process is to be modelled. We treat a path-independent claim maturing
with the variance swap as the asset whose payoff is to be replicated by dynamic trad-
ing in variance swaps and the option’s underlying asset. For now, we assume that a
variance swap of maturity 7 trades continuously over [0, 7'] in a frictionless market.
We do not require that European options of any strike or maturity be available for
trading. We will relax the requirement that variance swaps trade in the section after
next.

At any time ¢ prior to the common maturity 7" of the option, the futures, and the
variance swap, let s,(7T) denote the fixed rate for a newly issued variance swap. Let
w(T) = st2(T)(T — 1) be the time 7 value of the claim which pays out a continuous
cash flow of afdu for each u € [¢, T]. Given the close relationship between w and s,
we will henceforth abuse terminology by referring to w as the variance swap rate.

Under probability measure P, we assume that the variance swap rate process {w;, t €
[0, T']} is continuous over time and given by the solution to the following SDE:

d 2
S (ntw - "_') dt +odW,, t€(0,T), @

Wy Wy

where W, is standard Brownian motion under P. Here, 7" is an unspecified stochastic
process which represents compensation for the process o differing from zero. The
expected growth rate in w is the difference of 7" and the time ¢ stochastic dividend
yield Z}—’i

A key assumption which enables practically all of our results is that the ratio of the
volatility o, of the variance swap rate to the instantaneous volatility o; of the futures
is independent of time:

ﬂ =a(w;T), te[0,T] Q)

Ot

As the notation indicates, the volatility ratio o(w; T) : R* x R* > R™ is a known
function of w and T, but is independent of ¢ and o. We refer to this assumption
repeatedly as the stationary volatility ratio hypothesis (SVRH). Since T is fixed in our
setting, we henceforth suppress the notational dependence of o(w) on T'.
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We close the partial specification of our two stochastic processes F and w by
requiring that:

dB,dW, = pdt, tel0,T], (6)

where the correlation parameter p € [—1, 1] is constant. Our final assumption is that
there is no arbitrage.
Substituting (5) in (4) implies that the assumed dynamics of F and w are given by:

dF,
— = uidt + o4d By,
F
d 2
o _ (n,w - a—f) dt + a(w)odW, 1 €[0,T). %)
Wy Wy

Notice that the volatilities of F and w share a common component o, whose dynam-
ics are unspecified. A motivation for the sharing of this component is stochastic time
change. If business time runs at a different rate than calendar time, then o becomes a
proxy for business time and hence affects both volatilities. However, in contrast to other
work on option pricing with stochastic time change, we do not specify the dynamics
of o under P. The next section shows that we can nonetheless hedge path-independent
claims perfectly and hence price them uniquely.

3 Hedging and pricing path-independent claims

In this section, we show that the terminal payoff f(S7) of a European-style path-
independent claim maturing at 7' can be replicated by dynamic trading in futures and
variance swaps of maturity 7. Consider some C%2 function IT(F, w) : R xRT - R
and let IT; denote the stochastic process induced by evaluating the function IT at F;
and wy:

H[ = H(Ft, w,), 1t e [O, T] (8)

Note that the function IT does not depend on time or time to maturity. We can write
the assumed statistical dynamics in (7) for F and w as:

dFt = /,L[F[dt + (TtFtdB[,
dw, = (1w; — oHdt + g(w)o,dW, 1 €[0,T], )

where g(w) = wa(w) and d B;dW; = pdt. 1t6’s formula implies that:
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T T

d d

I(Fr, wr) = I(Fy, wo)+/ _H(Ftawt)dFt+/ —I(F;, wy)dw,
F 0w

F? 3% 321'1
+ 2(Ftswt)+thg(wt) (Flth)
0

2 oF
82
18 (2'”’) i, 2(E,w,)] (10)

Note that the instantaneous gain on a long position in a futures contract is d F;, while
the instantaneous gain on a long position in a variance swap is dw; + G,Zdt. Recog-

nizing, this, suppose that we add and subtract fOT % [1(F;, w,)atzd t to the right hand
side of (10). Then IT(Fr, wr):

T T
d d
= T1(Fo, wo) + / —TI(F;, wy)dF, + / —H<Ft,w,>(dw,+o,2dr>
o OF dw

1 , W + ,01 w 1 N + I , W
0 2 8F ! ! tg ! £ W 2 () ! !

O, wn) w’)} o2dt. (11)
ow

The last term in (11) represents the cash flow generated through time by the dynamic

trading strategy consisting of holdmg 57 [L(F, wy) futures and 5 [L(F;, wy) variance

swaps at each ¢ € [0, T'). Since the path-independent claim Wthh we wish to value

has no intermediate payouts, suppose that the function IT(F, w) is chosen to solve the

following second order linear elliptic PDE:

PO )+ pFew) oD (P, w) + g(w)82 (F, w)
w w , W -—
2 9F? PEE) e 2wl
oIl
——(F,w)=0, F>0,w>0. (12)
Jw

Further suppose that we restrict IT by the boundary condition:
I[I(F,0)= f(F), F=>0, (13)

where the contingent claim payoff function f need not be C. Since zero is a natural
boundary for the futures price, suppose we further require that:

IO, w) = £(0), w=>0. (14)

The solution of (12) subject to (13), (14), and growth conditions at w = coand F = 0o
is unique. Numerical methods such as finite differences or finite elements can be used
to efficiently determine IT(F, w). In Sect. 6, we also explore Monte Carlo simulation
and how this problem can be reduced to an ODE for the characteristic function of the
log price.
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Since Fr = St and wr = 0, substitution of (12) and (13) in (11) implies:

Ty L

F(S1) = (o, wo) + / O nE, wdF, + / O NE, w) dw, + o2d),
0 oF 0 ow

(15)

Hence, the payoff f(S7) can be perfectly replicated by charging IT(Fp, wo) initially
and being long BLFH(FZ, w,) futures and %H(Ft, wy) variance swaps at each ¢t €
[0, T'). Since time O was arbitrary, we refer to IT(F, w) as the valuation function for
the contingent claim.

Notice that the boundary value problem to be solved for the claim value just involves
two independent variables rather than the usual three. This speeds up numerical solu-
tion by an order of magnitude compared to the usual boundary value problem arising
in SV models. Furthermore, the PDE (12) in this boundary value problem is just a
standard linear second order elliptic PDE so standard solution methods are available.

As usual, the claim value and hedge ratios are independent of the processes u and
" appearing in the statistical drifts of F and w respectively. In contrast to standard
models of stochastic volatility, the option value and hedge ratios are also independent
of the market price of volatility risk and the stochastic process for o, even though the
latter affects the dynamics of both assets.

Notice that our arguments fail if the volatility of w depends on time for then the
option price must also depend on time. The PDE gains a third independent variable
and the departure from zero of % further induces dependence of I on the unknown
o dynamics. Even if the statistical o dynamics are assumed to be known, the fact that
o is not in general® a known function of the price of a long-lived asset will re-intro-
duce dependence on the market price of volatility risk. Hence, our ability to hedge
and price under unspecified stochastic volatility and risk premia hinges on our crucial
assumption that the volatility of the variance swap rate w be independent of time. The
existence of standard diffusion models of stochastic volatility with this property is
addressed in Sect. 8.

It may appear that all of the advantages accruing to variance swap rate modelling
vanish if variance swaps are not available for trading. Fortunately, the next section
shows that the variance swap level can be determined from option prices. Furthermore,
the gain on a variance swap position can be accessed by a position in a delta-hedged
option. It follows that the advantages outlined in this section can be realized even when
variance swaps do not trade.

4 Illiquid variance swaps

In this section, we drop the assumption that variance swaps trade continuously. We
propose two different methods by which one can observe the variance swap rate.
The first method assumes that one can observe the price of 7" maturity options of all

2 However, it is well known that assuming mean-reversion for the risk-neutral process for o2 suffices to
make o a known function of the variance swap rate.
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strikes. In practice, only discrete strikes are available, but market participants routinely
determine a complete implied volatility smile. This smile can be used to determine
the prices of options of all strikes and hence value variance swaps. For a given specifi-
cation of the ratio of the volatility of the variance swap to the volatility of the futures,
there is no guarantee that the model value of the option reproduces the market price.
The next section shows how this ratio can be chosen so that the model reproduces
market option prices.

Let C;(K,T) and P;(K, T) respectively denote the prices at time ¢ € [0, T'] of
European calls and puts of strike K > 0 and fixed maturity date 7. Assuming only
continuity of the underlying asset price, the payoff to a variance swap can be repli-
cated by holding a static position in options of all strikes and furthermore dynamically
trading the underlying futures. It follows that at any time ¢ € [0, T'], the variance swap
rate can be determined from the prices of all out-of-the-money options:

F; 2 © 9
we(T) 2/0 FP;(K, T)dK +/ FC,(K, T)YdK, te€][0,T]. (16)

t

When w is calculated by (16), we refer to it as the synthetic variance swap rate.
Suppose that we define:

P(K,T)I(K < F;) + C/(K, T)I(K > F)

9t(m, T) = K

(17)
where:
m = In(F;/K). (18)

Financially, 6;(k, T') is the value at time ¢ € [0, T'] of an out-of the money option
per unit of strike expressed in terms of log moneyness m. Note that 6 and m are both
dimensionless, so this transformation just removes the (arbitrary) dimensions from
the dependent and independent variables. Performing the change of variables given
by (17) and (18) in the integrals in (16) implies:

wi(T) = 2/<>o 6;(m, T)dm, tel0,T]. (19)

—00

Hence, the variance swap rate is just twice the simple average of nondimensionalized
out-of-the-money option prices. By modelling the dynamics of this synthetic variance
swap rate, one can in turn value options, as shown in the last section. The end result
relates the value of a given T maturity option to its underlying asset price and to the
simple average in (19). The dependence of each option price on the average is analo-
gous to the situation in the CAPM where an individual stock is priced relative to the
market portfolio. We note that as a zero strike call is just the underlying asset, which
has zero vega, it plays the role of the zero beta asset in the Black CAPM.

The second method for determining the variance swap rate is to imply it from
the market price of a claim with a convex payoff such as a single European option.
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Let C}" be the market price of a claim at time ¢ € [0, T'], which has a convex payoff
y(F)atT,suchas (F — K)T or (K — F)™. Then the variance swap rate wy is defined
implicitly by:

" =C(F,wy), tel0,T], (20)

where the function C(F, w) solves the PDE (12) subject to a boundary condition
C(F, 0) = y(F). In Sect. 6, we prove that the convexity of the payoff in F' implies
that —C(F w) is positive. Hence, the implied variance swap rate is well-defined so
long as the market price of the option is arbitrage-free.

As we have two methods for determining the variance swap rate, the question arises
as to whether one should use the synthetic variance swap rate or the implied variance
swap rate. When a market has many liquid options trading, the synthetic rate is pre-
ferred as it is relatively robust. When a market does not have many liquid options
trading, one is forced to use the implied rate.

Similarly, we have two ways to observe and access the instantaneous gain on a long
position in a variance swap dw; + o; 2dt. The first method is to simply replace the var-
iance swap position by the static option component of its replicating portfolio. In this
case, the replication strategy for a path-independent claim involves dynamic trading
in all options of maturity 7. Given the bid ask spread operating in practice, such a
strategy would be ruinous if implemented. Fortunately, the martingale representation
(15) implies that for any claim with a convex payoff:

d 0
dC(Fy, w,)=ﬁC(F,, w;)d Fy + 8—C(F,, wt)(dw,—i—otzdt), tel0, 7). (21)
w

Dividing by %C (Ft, wy) > 0 implies that the gain on the variance swap position can
be accessed by a position in a delta-hedged convex claim:

1 ad
dwt + op dt m |:dC(Ft, wt) — B_FC(F“ wt)dF,] , I € [O, T)
dw ty, Wt

(22)

Thus, the payoff on a path-independent claim can be replicated by dynamic trading
in futures and another claim of the same maturity which has a convex payoff, e.g. an
option. The same conclusion holds in standard models of stochastic volatility, but there
are three major differences in our analysis. First, the requirement that one can imply
the instantaneous variance gets replaced by the requirement that one can observe the
synthetic variance swap rate or the implied variance swap rate. Second, the market
price of volatility risk never has to be modelled. Third, the assumption on the drift and
diffusion coefficients of the instantaneous variance gets replaced by the modelling of
how the volatility of the variance swap rate depends on the variance swap rate and its
maturity.

The next section shows that this dependence can be determined from the market
prices of standard options at a fixed time. Hence, the model can be calibrated to the
market prices of standard options and then used to determine the dependence of these
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option prices or other path-independent claims on the futures price and the variance
swap rate. It can also be used to price path-dependent claims such as volatility deriv-
atives as we will show in the penultimate section.

