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We derive alternative representations of the McKean equation for the value of the American put
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The problem of valuing American options continues to intrigue finance theorists. For
example, in the New Palgrave Dictionary of Economics, Ross (1987) writes:

This does not mean, however, that there are no important gaps in the (option pricing)
theory. Perhaps of most importance, beyond numerical results . . . , very little is known
about most American options which expire in finite time. . . . Despite such gaps, when
Jjudged by its ability to explain the empirical data, option pricing theory is the most
successful theory not only in finance, but in all of economics.

The history of the American option valuation problem spans over a quarter of a century
(for a survey of this theory see Myneni (1992)). In the framework of Samuelson’s equilib-
rium pricing model, McKean (1965) showed that the optimal stopping problem for deter-
mining an American option’s price could be transformed into a free-boundary problem.
This insight allowed him to derive rigorous valuation formulas for finite-lived and per-
petual American options. Although the McKean equation explicitly represents the value
of the finite-lived American option in terms of the exercise boundary, the solution reveals
little about the underlying sources of value for an American option and does not lend itself
to analysis or implementation.

Somewhat later, Black and Scholes (1973) and Merton (1973) developed a more satis-
factory theory of option pricing using arbitrage-based arguments. Merton showed that
while the Black-Scholes European option pricing methodology applied to American call

We thank Kaushik Amin, Giovanni Barone-Adesi, Warren Bailey, Darrell Duffie, Robert Elliott, Leslie
Greengard, David Heath, Steve Heston, Farshid Jamshidian, Toannis Karatzas, Damien Lamberton, Larry Mer-
ville, Stephen Ross, David Shimko, Chester Spatt, John Strain, Ravi Viswanathan, and the participants of
workshops at Vanderbilt University and Cornell University. The first two authors are grateful for financial
support from Banker’s Trust. We are particularly grateful to Henry McKean for many valuable discussions.

Manuscript received August 1990; final revision received February 1992,

87



88 PETER CARR, ROBERT JARROW AND RAVI MYNENI

options on non-dividend-paying stocks, it did not apply to American put options. He also
observed that McKean’s solutions could be adapted to valuing American put options by
replacing the expected rate of return on the put and its underlying stock with the riskless
rate. This insight foreshadowed the later development of risk-neutral pricing of Cox and
Ross (1976) and the equivalent martingale measure technique of Harrison and Kreps
(1979) and Harrison and Pliska (1981). The application of this technology to the optimal
stopping problem for the American put option was studied by Bensoussan (1984) and
Karatzas (1988). While the optimal stopping approach is both general and intuitive, it
does not lead to tractable valuation results due to the difficulty involved in finding density
functions for first passage times.

The intractability of the optimal stopping approach lead Brennan and Schwartz (1977)
to investigate numerical solutions to the corresponding free boundary problem. Jaillet,
Lamberton, and Lapeyre (1990) rigorously justify the Brennan-Schwartz algorithm for
pricing American put options, using the theory of variational inequalities. Other numeri-
cal solutions were advanced by Parkinson (1977) and Cox, Ross, and Rubinstein (1979).
Geske and Shastri (1985) compared the efficiency of these approaches and explained why
an analytic solution may be more efficient. Furthermore, Geske and Johnson (1984) ar-
gued that numerical solutions do not provide the intuition which the comparative statics
of an analytic solution afford.

Analytic approximations have been developed by Johnson (1983), MacMillan (1986),
Omberg (1987), and Barone-Adesi and Whaley (1987). Blomeyer (1986) and Barone-
Adesi and Whaley (1988) extend these approximations to account for discrete dividends.
However, these approximations cannot be made arbitrarily accurate. In contrast, the
Geske and Johnson (1984) formula is arbitrarily accurate, although difficult to evaluate
unless extrapolation techniques are employed.

The purpose of this paper is to explore alternative characterizations of the American
put’s value, These characterizations enhance our intuition about the sources of value of
an American put. They also provide computational advantages, new analytic bounds, and
new analytic approximations for this value. Our first characterization decomposes the
American put value into the corresponding European put price and the early exercise
premium. In contrast to approximations by MacMillan (1987) and Barone-Adesi and
Whaley (1988), we provide an exact determination of the early exercise premium. This
decomposition was also derived independently in Jacka (1991) and Kim (1990), using
different means.! We provide another proof of the result and offer intuition on the nature
of the early exercise premium. In particular, we show that the early exercise premium is
the value of an annuity that pays interest at a