5 Calibration

In the last two sections, we assumed that the actual, synthetic, or implied variance
swap rate for a fixed maturity was observable and we used it to price path-independent
contingent claims. The analysis assumed that the ratio of the variance swap volatility
to the underlying futures volatility was a known function of the variance swap rate and
its maturity. Knowledge of this function is critical for valuing contingent claims and
determining their dependence on the futures price and the variance swap rate. In this
section, we take market prices of standard options as given and use this information
to determine this critical function. In particular, we assume that market option prices
are observable for all strikes K > 0 and all maturities 7 > 0. As we continue to make
all of the assumptions of prior sections, it follows that market variance swap rates are
observable for all maturities 7 > 0.

We exploit the fact that options have payoffs that are linearly homogeneous in their
underlying futures price F' and their strike K. In fact, we define a contingent claim
to be an option so long as its terminal payoff 2z (F, K) is linearly homogeneous in F
and K, i.e.:

h(AF,AK) = A (F, K), (23)

forall A > 0. Let O(F, w; K) : Rt x Rt x Rt > R be the C>%2 function which
relates the price of an option to the contemporaneous futures price F, the variance
swap rate w, and the option strike K. For each fixed K > 0, O(F, w; K) solves the
elliptic PDE (12):

F?3*0O(F, w; K) ?O(F,w; K)  g*(w; T) 3?O(F, w; K)
—————— + pFgw; T) 5
2 aF dFdw 2 ow
AO(F, w; K
— &7 24)
ow

for F > 0, w > 0 subject to the lower Dirichlet boundary condition:
O(F,0; K) = h(F, K). (25)

For any such payoff, it is easy to see that O(F, w; K) is also linearly homogeneous
in Fand K, i.e.:

OWF, w; AK) = AO(F, w; K), (26)
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for all A > 0. This is proved by showing that the PDE (24) is invariant to the change
of variables (F’, K’) = (AF, AK). Euler’s Theorem then implies:

a a
Fa—FO(F,w,K)zO(F,w, K)—KB—KO(F,w, K). 27

Differentiating w.r.t. w implies:

2 2

0
O(F,w;K)=—0O(F,w; K) — K
dFow ow 0K ow

F O(F, w; K). (28)

It is also easy to show that:

52 92

FZO(F w K) = K- _O(F. w: K). (29)

0 K2

Substituting (27) to (29) in (24) implies that:

I?O(F, w; K) g2(w; T)
dw? 2
AO(F, w; K) K?3*O(F,w; K)

B Jw T2 8Kz

9 32O(F, w; K)
~ O(F.w: K) — K —2~ >/ T
~|—,0[8w(9( , w; K) YEM } ( )

K>0w>0. 30)

Since the term structure of variance swap rates is assumed to be observable, the
function w(T) relating initial variance swap rates to their maturity 7 is known. This
function is monotonically increasing in 7 and we further assume it is C2. Let T(w)
be the inverse of w, which is also observable, increasing, and C 2 For F fixed at Fo,
let:

H(K,T)=O(Fy,w(T); K), K=>0,T >0, (€20

be the initial option price as a function of strike and maturity. Differentiating (31) w.r.t.
w implies:

—O(Fo, w; K) = iH(K TT'(w), K>0,T>0. (32)

Differentiating (32) w.r.t. K implies:

2 2
. —_ /
awaK(’)(Fo,w,K)_ 8T8KH(K’ T (w), K=>0,T>0. (33)
Differentiating (32) w.r.t. w implies:
32 32 9 .
8—(9(F0,w K)_ H(K T)(T' (w))* +—H(K "HT"(w), K >0,T > 0.
(34)
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Substituting (32) to (34) in (30) implies that:

g(w; T)

82 / 2 0 /"
[—H(K, ) (T (w)) +ﬁH(K, nr (w)} 3

aT?

a 32 ’ .
1p |:8_TH(K, )= Koo HK, T)] T'(w)g(w; T)
K_232H(K, T)

a /
= S HEK DT (w) = === K >0,w>0. (35)

This is a quadratic equation for g(w; T') which is easily solved. Hence, given that p
is known, the function g(w; T) can be determined for all w > 0 and T > 0 since
the dependence of the initial option prices H on their strike K > 0 and their maturity
T > 0 has been assumed to be observable. We note that our analysis generalizes to
the case where the correlation p between F' and w depends on w and T, provided that
this dependence is known. However, the correlation cannot depend on F as this would
cause O(F, w; K) to no longer be linearly homogeneous in F and K.

6 Monte Carlo simulation for values and greeks

In this section, we show how Monte Carlo simulation can be used to numerically solve
the boundary value problem governing the value of the path-independent claim We
also investigate how the value of the path-independent claim IT(F, w) varies with the
futures price F for fixed w. As in standard SV models, we find that IT inherits its
behavior from its payoff f(F). Specifically, the n-th partial derivative of IT(F, w)
w.r.t. F has the same sign as f(”)(F), forn = 0,1,2.... We are also interested in
how the value of the path-independent claim IT(F, w) varies with the variance swap
rate w for fixed F'. Not surprisingly, we find that path-independent claims with convex
payoffs have values that are increasing in w. Hence, for a call, I1(F, w) is increasing
and convex in F and increasing in w.

6.1 Monte Carlo simulation
By the Feynman Kac theorem, there is an explicit probabilistic representation for the

solution to the boundary value problem consisting of the second order linear elliptic
PDE (12) and the boundary condition (14):

M(F, w) = EQ [f(ﬁr)|ﬁ0 = F.i = w]. (36)

where under the measure Qo, the process 1:} solves the SDE:

A~

dF,
L = pdZy +/1—p2dZy, t>0, (37)
Fy
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and the process w; solves the SDE:
dw; = —dt + g(w)dZy;, t>0. (38)

Here, Z; and Z; are independent standard Brownian motions under the probability
measure Qo and t is the first passage time of W to the origin.

Thus, a finite-lived path-independent claim under stochastic instantaneous vari-
ance has the same value as a perpetual claim under constant instantaneous variance
of 1. The perpetual claim is a down-and-out claim which knocks out when the var-
iance swap hits zero. At the random knockout time t, the claim pays a rebate of
f(F;). Monte Carlo simulation can be used to numerically find the value and futures
price greeks of the claim. To speed up computations, one can take advantage of the
fact that F; follows geometric Brownian motion under the probability measure O,
Adapting the m1x1ng argument in Romano and Touzi (1997) to the present setting, let
B(F,T) = EQ0 f(FT)|F0 = F] be the Black model value for the forward price of
a path-independent claim paying f (Fr) at the fixed time 7', when F is the geometric
Brownian Qo martingale with unit volatility in (37). The solution to the SDE in (37)
is:

. 1 () — )
By = pe D3 T Vimpazsy (39)

Hence, Fr is lognormally distributed with mean F and variance of In Fr given by T'.
Notice that these are the arguments of the Black model value function.

If we condition on the Z path in (38), then we learn the w path and hence t and
Z1,7. Evaluating (39) at t rather than 7" implies:

N _1 (n) (n)
£, = po(C3)rreziie/imazs (40)

2
P (1) 1— (n)
Fe~ T r+le,T - r+»,/l P dZ (11)

Hence if we conditionon 7 = T and Z; ; = z,then Fyis lognormally distributed with

2
mean Fe~ 7 T+P% and variance of In F, given by (1 — p*)T. Thus, the conditional
A 2
mean of F; is obtained from the mean of F7 by multiplying by the factor e~ TTHrz,
Likewise, the conditional variance of In F; is obtained from the variance of In Fr by

multiplying by 1 — p2. This motivates the following representation for IT(F, w):

e w)=/ / B(Fe—é”pz,a—p2>T>¢o,f(T, w)dzdT, (42)

forn = 0,1,2 e where ¢ (T; w) = W is the probability density
function under Qg for the first passage time t of the process w to zero, given that
li)() =w.
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For many path-independent claims such as calls and puts, the Black model value in
(42) is known in closed form. For such claims, one need only simulate the Qo dynam-
ics of W in (38). For each simulated w path terminating at w,; = 0, one just needs
7 and Z; ; to evaluate this closed form expression. The claim value is approximated
by averaging over paths. Since the barrier at zero is monitored continuously, a naive
discrete time Monte Carlo will tend to overvalue 7, producing upward bias in convex
claims. To remedy this, one can use Brownian bridges as discussed in Beaglehole et al.
(1997), El Babsiri and Noel (1998), and in Andersen and Brotherton-Ratcliffe (1996).
Alternatively, one can use large deviations as discussed in Baldi et al. (1999).

6.2 Partial derivatives

Since the process w in (38) is a univariate diffusion, a coupling argument implies
that a rise in its initial value w weakly increases the first passage time to the ori-
gin. If the payoff function f is convex, then since Fisa Qg martingale, the process
{f(F;),t >0}isa QO submartingale. It follows that a rise in w causes IT to increase.
Hence, when f is convex, then the hedge ratio %(F , w) is positive.

Similarly, one can use a coupling argument to show that the hedge ratio % (F,w)
is nonnegative when f is increasing in F. More generally, the following theorem is
proved in Appendix 1:

Theorem 1 Let I1(F, w) defined by (36) be the value function for a path-independent
claim. Then:

n

aF"

nn—

T(F, w) = E& [f“”(ﬁ,)e T2t o = F by = w] n=0,1,2.... 43

where under the measure Qn, the process I:", solves the SDE:

A

dF,
ﬁt = ndt + pdZ"" + /1= p2dz{", >0, (44)

t

and the process w; solves the SDE:
did, = [npg(iy) — 11dt + g()dZ\”, t >0, (45)

where Z f") and Zé") are independent standard Brownian motions under the probability
measure Q, and T is still the first passage time of W to the origin.

Theorem 1 shows that futures price greeks also have a probabilistic representation.
nn—1)

Sincee™ 2 > 0, Theorem 1 implies that the n-th partial derivative of [T1(F, w) w.r.t.
F has the same sign as f (F). Hence, the value of a European put is a decreasing
convex function of F. One can also use a coupling argument on (43) to show that the

cross partial %(F, w) is nonnegative when f"*D(F) and £+ (F) are both

T
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increasing in F'. In particular, for n = 1, the vanna %(F , w) is nonnegative when
F@(F) and f®(F) are both increasing in F.

We can adapt the above mixing argument to also value futures price Greeks using
simulation. As a special case of Theorem 1 with w = T and g(w) = O:

n

aFm

nn—1)

B(F.T) = EO» [f('”(ﬁT)e T fy = F]

is the Black model value of the n-th partial derivative of B(F, T)) w.r.t. F. In the case
of calls and puts, an explicit formula for this partial derivative is given in Carr (2001).
It is straightforward to derive the following generalization of (42) to a—l'I(F , W):

aF}l
8}’1 oo o0 8” 2
M(F, w) = / / B(Fe~TT+p%,
0 —00

JdF" dF"
nn—1)
x(1—pHT)e 2 02T¢r(T, w)dzdT, (46)
forn =0,1,2..., where now ¢, (T; w) = %leo:w} is the probability den-

sity function under 0, for the first passage time 7 of the process w to zero, given that
Wy = w.

For many path-independent claims such as calls and puts, the function multiplying
¢ (T, w) in (46) is known in closed form. For such claims, one need only simulate
the O, dynamics of w in (45). The futures price greek is approximated by averaging
over paths.

To summarize the results of this section and the last, we can use the observed vari-
ation of market option prices across strike and maturity to determine the dependence
of the volatility ratio on w and 7. This function in turn determines the dependence
of the model value on the underlying futures price and the variance swap rate. This
dependence is determined without having to specify risk premia, the market price
of volatility risk, or the starting value or dynamics of the instantaneous volatility o.
The model values and greeks can be efficiently computed by finite differences, finite
elements, or by Monte Carlo simulation.

Despite these compelling advantages, it would be extremely disturbing if there
was no way to specify a stochastic process for o which is consistent with our key
assumption (5) that the volatility ratio is independent of calendar time. We address the
formulation of this consistency problem in the next section.

7 Consistency with risk-neutral diffusion

It is well known that no arbitrage implies the existence of a measure Q equivalent to P
under which the prices of all nondividend paying assets are martingales. The standard
terminology when describing a stochastic processes under the measure Q is to refer
to it as a risk-neutral process. Taking the money market account as numeraire, the
risk-neutral process for the underlying futures price is:
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dF, = v FidB,, t€[0,T], (47)

where B is standard Brownian motion under Q. The risk-neutral drift of the futures
price is zero, since futures contracts are costless. The process v in (47) is commonly
referred to as the instantaneous variance. Under Q, the variance swap rate is the risk-
neutral expected value of the remaining integral of v:

T
wy = EQ |:/ v, du
t

Under our SVRH, the risk-neutral process for w is given by:

v = ] v>0,7e[0,T]. (48)

dw; = —v;dt + g(w;)JvdWy;, 1€0,T], (49)

where W is standard Brownian motion under Q. The risk-neutral drift of —v,d? in
(55) reflects the fact that a long position in a variance swap results in a cash inflow of
vydt at each instant of time. By Girsanov’s theorem, the two Brownian motions have
the same correlation under Q as they have under P:

dB,dW, = pdt. (50)

Suppose that in addition to (47) and (49), the risk-neutral dynamics of the instan-
taneous variance rate are assumed to be given by:

dv, = a(t, v)dt + b(t, v;)Jv,dW,;, t€[0,T] (51)

Notice that the Brownian motion W driving v is the same as the one driving w. Since
the coefficients a and b in (51) are assumed to be independent of 7', we refer to (51)
as the maturity independent diffusion hypothesis (MIDH).

As we argue later, there is no economic justification for the MIDH. We believe that
the only reason why the option pricing literature has adopted the MIDH is its inherent
tractability and the lack of any plausible alternatives. Nonetheless, a great deal of
empirical work has been done testing the consistency of this class of models with the
data. Hence, it is of some interest to discern whether or not there is at least some sub-
class of our stationary models for the w dynamics which is consistent with the MIDH
(51). In the remainder of this section, we find a condition which the risk-neutral drift
and diffusion coefficients of v must satisfy in order to meet both the MIDH and our
SVRH. In the next section, we find the only drift and diffusion functions for v which
meet this condition.

Since we have Markovian dynamics for the instantaneous variance rate v, there
exists a C2! function w(v, 1) : RT x [0, T] — RT such that the variance swap rate
wy is given by:

w; =w(t,v), tel[0,T] (52)
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By standard arbitrage arguments, this function w(z, v) solves the following second
order linear parabolic PDE:

b2(t, v)v 32

> el (t,v) +alt, v) (t v) + 8—(t v) = (53)

on the domain ¢ € [0,T],v > 0. The function w is also subject to the terminal
condition:

w(T,v) =0, v>0. (54)

The solution to the Cauchy problem consisting of (53) and (54) is unique.
Applying It6’s formula to (52) implies that the risk-neutral dynamics of the variance
swap rate w are given by:

9 i
dw, = —v,di + a—w(z, wb(t, v)JudW,, tel0.T]. (55)
v

Since the form of the volatility function is invariant to the measure change, our objec-
tive is to restrict the risk-neutral v dynamics so that the risk-neutral dynamics of w
obey:

dw; = —v;dt + g(w)JvdW,;, t€[0,T], (56)

where the function g(w) is independent of # and v. Comparing the diffusion coeffi-
cients in (55) and (56), the question is whether one can specify the functions a(¢, v)
and b(z, v) governing the risk-neutral dynamics of v in (51) so that:

2—15(1‘, v)b(t,v) = g(w(t,v)), te€[0,T],v=>0, (57)

where w(z, v) solves (53) and (54) and g(w) is independent of ¢ and v.

Even if there exist solutions to (57), then a further open question is whether the
chosen g function gives sensible properties to w. For example, since v is a nonnegative
process, (48) implies that g (w) must be chosen so that w is also a nonnegative process:

w; >0, tel0,T]. (58)

Furthermore, right at maturity, the variance swap rate is related to the instantaneous
variance rate by the following consistency condition:
Wi

I =ur. 59
arr—¢ 7 9

Finally, since vr is finite, (59) implies the following terminal condition:

wr = 0. (60)
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Since the nonnegativity condition (58), the consistency condition (59), and the terminal
condition (60) all refer to 7', we will refer to them jointly as the 7'-conditions.

Since the coefficients of the w process in (56) are independent of ¢ and the coeffi-
cients of the v process in (51) are independent of T, it is not at all obvious whether the
three T-conditions can be achieved. Fortunately, the next section shows that the set
of models satisfying both the SVRH and the MIDH is not empty. However, imposing
the SVRH on the class of maturity independent diffusion processes for v reduces the
risk-neutral process for v to a diffusion with quadratic drift of the form p(#)v; + qvt2
and with normal volatility proportional to vf 2, Conversely, imposing the MIDH on
the class of time homogeneous continuous processes for w imposes a very specific
structure on the function g(w; T') governing its normal volatility. Hence, the next sec-
tion shows that only very specific risk-neutral processes for v and w are consistent
with the joint hypotheses of SVRH and MIDH.

8 The general solution to the consistency problem

This section shows that there exists a (maturity independent) risk-neutral diffusion
process for v which is consistent with our SVRH. Fortunately, this process is both
empirically supported and tractable. The tractability arises from the fact that the joint
Fourier Laplace transform of returns and their quadratic variation can be derived in
closed form. We present this transform along with valuation formulas for the vari-
ance swap rate and its volatility. The next section presents simpler formulas for these
quantities that arise in a subcase of the process presented in this section.

To emphasize which quantities are maturity dependent, the notation in this sec-
tion will indicate maturity dependence whenever it is present. The following theorem
shows that the SVRH and the MIDH completely determine the form of the risk-neutral
process for v:

Theorem 2 The SVRH (5) and the MIDH (51) jointly imply that the risk-neutral pro-
cess for the instantaneous variance is given by:

dv, = [p()v; + quildt + ev}*dW,, t €0, T, 61)
where p is an arbitrary function of time and € > 0 and q < % are arbitrary constants.
Furthermore, in the risk-neutral process for w:

dw(T) = —vidt + g(w(T); T)\/v_,dW[, tel0,T], (62)

we must have g(0; T) = 0 and g,(0; T) = €.

The proof of the above theorem is in Appendix 2. The content of Theorem 2 is that
only a small set of risk-neutral processes for v are consistent with both our SVRH and
the MIDH. Theorem 4 of this section will also show that the function g governing the
volatility of w is much more restricted than as indicated in Theorem 2.

However, we caution that the small set of allowed processes for v and w is just
as much due to the MIDH as our SVRH. The usual mechanism by which a maturity
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independent risk-neutral diffusion process for v is derived is to assume a diffusion
process for v under [P and to assume that the market price of variance risk is a function
of just time  and the instantaneous variance v. To our knowledge, there is no economic
justification for either assumption. Rather, these assumptions are made solely for the
purpose of gaining the tractability associated with the risk-neutral v process being a
diffusion. While tractability is a worthy objective, our approach of directly modelling
the variance swap rate dynamics already provides a tractable option pricing model.
As a result, this justification for MIDH is absent in our setting. Consequently, any
unwelcome restrictions which the MIDH introduces to our setting can be banished by
simply rejecting it. We furthermore note that the maturity independence of the risk-
neutral v process is only a consequence of the standard assumption that the money
market account serves as the numeraire. If the numeraire were instead some asset with
a strictly positive payoff at 7', then the drift and diffusion coefficients of v can depend
on T. Hence, there is no need to have either maturity independence or a diffusion
specification for the risk-neutral process for the instantaneous variance.

Fortunately, the existing empirical literature examining the structure of the risk-neu-
tral process for instantaneous variance is quite supportive of the one kind of process
consistent with both hypotheses. In particular, there is strong evidence in favor of
specifying the diffusion coefficient of v as proportional to v,3 /2. There is also mildly
supportive evidence that the risk-neutral drift of v has the form p(#)v; +¢ v,z. The the-
oretical advantages of our SVRH models suggest that further empirical investigation
along these lines is warranted. However, should further testing reject the consistency
of the quadratic drift 3/2 process with the data, our view is that the theoretically and
numerically inferior MIDH should be jettisoned. Of course, we would advocate dis-
posing of SVRH despite its advantages if direct empirical evidence were mounted
against it.

Recall that the risk-neutral process for the underlying futures price is:

dF; = /v F,dB,, tel0,T]. (63)

Theorem 2 implies that the v process in (63) satisfies the MIDH and our SVRH if and
only if:
dv, = [p(t)v, + quildt + ev;?dW,, t €10, T, (64)

. . . . 2
where p(t) is an arbitrary function of time, ¢ < % and & > 0, and where:

dB:dW, = pdt. (65)

The reason for the upper bound on g becomes clear if we examine the process followed
by:

R, = l, te[0,T] (66)

@ Springer



108 P. Carr, J. Sun

Employing Itd’s formula:
dR, = [52 P p(t)R,] dt — e/RidW,, t€l0,T]. (67)

Thus, the reciprocal of V is just a special case of the affine drift square root process. It
is well known that this process avoids zero if €2 — g > % or equivalently g < % Ifg
violates this upper bound, then the v process can explode. As a result, we henceforth
assume that ¢ < % In fact, if ¢ < 0, then by defining p(¢#) = k6(¢) and ¢ = —« for
k > 0, then (64) can be re-written as:

dv = kv, [0(t) — v)dt + ev)?dW,, t€[0,T]. (68)

Hence the risk-neutral process for v becomes mean-reverting, where the speed of
mean-reversion is proportional to v.

As (64) is actually more general than (68), we now further analyze the risk-
neutral v process given in (64). With g respecting its upper bound, the results on
the reciprocal of v imply that the F and v processes respectively given by (63) and
(61) never explode. Furthermore, for Fy > 0 and vg > 0, the two processes are always
positive. If Fy = 0 or vg = 0, then the corresponding process is trapped at the origin.
As we assume that Fy > 0and vy > 0, this feature is of no economic consequence, but
it does have the virtue of providing simple boundary conditions when employing finite
differences. Although the v process is well-behaved under QQ, Lewis (2000) shows that
option pricing also requires that the v process have zero explosion probability under
the measure induced by taking the underlying asset as the numeraire. Feller’s explo-
sion test implies that there is zero explosion probability under this measure if and only
if p < 21_5 We henceforth impose this constraint which is automatically met if p < 0
since € > 0.

The probability density function of R7 is given in closed form in Cox et al. (1985),
when (67) is assumed to be time-homogeneous. It follows from (66) that the proba-
bility density function for vy is also known by the change of variable formula, under
time-homogeneity. Other properties of the time-homogeneous version of the quadratic
drift 3/2 process are discussed in Ahn and Gao (1999), Andreasen (2001), Cox et al.
(1980, 1985), Heston (1997), Lewis (2000), and Spencer (2003).

In particular, Heston (1997) points out that (64) is actually a generalization of
the well-known CEV process, first proposed in Cox (1975). To see this, write the
risk-neutral futures price process as:

dF, g -
T = T)Ft dBt, t e [0, T] (69)

t

To ensure that F' is a martingale rather than a strict local martingale, we require that
y € [0, 2]. Now let V; = V(F;) be the instantaneous variance rate, where from (69)
the function V is defined by V (F) = n?F? for F > 0. Using Itd’s formula:

3 .
thzg(y—l)Vtzdt—i-)/Vtde,, t €0, T). (70)
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Hence, the CEV process can be obtained from (63) and (64) by setting p(¢) = 0,qg =
S(y—1D,e=y,andp = 1.

By Girsanov’s theorem, the volatility of the instantaneous variance must have the
same form under PP as it has under Q. Hence, Theorem 2 implies that the joint hypoth-
eses of SVRH and MIDH force the normal volatility of v to be proportional to v,3 /2
under both P and Q. While this specification may seem unnatural, we note that if we
let o; = ,/v; be the volatility, then It6’s formula implies that the martingale part of
dg—‘? is S0;dW;. In words, the volatility of volatility is proportional to volatility. Hence,
the 3/2 specification is natural when posed in terms of the usual lognormal volatility.

Although the 3/2 specification was derived purely from theoretical considerations,
it has received a surprisingly large amount of empirical support for both the statistical
process and the risk-neutral process. We first summarize the literature on the statistical
process. Using affine drift and a CEV specification for the volatility of instantaneous
variance, Ishida and Engle (2002) estimate the CEV power to be 1.71 for S&P500
daily returns measured over a 30-year period. Javaheri (2004) also estimates this pro-
cess on the time series of S&P500 daily returns, but with the CEV power constrained
to either be 0.5, 1.0, or 1.5. He concludes that for most of his filters, a power of 1.5
outperforms the other two possible choices. Chacko and Viceira (1999) use Spectral
GMM estimation on the same affine drift CEV process as in Ishida and Engle. Using
the CRSP value weighted portfolio, they estimate the CEV power at 1.10 using weekly
data over a 35-year period and at 1.65 using monthly data over a 71-year period.

Two studies examine both the statistical process and the risk-neutral process.
Poteshman (1998) examines S&P500 index option prices over a 7-year period and
finds that both the statistical and the risk-neutral drift of the instantaneous variance are
not affine. He also finds that the volatility of the instantaneous variance is an increasing
convex function of the instantaneous variance. Jones (2003) examines daily S&P100
returns and implied volatilities over a 14-year period. Using this data, he first estimates
the statistical version of the affine drift CEV process for the instantaneous variance.
Using his time series of S&P100 daily returns, he finds the CEV power to be 1.33.
Comparing the fit of this CEV model with the square root model on the option price
data, he finds much better option pricing under the CEV model for 3- and 6- month
options. For shorter maturity options, all of his (purely continuous) models fail and
so he concludes that jumps may be needed. Using the same data as in Jones (2003),
Bakshi et al. (2004) look at a time series of S&P100 implied volatilities as captured
by V1X?2. They estimate several models including an SDE of the form

dv; = (ao + a4 v + %) dt + Bv*dw,, te[0,T]. (71)
Ut

They find that oy and «3 are highly significant. They find that a linear drift model is
rejected in favor of a nonlinear drift model. They find that the CEV power parameter
is highly significant and estimate it at 1.27. They conduct a one sided ¢ test on the null
hypotheseis that 3 < 1 and reject this null. They conclude that 83 > 1 is needed to
match the time series properties of the VIX index with CEV models.

We conclude that there is substantial evidence supporting a 3/2 power specifica-
tion for the normal volatility of v. The evidence supporting the deterministically time
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varying quadratic drift in Theorem 2 is weaker, but not inconsistent. The theoretical
and numerical advantages of the quadratic drift 3/2 process promulgated in Theorem
2 suggests that further empirical work on this process is warranted.

Besides enjoying empirical support, the quadratic drift 3/2 process is also extremely
tractable. Let X; = In(F;/Fp) be the return process and let (X), = fé vsds denote
its quadratic variation. Let E Q[eiuX1=5(X)7] be the joint Fourier Laplace transform of
X7 and (X)7. Let EQ[ei“XT_S(<X>T_(X>’]|X, = x, v, = v] be the joint conditional
Fourier Laplace transform of X7 and (X)7 — (X);. We now show that there is a closed
form formula for the latter expression.

Theorem 3 Suppose that the risk-neutral process for the instantaneous variance is
given by:

dv, = [p()v; + quAldi + ev}*dW,, 1 €0, T, (72)

2
where q < % Then the joint conditional Fourier Laplace transform of Xt and

(X)yr — (X); is given by:

o
EQ [eiufos«xnf(xn] X, = x. v = o] = g LY = ( 2 )

L(y) e2y(t,v)
-2
Moy, ——1), 73
X (a 4 62y(t’v)) (73)
where:
T
y(t,v) = / el PGy 5y, (74)
t

the confluent hypergeometric function M is defined as:

— (@), 2"
My =D —"=,
|
n:()()/)nn'
(1 g AN
“=‘(z‘e—z)+/(z‘ez)+ 2
_ q
y:2|:a+1—6—2 , (75)
and where:
gt peiu =il
= €Lu =9 —_— —_—.
g=q+p > 13
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The proof of Theorem 3 is in Appendix 3. The result in Theorem 3 makes it straight-
forward to numerically value many derivative securities written on X7 and/or (X)r.
In particular, the prices of European options on F7 can be quickly obtained via (fast)
Fourier inversion. Assuming time homogeneity, Heston (1997) and Lewis (2000) have
independently derived the conditional characteristic function of X 7. Our result extends
these previously derived results in two ways. First, we have the joint transform which
allows us to value both options on price and options on realized variance, or even
options on both. Second, we have obtained this joint Fourier Laplace transform despite
the fact that the risk-neutral drift of v contains an arbitrary function of time. This fea-
ture allows one to calibrate the quadratic drift to an arbitrarily given term structure of
say ATM implied volatilities or variance swap rates. It also allows one to generalize
the model by randomizing the level towards which the v process reverts. If the risk-
neutral process for this level evolves independently of F' and v then the risk-neutral
density for a functional of this process can be chosen so as to gain consistency with
an implied volatility skew.

We now turn to the implication of our SVRH and the MIDH for the form of
w(v, t; T) and the form of the function g(w; T) determining its normal volatility.
The following theorem shows that both functions are determined in closed form.

Theorem 4 Suppose that the risk-neutral process for the instantaneous variance is
given by:

dv, = [p(t)v; + quildt + ev)?dW,, t€[0,T], (76)

2 . . .
where q < . Then the variance swap rate valuation function w(t,v; T) = EQ

|:j;T v, du

v = v] is given by:

T
wt,v;T) =h (v x/ el P<">d"dt’), tel0,T,v=0,T >0, (77)

t

where:
Y _2 2 [®D2 2 24 ,
h(y)=/ e iz 52/ —euu “dudz. (78)
0 : €

The risk-neutral process for the variance swap rate is given by:

dw;(T) = —v;dt + g(w;(T))J/v,dW;, te[0,T], (79)
where:
g(w) = e%h(h—l(w)))h—l(w), w > 0, (80)

where h—L(w) is the inverse in w of h(w).
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The proof of Theorem 4 is in Appendix 4. This proof makes it clear that the 3
T -conditions (58) to (60) are all met. By the equivalence of (Q and IP, these conditions
also hold for the statistical process for w provided that it retains the same form.

Clearly, the general forms for w and g are complicated. To address this deficiency,
we offer three solutions. First, Appendix 4 shows that & solves the simple linear ODE:

92
Ty e h(y>+<qy—1)—h(y>+1—o y >0, 81)

subject to #(0) = 0 and lii% %h(y) = 1. Furthermore, Appendix 4 also shows that
y

g(w) solves the following nonlinear ODE:

2

gw g"(w) + g(w)g(w)+(q—l—%)g(w)Jre:O, (82)

2

subject to g(0) = 0 and g’(0) = €. In applied work, it may be easier to numerically
evaluate these boundary value problems for & and g rather than their solution given in
Theorem 4.

A second approach for dealing with the complexity of w and its volatility is to
switch attention from w to a related process. Suppose we define a stochastic process
{yr;t €[0, T]} by:

T ’
V= Eﬁ@/ el vy qy' e 0, T (83)
t

Note that the parameter ¢ in (83) is the same as the one used in Theorem 2 and hence we
require ¢ < &2/2. A financial interpretation of y is that it represents the value at time ¢
of the floating part of a dynamic trading strategy in variance swaps. Foreacht’ € [z, T,

1
this strategy holds e~4Ji vdu yariance swaps. Since the v process is Markovian in

itself and time, it follows that there exists a C1-2 function y(t,v) : [0, T]xRT Rt
such that:

yfzy(tv vl‘)v tE[O, T] (84)
By the Feynman Kac Theorem, the function y(#, v) solves the following PDE:

€203 9%y

T 14 v+ [pw+qv? ]_(t v)+—(t V) = quy(t,v) — v, (85)

on the domain ¢+ € [0, 7T],v > 0. The function y is also subject to the terminal
condition:

y(T,v)=0, v=>0. (86)

The solution to the Cauchy problem consisting of (85) and (86) is unique.
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Given that ¢ and € are both in the above Cauchy problem, it is remarkable that
given v; = v, the solution for the value of y, is always independent of both ¢ and €.
Intuitively, the independence of y from ¢ arises because the dynamic trading strategy
in variance swaps offsets the dependence of w on ¢. The independence of y from ¢
arises because y is just proportional to v:

T ’
V= / eIl PWdngy e 0, T]. (87)
t

It is straightforward to verify that (87) solves (85) and (86). Applying Itd’s formula to
(87), (76) implies that the risk-neutral dynamics of y are given by:

dy; = (gy: — Dvdt + 8y,\/v_,th, tel0,T] (88)

Hence, the level of y in (87) is independent of ¢ and ¢, but this level does depend
on the function p. Conversely, the dynamics of y in (88) depends on ¢ and &, but
these dynamics are independent of the function p. Notice also that the y dynamics
in (88) are time homogeneous in both calendar time and business time defined by
(X), = fé vyds. Comparing (79) and (88), we see that although y has a slightly more
complicated risk-neutral drift than w, it has much simpler volatility.

The definition (83) of y makes it clear that it is positive before T and vanishes
right at T'. Since the dynamics of y are independent of ¢ and the dynamics of v are
independent of 7', it is somewhat surprising that the process y is positive before 7' and
vanishes right at 7'. The intuition for this result is best seen when p(#) = p. At first,
this seems even more puzzling since v is then also a time homogeneous diffusion.
However from (87):

eP(T=1) _ 1
e = UtT. (89)

Hence, the ratio of the two time-homogeneous diffusion processes is just a function
of the time to maturity.

The process y has the same qualitative behavior as w in that they both proxy for
both time to maturity and the risk-neutral expectation of remaining volatility. Recall
that under SVRH, it is sufficient to use the pair (F, w) as state variables in place of
the triple (F, v, t). Likewise, the time homogeneity of the y process makes it possible
to use use the pair (F, y) as state variables in place of this triple. Furthermore, the
much simpler form of the volatility of y suggests that the pair (F, y) should be used
in place of (F, w).

The definition (83) of y makes it clear that it reduces to w when ¢ = 0. This
suggests that the complexity of w vanishes if we simply assume that the risk-neutral
process for v has no quadratic component. Compared to modelling the y process, this
third approach for dealing with the complexity of w has the disadvantage of imposing
structure on the risk-neutral drift of v that may not be supported by the (options) data.
However, it has the conceptual advantage of focussing our assumptions concerning
price dynamics on a static position in variance swaps, rather than a dynamic one.
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As the traditional approach in the asset pricing literature has been to place structure
on the price dynamics of a static position, the next section elaborates on this final
approach for dealing with the complexity of w and its volatility.

9 Simple variance swap rate dynamics

This section shows that setting ¢ = 0 in the risk-neutral drift of v leads to much simpler
valuation formulas and dynamics for w. In particular, the value function w(v, t; T')
becomes proportional to v, while the function g(w; T') governing w’s volatility be-
comes proportional to w. Setting ¢ = 0 in the risk-neutral drift of v does imply that it
no longer mean reverts to a positive level. However, it should be remembered that this
property applies only to the risk-neutral process. We show that a standard specification
for the market price of v risk results in a specification of the statistical v process which
is just the quadratic drift 3/2 process discussed in the last section. Hence, the tracta-
bility of the risk-neutral process discussed in the last section extends to the statistical
process to be discussed in this one. The quadratic drift in the statistical v process can
be interpreted as providing mean-reversion to a positive level. The novelty compared
to standard affine models is that the speed of mean-reversion is proportional to the
level of v. As already mentioned, the martingale component of this statistical process
has received much empirical support.
In this section, we assume that the dynamics of v under Q are given by:

dv; = p(tyvdt + ev)?dW,, t€[0,T]. (90)

In other words, we have set ¢ = 0 in the only v dynamics consistent with both our
SVRH and the MIDH. Setting ¢ = 0 in the ODE (81) implies that it simplifies to:

€2y? 92 9
————h(y) — —h 1=0, 0, 91
> 9y ) oy O+ y > O

A simple solution which meets the boundary conditions #(0) = 0 and li?(% %h( y)=1
y

is:
h(y)=y, y=>0. 92)
As a consequence, (77) implies that the variance swap rate is proportional to v:

T i
w@vﬂ):/ el PGyt e 0, T, v>0,T > 0. (93)
t

Recall from the last section that the probability density function of v is known from
the work of Cox et al. (1985), when the risk-neutral v process is time-homogeneous.
It follows from (93) that the probability density function for w7 is also known by the
change of variable formula, under time-homogeneity of the risk-neutral v process.
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As (92) implies that %h(u}) = 1land A1 (w) = w, (80) implies that:
gw)y=€ew, w=>0,T >0. %94)
Hence, the risk-neutral w dynamics simplify to:
dw;(T) = —v;dt + ew,(T)Jv:dW;, t €0, T]. (95)
Since € also appears in the v dynamics, it must be independent of 7. Hence, our
model (95) makes the strong empirical prediction that variance swap rates of different
maturities have the same (lognormal) volatility. This feature is not shared by the more
general solution of the last section.

As for the statistical process for v, we know that the volatility is the same under P
and Q. In contrast, the drift under the statistical measure PP is:

EF[dvi|vr, 1] = [p(t)v + A(v;, D]dt. (96)

Suppose that we specify the following quadratic form for the market price of v risk:
(v, 1) = Ao(t) + A1 (v + A (v?, v =0,1€[0,T]. 97)

Then from (96) and (97), the statistical drift of v is

EF[dv v, 1] = {ho(1) + k(D)v/[0(1) — vi1}dt, (98)
where k(1) = —XAy(t) and 6(t) = —%. We assume that A>(#) < Oand A1(¢) >
—p(t) sothat k(#) > 0 and 6(¢) > 0. Now recall that zero is a natural boundary for
the risk-neutral process for v in (61). Thus a process which starts at zero stays there

forever. However, if the statistical drift is given by (98), then a process which starts at
zero moves away from zero unless:

do(t) = 0. 99)

Since [P and Q must be equivalent probability measures, we set Ag(f) = 0 and hence
the statistical process for v simplifies to:

dv, = k(v [0(1) — vi)dt + ev)2dW,, t €0, T]. (100)

Hence, ateach t € [0, T'], the process is mean-reverting towards 6 () > 0 with a speed
of mean-reversion « (t)v; > 0. As a result, we refer to the process described in (100)
as the mean-reverting 3/2 process.

Finally, we turn to the statistical dynamics for the variance swap rate w. From
(97) and (99), the absolute drift compensation at time ¢ for exposure to ev?/ 24 W,
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is Ar(H)vy + kz(t)vtz. Since the martingale component of dw; is just ’l‘j—: times the
martingale component of dv; it follows that:

" wy = L Ov +dav]] 1€ (0,71, (101)
t

Simplifying implies that w'’s relative risk premium is affine in v:
7 =r@) + (v, te€][0,T] (102)

Restricting dynamics to the model specified in this section, (12) and (94) imply that
the valuation function IT(F, w) for a path-independent claim satisfies the following
second order linear elliptic PDE:

F? azn(F )+ e 9211 F )+62w2 azn(F ) an(F Y= 0
R — ) € ) ) ) - N B =Y,
2 gp2 W T eew e Y 2 w2 W T et Y

(103)

on the domain F > 0, w > 0. We further require that IT(F, w) satisfy the boundary
conditions:

I(F,0) = f(F), F >0, (104)
IO, w) = £(0), w >0, (105)

and satisfy growth conditions as F and w become infinite.

Note that this valuation model is extremely parsimonious. The forward price of an
option can be numerically valued once one knows its strike price, the futures price of
the underlying asset, the initial variance swap rate of the same maturity, and the two
parameters p and €. The average level of the implied volatility smile of maturity 7 is
positively related to the observable variance swap rate w,. The average slope of the
smile is positively related to the correlation parameter p. The average curvature of the
smile is positively related to the volvol parameter €.

One can use finite differences or finite elements to numerically solve the above
boundary value problem. One can also use Monte Carlo simulation of just the vari-
ance swap rate over an infinite horizon as discussed in Sect. 6. Alternatively, one can
use the Romano Touzi trick to just simulate v over a finite horizon using (61). The
choice of whether to simulate w or v depends on how close w is to the origin.

Recall that the last section derived the joint Fourier Laplace transform of X7 and
(X)) 7 under the quadratic drift 3/2 process for v. Of course, this formula can be applied
to our current setting of proportional risk-neutral drift simply by setting g = 0. Fur-
thermore, we can substitute out v and ¢ for w to instead relate this transform and
its derived quantities to the more observable variance swap rate. When calibrating
an option pricing model, it is useful if call values can be efficiently expressed as a
function of strike price. Since the characteristic function of In Fr is a known analytic
function of In F, w, and ¢, the results of Carr and Madan (1999) imply that the fast
Fourier transform (FFT) can be used to efficiently obtain call values as a function of
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log strike. As shown in Chourdakis (2004), the fractional FFT can be used to speed
up results even further.

10 Pricing and hedging volatility derivatives
10.1 Pricing and hedging derivatives on realized variance

Before variance swaps became active, swaps were traded over-the-counter on realized
volatility. Since volatility is the square root of realized variance, a volatility swap is
a derivative security on realized variance. Recently, options on realized variance and
options on realized volatility also became available.

To value derivatives on realized variance, recall the assumptions made on the futures
price F and the variance swap rate w under the statistical measure P:

dF,
- = Mdt + /vid By, (106)
t
dw, = (m"w; — v)dt + g(wy) /v dW;, t€[0,T], (107)
where:
dB,dW, = pdt, tel0,Tl]. (108)

It turns out that to value derivatives on realized variance, only the w dynamics are
relevant. Hence for the rest of the paper, we can let the futures price jump and we need
no assumption on the nature of the correlation between the two Brownian motions B
and W.

Let X; = In(F;/Fp) be the log price relative and let (X), = fot vsds be its qua-
dratic variation. We assume that the payoff on the volatility derivative is some known
function of just (X)7. Let V(w,q) : RT x RT — R be a C>! function and let
V: = V(wy, (X)) be a continuous stochastic process. [td’s formula implies that:

L) T 3
V(wr, (X)1) = V(wo,0)+/ a—V(wz, <X>t)dwf+/ —V(w;, (X))d(X),
0 w 0 aq

T ,2 2
) 3V
+ [ v (109)

Suppose that we add and subtract fOT %V(Ft, wy)vedt. Then V(wr, (X)7):

L Tra
=V(wo,0)+/ a—V(wz, <X)t)(dwt+vtdt)+/ [—V(wt, (X))
0 Jw 0o Ldg

2 52 0
£ L Ve, (X))~ =V, <X>f)} v, (110

+
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Suppose that the function V(F, w) solves the following second order linear parabolic
PDE:

B2 2(w) 3%V aV
W gy + E Y - D=0, w0950, (11)
aq 2 Jw ow

Further suppose that:

Since wr = 0, substitution of (111) and (112) in (110) implies:

Ty
FUX)T) = V(wo, 0) +/O %V(wz, (X)) (dw; + v,dt). (113)

Thus the payoff on the volatility derivative can be exactly replicated if one charges
V(wo, 0) initially and holds %V(w,, (X);) variance swaps at each ¢t € [0, T'].

As in the last section, time is irrelevant because the realized volatility derivative
matures at the same time as the variance swap. The boundary value problem (111)
and (112) has the same computational complexity as the one arising under a standard
stochastic volatility model. However, once again we do not need to know the dynamics
of the instantaneous variance or know the market price of volatility risk.

If finite differences are used to numerically determine the value function V(w, q)
on a grid, then one usually supplies 3 boundary conditions. To illustrate, suppose
we wish to numerically determine the value of a put on realized variance. Then one
boundary condition is:

V0, q) = (K—%)+, g > 0. (114)

As w gets large, it will take a lot of realized quadratic variation to bring it down to
zero and hence:

lim V(0,¢4) =0, ¢ > 0. (115)
wtoo

Finally, since quadratic variation can only increase, the final boundary condition is:
V(w,KT)=0, w=>0. (116)
The PDE can be solved on the domain g € [0, KT], w > 0.

When we specialize to the dynamics of the last section, the valuation PDE simplifies
to:

aV w? 9%y E)Y
—w g+ ——wq9) ——w,q)=0, w>0,g9=>0. (117)
aq 2 ow ow
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If one wants a supporting SV model where the risk-neutral process for v is a diffusion
with maturity independent coefficients, then one should also assume a continuous
futures price process, constant correlation, and the quadratic drift 3/2 process (61) for
instantaneous variance.

It is also possible to write down the fundamental PDE operating for a European-
style claim when the terminal payoff depends on both the spot price and the realized
variance of returns. For example, the payoff could be the realized Sharpe ratio. In this
case, we need to assume the continuous dynamics in (106) to (108). There are three
independent variables F, w, and g in the PDE and it also has the same form as the PDE
arising in a stochastic volatility model. Since we are not yet aware of any contracts
with this complexity, we leave the details to the reader.

10.2 Pricing and hedging derivatives on the variance swap rate

The CBOE recently revamped the definition of its well known volatility index known
as the VIX. The new VIX is an average of two synthetic variance swap rates with the
weights deterministically varying over time in such a way that the time to maturity
is fixed at 30days. Once a month, only one synthetic variance swap rate is used to
calculate the VIX and by design, this date is also the maturity date for VIX futures,
which began trading in March 2004. It turns out that VIX futures at time ¢ are valued
by determining the risk-neutral mean of ,/wg, where S € (¢, T') is the futures maturity
date. Hence, VIX futures is an example of a derivative security written on a variance
swap rate.

To value derivatives of this kind, let s; be the value at time ¢ € [0, S] of the variance
swap rate for maturity S:

S
s,:EQ/ vudu, t € [0, S]. (118)
1

Working under P, we assume that the dynamics of this variance swap rate are given
by:
dSl = (JTtSSl — 'U[)dt + h(s,)\/v_[dB,, t e [0, S], (119)

where B is a standard Brownian motion under P. Here, 7° is a stochastic process
representing compensation for A (s;) differing from zero. Also, A(s) is a function of
just s and is independent of # and v. We continue to assume that the statistical process
for w is given by (9), which we repeat here for convenience:

dw; = (" w; — v)dt + g(w) /v dW;, 1 €10, 5], (120)
where g(w) is a function of just w and is independent of ¢ and v. We assume that the
correlation between the increments of the two variance swap rates is a function of the

two rates:

dBidW, = p(s;, w)dt, tel0,S]. (121)
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We do not need to specify the process for the futures price F or the correlation that
the Brownian motion Z driving it has with B or W.

Let V(s,w) : Rt x Rt > R be a C%2 function and let V; = V(s;, w;) be a
continuous stochastic process. Itd’s formula implies that:

59 59
V(ss, ws) =V(SO,wo)+/ _V(St,wt)dst+/ —V(s, wp)dw,
0 as 0 Jw

STh%(s;) 92V Y%
+/0 [ é[ ﬁ(sts wy) + p(sr, w)h(s;)g(wy) 350w (s¢, wy)

+g2(wl)32_v
2 Qw?

(s, wt)j| vedr. (122)

Suppose that we add and subtract fOS aa—sV(s,, w;)v;dt and fOS %V(s,, w;)v;dt. Then
V(ss, ws):

59 59
= V(s0, wo) +/ —V(ss, w)(ds; + v, dt) +/ —V (s, w)(dw; + vedt)
o 0s 0o odw

STh2(s;) 92 %V
+/ [ 2’ ﬁV(Sz,wz)ﬁLp(st,wr)h(st)g(wz)—(Sz,wr)
0 K asow

2 2
(wy) 9 0 ]
8 5 t 3w2 V(s[, U)[) _ 8S_V(St’ wt) — —awv(st, wt)] Uldt. (123)

+

Suppose that the function V(s, w) solves the following second order linear elliptic
PDE:

h%(s) 3>V EEaY g (w) 8%V
> ﬁ(s, w) + p(s, w)h(S)g(w)asaw(s, w) + > m(s, w)
Wy = Ysw =0, (124)
as ow

on the domain s > 0, w > 0. Further suppose that:
V0, w) =h(w), w>0. (125)

For example, ignoring normalization constants, the boundary condition for VIX futures

V(? ) ‘lTwS,’ . ( )

Since sg = 0, substitution of (124) and (125) in (123) implies:

59 59
h(ws) =V (so, wo)+/ —V (s, wy)(ds, + vzdt)+/ —V(sr, wi) (dw; +-vedt).
0 as 0 ow

(127)
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Thus, the payoff on the variance swap derivative can be exactly replicated if one
charges V(sg, wo) initially and one holds % (s¢, wy) variance swaps of maturity S and

%(s,, w,) variance swaps of maturity 7" at each ¢ € [0, S].

Note once again that we do not have to specify the process for v. This robustness
survives even if g depends on s and/or & depends on w, but these dependencies seem
strained. An example of a supporting stochastic volatility model is when the statistical
process for v is the mean-reverting 3/2 process (100). In this case, W = B and hence
p (s, w) = 1. The bivariate statistical process for (s, w) becomes:

ds; = (7} sy — v)dt + e /vd Wy,
dw; = (" w; — v)dt + ew /v, dW;, t €10, S]. (128)

11 Summary and future research

This paper showed that the payoff to a path-independent claim of maturity 7' can be rep-
licated by assuming continuous price processes and continuous trading opportunities
for the T maturity futures price and the 7 maturity variance swap rate. Furthermore,
so long as the martingale component of the statistical process of the variance swap rate
satisfies our SVRH as specified in (5), then one can price the claim relative to these
observables without knowledge of the level or statistical process for the instantaneous
volatility. We showed how to calibrate the pricing model to a given array of Euro-
pean option prices of all strikes and maturities. Whether or not the model is calibrated
to these options, valuation requires solving a boundary value problem containing a
second order linear elliptic PDE in just two independent variables. This problem can
be numerically solved using finite differences, finite elements, or by Monte Carlo
simulation.

Furthermore, we investigated the implications of requiring both SVRH for the
variance swap rate and a maturity independent risk-neutral diffusion process for the
instantaneous variance rate v. We showed that this latter diffusion must have risk-
neutral drift of the form p(t)v; + qvt2 and must have a diffusion coefficient pro-

portional to v,3 . Although this specification was achieved purely from theoretical
considerations, it has received a surprisingly large amount of empirical support. We
showed that this process has sensible behavior provided that ¢ < % and p < % Both
of these constraints are automatically met if the v process is mean-reverting and if the
leverage effect is present. This v process is flexible in that there is a free function of time
p(t) in the risk-neutral drift, which can be used to match a term structure. Although
this free function is equivalent to an infinite number of parameters, the proposed v pro-
cess is still extremely tractable. In particular, we showed that the joint Fourier Laplace
transform of returns and their quadratic variation can be derived in closed form. We
also derived closed form formulas for the variance swap rate and its volatility. To
simplify these latter formulas, we focussed on a special case where the risk-neutral
drift for v is linear in v. In this case, the variance swap rate is proportional to v and
its volatility is proportional to the instantaneous volatility of the underlying futures.

Although this simple risk-neutral v process does not accomodate mean-reversion to a
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positive level, we showed that the corresponding statistical v process can accomodate
this desirable property, provided that the speed of mean-reversion is proportional to
the level of the process.

Future research should explore the extension of these results to other path-depen-
dent options such as barrier and Asian options. As it is likely that numerical solution
will be required to value these exotic options, it is worth noting that the elimination
of time to maturity as an independent variable in the PDE speeds up valuation by an
order of magnitude. The extension to finite-lived American options requires adding
time as a state variable unless the exercise boundary can be expressed as a function of
w.

We note that it is straightforward numerically to allow the correlation between
returns and increments in the variance swap rate to be a function of the futures price
and the variance swap rate. Since this correlation also describes the correlation between
returns and increments in the instantaneous variance, the dependence of this correlation
on the variance swap rate can be debated.

We could also consider the application of our result to other kinds of problems. The
process y is a bridge process which stays positive prior to 7 and vanishes right at 7.
Perhaps, this process could be used to describe the dynamics of a finite-lived annuity
under stochastic interest rates. Alternatively, it could be used to model the difference
between the face value and present value of a zero coupon bond.

For a fixed maturity 7', we have shown that is possible to model a scalar bridge
process with stationary dynamics. One can try to extend these results to a multivariate
setting. If these results are extended to modeling a continuum, one could evolve a cross
section of equal maturity objects. For example, one could evolve the strike structure
of option prices by separate modelling of each option’s intrinsic and time value. Note
that the strike structure of time value is just the strike structure of expected local time.
Alternatively, one could model the evolution of a conditional characteristic function
by modelling the required convexity correction at each level of the Fourier argument.
In the first case, the randomness induced perturbation to intrinsic value is additive and
positive, while in the second case it is multiplicative and negative. As it is desirable
to impose cross sectional restrictions in either case, these extensions are best left for
future research.
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Appendix 1: Proof of Theorem 1

This appendix proves that

n

ar"

nn—1)

M(F, w) = E& [f“”(ﬁ,)e > f|ﬁO=F,w0=w], n=012...,
(129)
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where under the measure Qn, the process I:“, solves the SDE:

dF,
L = ndt + pdZ\" + 1= p2dz{’, >0, (130)
E

t

and the process w; solves the SDE:
dw; = [npg(w;) — 11dt + g(w,)lel , t>0, (131)

where Z i") and Z é") are independent standard Brownian motions under the probability
measure Q,, and T is the first passage time of W to the origin.

The proof is by induction. For n = 0, the result holds by the Feynman Kac
Theorem. Now suppose that (129)—(131) holds for some fixed n. To show that it
also holds for n + 1, differentiate (129) w.r.t. F:

A

3n+1 A . OF
T(F, w) = E9 [ﬂ"“)(a)a—;e

3Fn+l

n(n—l)_[ A N
T Fp=F,wo=w |,

n=0,1,2..., (132)

by the chain rule. From (40):

dF,
BFT =""M,, (133)
where:
M, =e —§i+0Z{)+ ﬂﬂé’fﬁ, t>0 (134)

is a positive Qn martmgale with mean one. Substituting (133) in (129) and using M,
to change measures from Qn to Qn+1 implies:

3n+1

3Fn+1

M(F, wy=EQet [ f0D (e ™S Fy=F by =w], n=0,1,2...,
(135)

where under the measure Q n+1, Girsanov’s theorem implies that the process E 1 solves
the SDE:

F, 1
L= ndt + ——d(F, M), + pdZ""*V + 1 = p2az{"V

t Ft t

= (n+ Vdt + pdZ""V + /1= p2az0*V, 1 >0, (136)
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and the process w; solves the SDE:

A ~ 1 ~ ~ (n+1)
dw; = [npg(wy) — 1]dr + ﬁéﬁw, M) + g(w)dZy,
t

= [(n + Dpg(h,) — 11dt + g(ib)dZ"™D, >0, (137)

where Z §n+l) and Zénﬂ) are independent standard Brownian motions under the prob-

A

ability measure Q1.

Appendix 2: Proof of Theorem 2

Recall the parabolic PDE governing the variance swap rate w:

9 i T)+b2(t’ LI (1 v: T)alt, v)w(t. v: Ty+v = 0. (138)
—w(t, v; — ——w(t, v; a(t,v)—w(t,v; v =0,
ot 2 dv? v

on the domain v > 0, ¢ € [0, T'], and the terminal condition:
w(T,v;T)=0, v>0. (139)

Differentiating (139) w.r.t. v implies:
0
8—w(T, v;T)=0, v>0, (140)
v

and differentiating again implies:

2

0
ﬁw(T, v;T)=0, v>0. (141)
v

Evaluating the PDE (138) at t = T and substituting in (140) and (141) implies:

d
Ew(T, v;T)=—-v, v>0. (142)

Differentiating (142) w.r.t. v implies:

2

0
%w(T, v;T)=-1, v>0. (143)

Now, recall from (57) that we want:

b(t,v) = , tel0,T],v>0. (144)
g’—vw(t, v; T)
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If we try to evaluate this expression at time 7', then in order for b to be finite, we must
have:

g(0;T)=0, T>0, (145)

from (139) and (140). Assuming that g(0) = 0, L’Hospital’s rule implies:

wy (T, v; T) 0
=—g0;T)v, v>0 (146)

9
b(T,v) = ——g(0; T)L V2 )
(v = 5580 DT = 3w

from (142) and (143). However, since b is independent of the specific maturity 7, it
must have the same form prior to 7" as it has at 7, i.e.:

0
b(t,v) = —gO; THv, te[0,T], (147)
Jw
where:
0
—g(0;T) =, (148)
ow

with € independent of # and 7.

Having determined the required form of the risk-neutral diffusion coefficient of v,
we now turn to the problem of determining the required form of the risk-
neutral drift of v. By definition, w;(7) is just the risk-neutral expected value of the
area under the path of {v,, u € [t, T]}. Hence by a coupling argument, the function
w(t,v; T) : [0, T) x RT x RT > R is increasing in v at each t € [0, T), T > 0.
This allows us to define an inverse function v(¢, w; T) : [0, T) x RT x Rt = RT
with the property that:

v, wt,v;T; T)y=v, tel[0,T], T > 0. (149)
Since w(t,0; T) = 0, we have:
v(t,0;T)=0, te€[0,T), T >0. (150)

: d 1
1mnce —+— t T) = ————
S avw( ’ Uv ) Lv(t,w;T)

ow

ont € [0,T),w>0,v>0,T > 0, (57) can be

rewritten as:

2o, w;T) e
vt w; T)  g(w; T)’

tel0,T),w>0,T >0. (151)

Integrating w.r.t. w:

Invt,w; T)=Gw; T)+y; T), t€l0,T),w>0,T >0, (152)
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where for each fixed T > 0, G(w; T) is an anti-derivative of ﬁ considered as a
function of w, i.e.:

1
G(w; T) E/ (; Fde wz0.T>0, (153)

and y(¢; T) is the arbitrary constant of integration. Evaluating (152) at w = 0 implies
that:

G0;T)=—o0, T >0, (154)
from (150).
Exponentiating (152) implies:
6,G(w;T)
v(t,w; T) = T tel0,T),w=>0,T >0, (155)

where x(¢; T) = ¢ ¥1) Now v(r, w; T) solves the following nonlinear PDE:
3 2(w; T 32 d
vt wiT) + %v(r, wi T) 5 v(t i T) = vt wi T) v(t, wi T)
=a(t,v(t, w; T)), (156)

on the domain ¢ € [0, T), w > 0, T > 0. Differentiating (155) w.r.t. t implies:

3 (s

3 * (0 T)eG(w;T)

x2(t; T)

2xt; 1)

=—>—v@t,w;T), te€l0,T),w=>0,T >0, (157)
x(t; T)

0 ¢ w;T)
—u(f, w; = —
Jt

from (155). Differentiating (155) w.r.t. w instead implies:

0 0
—ov(t,w; T) =v(w,t; T)—Gw; T)
Jw Jw

=v(t,w; T) , tel0,T),w>0,T >0, (158)

€
gw; T)
from (153). Differentiating w.r.t. w one more time implies:

2

w5 T) = v w; T)— T g(w: T)
awz B T Y e(w: T) 2w, T) dw"
€ 0
= v w T [ w: T)] v D) Ty aw S T
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ont €[0,T),w>0,T > 0 from (158). Multiplying by gz(w; T) implies that:

92 9
Cw; T)—v(t,w; T) = ev(t,w; T) |e — —gw; T) |,
dw? ow
tel0,T),w>0,T > 0. (159)

Substituting (157), (158), and (159) in (156) implies:

0 0
o aX@T) . ele —gpgwi D] ,
at,v(t,w;T)) = YT v(t,w; T) + 5 vi(t,w; T)
—02(t, w; T)iG(w; T), (160)
Jw

ont €[0,T), w>0,T > 0. Substituting in (153) and dividing by v(¢, w; T):

at,v(t,w;T)) _%x(t; T) 3 ) vt wi T) )
v(it,w; T)  x(t;T) el = gu(wi DI g(w; T)”(t’ w; T)
D (e . Gw;T)
L 5 X (65 T) B ) v(t,w; T) B 1  ece
= ) e swwi DI/ X T) gwi T
(161)

from (155).
To analyze further, we need a more explicit form for the function G. Equations
(145) and (148) imply that we can write:
gw; T)=cwgi(w; T), w=>0,T>0, (162)
where g1 (w; T') is a smooth function satisfying:

g 0:T)=1, T>0. (163)

Substituting (162) in (153) implies:

1
1
Gw;T) = —/ —dy
w Y81 (y; T)
" a1 T)—1
- —/ —dy+/ s -1, (164)
w Y w y&1(y;T)
But now the function:
T)—1
k() = S D 1 (165)
ye1(y; T)

is a bounded function of y in the interval [0, 1] since g;(0) = 1. The boundedness
implies that k,,(y; T) is also an integrable function of y in the interval [0, 1], and
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hence (164) implies that:
Gw;T)=Inw+k(w;T), w>0,T >0, (166)
where k(w; T') is some smooth function. Exponentiating (166) implies:
OWT) — kW) )y 5 0, T > 0. (167)

Consider the factor multiplying ﬁ in the last term in (161). Now, (162) and (167)
imply that:

) SEG(w;T) ) Ewek(w;T) ] ek(w;T) HO:T
lim ————— = lim = lim = 0 ), (168)
w0 g(w; T)  wlo gw;T)  wlogi(w;T)
from (163).
As w | 0, substituting (148) and (168) in (161) implies that:
. 9 (- k(0;T)
T ;T
im a(tvv(ta wa ) :_th( ) _ e . (169)
wl0 v, w;T) x(t; T) x(t;T)

Now, the MIDH requires that the function a(#, v) is independent of T, so suppose that
we choose x(¢; T') so that:

%x(l; T) ek O:T)
x(t; T) x(t; T)

= p(1), (170)
where p(¢) is independent of 7. Then x(¢; T) solves the ordinary differential equation:
0 :
S X T) +x( TYp(t) + &1 =0, rel0,T]. (171)

To obtain a terminal condition for x, let us assume that g(w; T) > Oforw > 0, T > 0.
Since € > 0, it follows that m > 0 forw > 0, T > 0. Hence, (153) implies that
G (w; T) is increasing in w for each T > 0. It follows that for each T, the inverse
function G~ ! exists. From (154):

G '(=00:T)=0, T >0. (172)
Solving (155) for w implies:
w(t,v;T) = G_l(ln(x(t; Tyv);T), t€l0,T),v>0,T > 0. (173)
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Evaluating (173) at t = T and using (54) and (172) implies that our desired terminal
condition is x(7T; T) = 0. Substituting (170) in (161) implies:

a(t,v(t, w; T)) ek (O:T) 1 geGwiT)
————— =rO+

v(t, w; T) x(t;T)  x(t;T) g(w; T)
v(t,w; T)
+e(e — guw(w; T))T‘ (174)
Dividing by v(¢, w; T) implies:
a(t,v(t,w; T)) . p(t) ek O:T) 1 geCwiT)
v2(t, w; T) o v(t,w; T)  x(t; v, w; T) x@; T)vt,w;T) g(w; T)
£
+§(8 — guw(w; T))
p(t) ek(O;T) 1 SeG(w;T)

5(8 — guw(w; T)),
(175)

= - +
v(t,w; T)  eCwT)  Gwil) o(y; T)

from (155).
Now letting + 1+ T and w | 0, we will have g(w; T) | O from (145) and
gw(w; T) — ¢ by (148). Therefore:

a(T,v(T,0;T))  p(T) | LD ge@i D
VAT,0;T)  o(T,0;T)  wlo| G oGCwiD)g(w; T)

T K(O:;T) _ k(w:T) T
__r@D ttim | € e '/gl(w, ) (176)
v(T,0;T) wl0 wekw;T)
from (167) and (162). Let:
&w;T)=1/g1(w; T). (177)

Hence, the last term in (176) can be written as:

ek(O;T) _ ek(w;T)/g1 (w; T) im ek(O;T) _ ek(w;T)gz(w; T)

111}?(1) wek@:T) wl0 wek:T)
KO ki) e (w; T)
= lim - .
wl0 wekw:T) w
(178)
Substituting (163) in (177) implies that:
lim g (w; T) = 1. (179)
w0
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Substituting (179) in (178) implies that:

k(0;T) _ k(w;T)/ - T
e e gi(w;T) o
Bir(l) kT =—k'(0;T)—g,(0;T)=¢q, T >0, (180)

where the required maturity independence of a implies that g is independent of 7 and
t. Substituting (180) and (149) in (176):

a(T,v) = p(T)v+qv>, v>0,T >0. (181)

However, the required maturity independence of a implies that for ¢t € [0, T'], the
risk-neutral drift a(¢, v) has the same form, i.e.:

a(t,v) = p(Hv+qv?, t€[0,T],v>0. (182)
This completes the proof of Theorem 2.
Appendix 3: Proof of Theorem 3
Let Q denote risk-neutral measure and let the futures price process be continuous:
dF; = Jv FdZ,, tel0,T], (183)

where v; is the instantaneous variance at time ¢ and Z is a Q standard Brownian
motion. We assume that the risk-neutral process for instantaneous variance is:

dvi = pyw +qv} | de + e} "aW,, 1 €10,7), (184)

where W is a Q standard Brownian motion. Here, p(t) is an arbitrary function of time,
q is an arbitrary real scalar, and € is a positive constant. The increments in the two
Q standard Brownian motions have arbitrary constant correlation p € [—1, 1] at time
tel0,T]

dZ,dW, = pdt, t€[0,T]. (185)
Let X, =In (%’)) be the log price relative. Then by applying 1t6’s formula to (183):
dX, = —%dt + JudZ,, (186)

The quadratic variation of X is given by:
t
(X)¢ =/ vsds. (187)
0
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Let:
T, 5) = EQ [ = @r=00] 1y, = x, vy = ] (188)

be the joint conditional Fourier Laplace transform of X7 and (X)7 — (X), with argu-
ments u and s defined on some domain D in C? where the expectation exists. This
domain always includes the union of # € R and s defined on a half plane in C with a
sufficiently large real part.

Let J (x, v, t) denote the joint Fourier Laplace transform considered as a function of
the backwards variables x, v, and ¢. Standard results imply that J solves the following
second order linear parabolic PDE:

2 2 2,3 92

0J vocJ 2 J e“v’ 0°J
E(X,v,t)-i'zﬁ(?ﬂv,t)-i',%v 8x8v(x’v’t)+7m(x’v’t)
vaJ 107
2 v — [p(t)v +quv ] 2 v, 1) = svd (x, v, 1), (189)
20x v

onx € R,v > 0,7 € [0, T]. The function J also satisfies the following terminal
condition:

J(x,v,T)=¢", xeD,v>0. (190)

Since the origin is an aborbing boundary for v, the function J (x, v, t) also obeys the
lower boundary condition:

hf& J(x,v,t) =", xeD,tel0,T] (191)
v

By the Riemann Lebesgue lemma’(see Champeney (1987), p. 23), the function
J(x,v,t) also obeys the upper boundary condition:

lim J(x,v,t) =0, xeD,tel0,T]. (192)
vtoo
Finally, we require that:
lim |[J(x,v,t)| <1. (193)
x—+o0

Notice that the coefficients in (189) are independent of x. Now suppose that we
guess that:

J(x,v,1) = " Lz, v), (194)

3 This lemma is also known as Mercer’s theorem.
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where L(¢, v) depends on u# and s implicitly. Substituting this guess in (189) implies
that L(t, v) solves the linear second order PDE:

9 Lv)+ v o L(t v)—i—[ ) + ~v2] 9 Lt v) — wL(t.v) =0
ar 2 a2 p v 5y =0
v>0,1¢el0.T]. (195)
where:
q =q + peiu (196)
and:
. 2
u u
A= —_ 4 —. 197
s+ > + > (197)

From (190), the function L(t, v) also satisfies the following terminal condition:
L(T,v)=1, v>0. (198)
The lower boundary condition corresponding to (190) and (191) is:
L(t,00=1, te][0,T]. (199)
The upper boundary condition corresponding to (192) is:

lim L(t,v) =0, te[0,T]. (200)
v1oo

Now suppose that we guess that L depends on ¢ and v only through some particular
intervening variable y. Specifically, we guess:

L(t,v) = £(y), (201)

where:
T
y= / el P@du gy oy (202)
t
Then, differentiating (201) w.r.t. ¢:

0
ELO’ v) = WMl=v - p@)yl. (203)

Differentiating (201) w.r.t. v instead:
P T .
oL@ = 0(y) / el padu gy (204)
v t
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Differentiating (204) w.r.t. v:
52 T 2
Sl v = " (y) ( / e ”(“)d“dt’) . (205)
t
Substituting (203), (204), and (205) in (195) implies that:

2 2

€ U3 T 4
COI-v - piyl+ - 0) ( / ol P(“)d”dt’)

t
T
+Hp(0)w + 10 (v) / el POmar = he(y). (206)
t
fory > 0, € [0, T']. From (202), the terms involving p(¢) cancel. Cancelling these
terms and multiplying through by ftT el Pwdugy 202y implies:

62y3 .
— Uy +—-'M+ Gy* ' (y) —aye(y) =0, y>0. (207)

Finally, dividing by y implies that £(y) solves the following linear second order ODE:

€2y2
Tﬁ”(y) + @Gy — D) =My =0, y>0. (208)

To satisfy the terminal condition (198) and the boundary condition (199), we require:
£(0) = 1. (209)
To satisfy the upper boundary condition (200), we require:

lim £(y) = 0. (210)
ytoo

We now show that we can do a change of dependent and independent variables
which converts (208) into a confluent hypergeometric equation. In particular, let:

h(z) =z %(y) (211)

be the new dependent variable, where:

= é (212)
y
is the new independent variable, with the constants « and § to be determined.
From (211):
£(y) = 2%h(2). (213)
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Differentiating (213) w.r.t. w:

0 = —a Ly - ow i L
y y
o il a+2 ,
=——2"h(z) - h'(z), (214)
B B
from (212). Hence, the middle term in (208) is:
- 1 g
<m~4Whm=(——z)hﬂ“mw+f“M@] (215)
Bz
Differentiating (4) w.r.t. y:
+ a+1 ) a+1 oz+2
oy =2 D eny + o+ CFE v+ ).
y y y
(216)
Hence, the first term in (208) is:
2.2 2 1 7 +2
55?—@”<y>==f—95%}jl—3 “h@)+e @+ DI @ +E Q). Q1)

Substituting (213),(215), and (217) into the ODE (208) implies that:

a+2 Zoz+2
ezTh”(z)—f-[[ez(a—i-l) g1t + 3 ]h’(z)

2
+[[M _ga_x} Z“-{-%Z‘H‘l]h(z) —0. 218)

Suppose that we require that o solve the quadratic equation:

Eala+1)
— s — ¢4

> a—Xi=0. (219)

Note that A is complex so « is as well. Further suppose that we multiply (218) by

52_&+1 to make the coefficient of 4" (z) equal to z.

2 2
zh"(2) + [2 [a +1— } + —z] W (z) + 2—ah(z) =0. (220)
°B ep

Now suppose that we choose:

p=-= (221)
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to make the coefficient of z in the middle term equal to —1. Hence, from (212) and
(221), the change of independent variable is:
2
z=—-——, y>0. (222)
€7y

Note that 8 and z are real.
Substituting (221) in (220) implies that it simplifies to:

zh"(2) + [2 [oz +1- 5—2] — z] h(z) —ah(z) =0. (223)
Letting:
)/EZ[OH-]—%] (224)
€

implies that (223) further simplifies into the following confluent hypergeometric equa-
tion:

() + (v — D)W (2) —ah(z) = 0. (225)

It is well known that the general solution to (226) is:

h(z) = AM(a; y; 2) + BU (s v5 2), (226)

where:
M(a;y;z) = i @ 2 (227)

YT & n!
and:
Ula: y:2) = 7T [ M(a;y;z) _ZI_VM(1+o:—y;2—y;z)
V= i) |TA+a = 1T () T2 —y)

(228)

are two linearly independent solutions to the confluent hypergeometric equation (225).
The M function is not defined when y is zero or a negative integer, which from (224)
poses little restriction in our case. See Chap. 13 in Abramowitz and Stegun (1964) for
an extensive compilation of the properties of these functions.

From (213), the general solution to (208) is:

L(w) = Az"M(e; ¥52) + BZ*U(e; v 2)
—2\* -2 —2\* -2
=A|l5—) M{osv; 5—)+B\—=) Ulx;y; =), (229
€2y €2y €2y €2y
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from (222).

The constants A and B in (229) are determined by the boundary conditions (209)
and (210). We guess that we can meet these boundary conditions by taking B = 0 and
choosing the right root of (219). The quadratic equation (219) determining « can be

written as:

o + ! q 2 0 (230)

—_— _—— — o — — = .
2 2 €2 €2

The two roots are:

L_4 + L_4 i +2 )L (231)
a=—|=-—= - — = —.
2 €2 2 2 €2
To make progress, we henceforth assume that the argument u is real and the argu-
ment s is real and positive. From (196), this implies that g has a nonzero real part and

a nonzero imaginary part.
We now prove that we can always choose the sign in (231) so that the real part of

« is positive. Take:
. A
a+lb:\/<§—6—2) +2€—2, (232)

where a and b are both real.

‘We then have:
a*—b* = {( 612) ]
AY p u?
=(--Z 2 —
(2 62) + 7t €?

from (196) and (197). Since |p| < 1 and s > 0, we have:

ST LA R I G A (233)
a” = - - = T —— ——=) .
2 €2 €2 €2 pr= 2 €2

Therefore we may always choose:

L2 (234)
>—-—— >0,
@757 a
such that a + ib is the root and also:
R L_4) .o (235)
ea=a—-——=)>0.
a=a 52
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This proves the result.

As z 1 0, the function M in (229) approaches 1. Since the real part of « is positive,
the prefactor (%)a = z% in (229) vanishes as y 1 oo. This is precisely the behavior
we want for £ as y 1 oo and z 1 0.

As y | 0, the last argument in M approaches negative infinity. From (Abramowitz
and Stegun 1964), (13.1.5), as z | —oo, the function M(«; y; z) behaves like
Fg/(zzx) (—z)7“. If we absorb the —1 in the prefactor of M into the constant A, then
the behavior of M in z is cancelled by the pre-factor. As our objective is to have £ = 1
asy | 0, we set:

B —
= (y—a)' (236)
L) (=D
Substituting (236) and B = 0 into (229) implies that our final answer for the function
£ is:
(= L= (2 Y —2 (237)
=— |5 ay; —— ),
Y L) \ey "y

where the confluent hypergeometric function M is defined in (227),

1 g 1 G\> .
——(--4 -_4 P
“ (2 62)+\/(2 62) + €?

yzZ[a—I—l—%},
€

and where:
q + peiu A + fu + v
= €eiu A=s+—+ —.
qg=49Tp 3 )
From (194) and (202), the function L(¢, v) is given by:
'y — 2 ¢ -2
L= L= M(wyi ), @
I'(y) €2y(t,v) e2y(t, v)
where:
T /
y(t,v) = / el Pwdu gy oy (239)
t

Finally, from (194), the joint Fourier Laplace transform is given by:

Ty — ) 2 « 2
T =CTTRG) (e2y(r,v>) M(“’y’ e2y<t,v))' 240
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The dependence of J on u and s occurs through « and y, which in turn depend on u
and s through g and X.

Appendix 4: Proof of Theorem 4

In this appendix, we derive a nonlinear ODE for the function g(w). We also derive
and solve a linear ODE for a function % relating w to y. This allows us to solve the

nonlinear ODE for g.
Recall from (174) that:

() = oo+ (G 2T ) e g T
a(t,v) = v — v+ —[e — w; v
b x(t:T)  x(t;T)gw; T) PR

k(0;T) G(w;T)
e ce € 5
= p(t — —le — T
P+ [x(t; Ty~ x@ Tog:T) T2~ su® )]] v
k(0;T)
_ ¢ __ ¢ £ . 2
=p)v + [eG(w;T) e T) +5le = guw(w; T)]] v (241)

If we set the expression:

KO:T)

& &
ST "y T2l gw i D=4, (242)

then the risk-neutral drift a(z, v) would become a quadratic function of v.
Note that differentiating (242) w.r.t. w yields a second order ODE for the function
g. To determine this ODE, rewrite (242) as:

k(O:T) ,~Gw:T) _ £ & T 243
e e q+g(w;T) 2[8 guw(w; T)]. (243)

Differentiating w.r.t. w implies:

_ kO —GaTy__ & _ _egwwiT) e T 244
c e g(w: T) 2y T8 e

from (153). Dividing out —¢ implies:

. . 1 ; T 1
HOT) = GOwiT) _ D) i T, (245)
gw:;T) gew) 2

Substituting (243) into (245) implies:

CgwiT) 1 ,
ewiT) 2Ty 28w D
(246)

= Tle — gy (w: T))
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Re-arranging (246) leads to (82). Note that (246) is a second order nonlinear ODE
for g(w) which can always be numerically solved subject to the initial conditions
g0;T)=0and g,,(0; T) =e.

To find an analytic solution for g, first recall that w(¢, v; T) solves the PDE:

g2’

a 3
Ew(t, v; T) + vav(t, v; T) + [p(O)v + qv*Tw,(t, v; T) + v = 0,
tel0,T],v>0,T >0. (247)

However (173) implies that there exists a function /4 that relates w to y = x(¢; T)v,
i.e. the function % is defined by:

w=~h(y;T) =G '(In(y); T), y=>0. (248)

Substituting (248) in (247) implies that the function i (y; T') satisfies:

2.3
ETV
By (s X5 T + ——hyy (35 T)x*(t; T)

+hy(y; T)x(t; T)[p(t)v + gv*] +v =0. (249)

Now recall from (171) that the function x(¢; T') satisfies the ODE:
9 k(0;T)
Ex(t; T)+ pt)xt; T)+e " =0. (250)

As k(0, T) is just some arbitrary finite quantity at each 7', we will set k(0,7) = 0
and sacrifice some of our freedom in finding a solution. Hence, we require that the
function x (¢; T) satisfies the ODE:

%x(z‘; T)+ p()x(t; T) +1 = 0. 251)

With this restriction, the solution of (250) subject to x(7'; T) = 0 is:

T
x(t:T) = / el PWdngy 0,71, T > 0. (252)

t
Using (251), we can reduce the ODE (249) for h(y) to:

2

&
S Y +h (i T gy =D +1=0, y=0. (253)

Evaluating at y = 0 and assuming that %, (0; T) and h,(0; T') are both bounded
implies that:

hy(0; T) = 1. (254)
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Since x(T; T) = 0 and w(T, v; T) = 0, (248) implies that a second initial condition
on his h(0; T) = 0. To find a solution to the ODE (253), we define:

R (y; T)=hy(y; T). (255)

The second order ODE (253) for % implies that h’y( y; T) satisfies the following first
order ODE:

82 2
—h’ (;T)+(qy—Dh(;T)+1=0, y=>0. (256)

Dividing by #
, 2q 2 2
HoiD+( S, - )V D+ 57 =0. vz 0. (257)
2q 2
Multiplying both sides of (257) by y<? e#*» implies that:
0 [ 2 2 29 o, 2
2e82Vh VT | = -y Zed. (258)
ay g2
Hence, integrating both sides w.r.t. y implies:
29 2 2 2
yZesyh (y; T) = C(T) +/ —ue “eudu, (259)
y €
where C(T') is the constant of integration. Notice that:

2 zl 2 2
/ —2us e2udu < 00, (260)
y €

since we required that i—;f < 1 to avoid explosions.
Thus, the desired function / relating w to y is given by:

yo_2 _u 2 2 29,5
h(y;T):/ e ez &2 (C(T)+/ —esuus du) dz. (261)
0 z €

We now will prove that C(T) = 0. We first derive the asymptotic behavior as
y — +oo of the function 4(y) in (261). Splitting % into the sum of two terms, we
have:

2

h(y;T) = C(T)/ Fiz e

Yo _2 [®2 24, 2
+/ 7 e —us* “eududz. (262)
0 Z &

@ Springer



141

A new approach for option pricing
The following lemma shows the asymptotic behavior for the first term in (262):

Lemma 1
Yo o_2 _2 c(T _2
e [ R e Far ~ L (263)
0 -
asy — +oo.
Proof The proof is straightforward. We only need to calculate the limit:
_2 _%
Z eze & zdz
lim J .
y— 400 1—%
y &
_2q _Z
. y e &
= lim o
y——+00 (1 _2q yl_?
&
. 1 -2
= lim s—e &
y—>+oo | — _;1
&
(264)

|

The asymptotic behavior for the second term in (262) is given by the following

lemma:
Lemma 2 We have the following asymptotic behavior:
y _2 _y TOD 29 5 2
/ e szzZ &2 / _zu 2 ec2udu dZ ~ 3 In v, (265)
0 z € 5 — 9
asy — +oo.
Proof Once again, we can calculate the following limit:
_2 _29 29 _o 2
foye 227 2 ( Z+oo 8%,“2 egzudu) dz
lim
y—+o00 Iny
_2 9 5, 2
L€ &2y ( v+°° %usz eszudu)
= lim y & ;
y—+00 =
y
29 _o 2
) y+oo s%u 2 “eudu
= lim 5
2
ye?
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29 5 2
Sy ey
= lim —£ 5
y—>-+00 (1 . 2_;]) yTZ_]
&
1
= = . (266)
&
7 49
O
Combining the results of the last two lemmas, we have just proved that:
Lemma 3
c(T) 1-x 1
hy) ~—=7y =+ 45 Iny, (267)
&2 2

asy — +o00.

We now prove that in fact C(7') = 0. For this purpose, consider the Laplace trans-
form:

L(t, v:s) = EQ (efs v dx}v, = v) , (268)

where s € RT. Setting u = 0 in (240), the solution is:

T,
L(t,v;s)=4£ (/ el padu gy v: s) , (269)

t

where the function £ is given by:

sy = L= (2N, 2 270
(yvs)_Ty) % ay,———1, ( )

where « is given by:

1 q 1 q 2 2
=—\{-—-= - — = — 271

and y is given by:

&
1 g\> 2s
=142 - — = —, 272
+/(2 1) .2 on)
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from (271). Now (271) and (272) imply that:

3 q 1 g 22
—a==-—-= - - = —. 273
y-oe=3 "924-\/(2 82)4-82 (273)
We can verify that:
J3_a. 1 4
—a>--—L -1
v 2 g2 2 g2
2q
=21
g2
> 1 (274)

by our usual assumption. Also note that in our current setting both « and y are positive
real numbers. As shown in Abramowitz and Stegun (1964), the confluent hypergeo-
metric function M (a, b; x) hs the following integral representation:

. — I'(b) : xt a—1 b—a—1
M(a,b,x)—m/o et (l—l) dt. (275)

Substituting (275) in (270) implies:

£(y;s) = L (= a/le_ﬁytt“—l(l — Y= 4. (276)
[(a) \ &2y 0

The definition of the Laplace transform suggests that s — 0, we have £(y; s) — 1.
This is indeed the case here because of the following:

Lemma 4 We have the limit:

fo] 111 = 1)b~lar

lim =1, Q77
a—0 T'(a)
for any real number x and b > 0.
Proof Asa — 0,
+o0
T(a) = / " ledt > +o0 (278)
0

because 1/t is not integrable around the point 0. On the other hand:
1 1
lim [ 71— 0P dr = / 1 -0 ldr =00 (279)
a—0 Jo 0
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for the same reason. Hence, a determination of the limiting value of the ratio requires
more careful analysis. Using integration by parts, it is well known that the gamma
function satisfies the following recursion:

al(a) =T(a +1). (280)

On the other hand:
1 1
a/ e”r“—la—r)b—ldz:/ & =P lae®)
0 0

1
= *'(1 —t)b_1|(1)—/ 1*d(e*' (1 — 1)’
0

and integrating by parts implies:

1
—/ 1“de (1 -’ . (281)
0

Therefore:

fol P S € S Uit T fol 11— b lar

I'(a) al’(a)
_ fOl tad(ext(l _ t)b_l)
= 282
Fa+1) (282)
Now taking the limit, we will have:
; Jo et A =P de  — [Fd(er (1 - P
a0 I'(a) - r()
11
— _exl(l —t)b 1|O
=1. (283)
O
First, (271) implies that:
Sli_r)noa =0. (284)
Second:
2 o
Jim, (Ty) = (285)
for nonzero y. Third:
1 b2,
lim —/ e &l —nrelar =1. (286)
a—0 T'(@) Jo
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These three results along with (270) together imply that:

lim £(y; s) = 1. (287)
s—0
Now since:
dL(t, v; T
L@ vis) o (_/ vsds‘v, - v), (288)
as s=0 '
we have:
0L(y; s)
h(y) = — ay . (289)
S s=0

We now use this relation to derive the asymptotic behavior of the function 4 (y). This
behavior will allow us to determine the constant C (7). In particular, we prove the
following lemma:

Lemma 5 As y — 400, we have the following asymptotic behavior:

oh(y;s) 1

Iny. 290
as s=0 g2 _ q Y ( )
2
Proof First, differentiating (271) w.r.t s implies that:
a 1 1
o _ 291)
as &2 [/ N2 2
(5 - s—z) T

hence, setting s = 0, we see that:

o
as

=T (292)
2

We now just differentiate with respect to the parameter « instead of s. There will be
two major terms after taking the derivatives:

3h(y;S) 1 ( ) ( ) 19 1(1 t)y—oc—ldt
as F(a)

+( 2 ) (/ - )V_“_ldt) (293)
e2y ) daT(a) '
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The first term is easy to deal with. Letting « — 0, we have:

2 \¢ 2 L2,
: 1 (= e 2y a—1 _ \y—oa—1
()%LII}) ) (ezy) ln(82y)/0 e vt (1 —1) dt
1 2 lim A(y;s)
=In{——) lim ;
82y a—0 Vs s
2
&%y
To deal with the second term, we use the identity:
ol () =T (x+1).

Hence:

1 2
a/ e el pyra—lgy
0
1 _2y
:/ e v 1711 = )77 1d(+¥) and integrating by parts:
0

_ 2
e 52),ttoc—l(1 _ t)y—a—ltoc

1 2
— _/ %d (eszy’;“—l(l —t)y—“—l).
0

We have used the fact that y — o — 1 > 0. Therefore:

1 2
1 -2, a1 —a—1
_r"‘)/o e N1 =0 dr

1 ! i
= ——/ t“d (e v (1 —z)”‘”“l)
F'a+1) Jo

(294)

(295)

1 1 _2,
—/ *d (e 2y (1—t)V—“—1)
0 0

(296)

_2 2
Jo (ta%e A=t —a = De D1 - r)yaz) dr

'+ a)

(297)

We now take the derivative w.r.t. o using the quotient rule and noticing that:

d(y —a) _

19
do
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we have:

2
-2
d 1 e (=7 ldr

do e+ 1)
L _2, 2
2 -5
/ e v (1—1t) 2(nt+In(l —1))dt

(2

B 82y 0
Lroy 2 _y

v [ () B a-rFa,
0 \&y

while the second term:

a=0

2
d [}y —a—De &1 —re-2q
da Do+ 1) a=0

I 2 2
=/ e (-2 dr
0

2 2 _2%
+(1-2) [ a-n Ean -
0

2 2 Ly
—r’(1)(2——§)/e 51— 3 ar.
&

In the end, we have:

L2 _2
+/ ¢ ' 1-1) 2 ar
0
2 I _ 2 _%
+(1__‘2])/ e szy’(l—t) sg(lnt—i—ln(l—t))dt
€ 0

2 2 _y
-T'(1) (2—_621)/3 51— dr
&

(299)

(300)

(301)

However, every integral in this identity is a finite number since it is easy to check that
all the integrals are proper. Moreover, except for the very first term, as y — +o0, all

of the other terms approach a constant. Therefore:
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dh(y;s) 1
- ~ 3
as s=0 % —q

Iny, (302)

as y — —+oo and this proves the lemma. O

Finally, we have assembled enough results to prove that the solution to the variance
swap rate is given by:

2 [V _2q _2 [® 2 5 2
h(y) = —2/ (z 2e ue eezudu) dz. (303)
e~ Jo

b4

To see this, note that we have just proved that:

L (y; 1
fim 260 Ly (304)
s—0 as & q
2
as y — +o0. Therefore:

1
h(y) ~ = Iny. (305)

& -

This is the asymptotic behavior that we have been looking for. Now from (267), we
also have the asymptotic behavior:

_ 1
h(y) ~ C(D)y'"# 4 5——1ny. (306)
74

Comparing (305) and (306), we must have that C(T) = 0. Hence, we have proved
that:

T ’
w(t,v) = h ( / el pwdu gy o v) , (307)

t

where h(y) is given by:

2 [V _2q _2 [® 2 5 2
h(y) = —2/ (z 2e 822/ ue eezudu) dz. (308)
e~ Jo z

This completes the proof that (78) holds.
Given that we know the function £, (248) implies that:

Gh(y))=Iny, y=>0. (309)
Differentiating (153) w.r.t. w implies:

Gy(w) = w > 0. (310)

&
gw)’
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Solving (310) for g and substituting in (309) implies:

g(w) = = sh_l(w)hy(h_l(w)), w > 0. (311)

&
Gy (w)

Since the function % is known, (311) gives our candidate for the function g governing
the volatility of w.
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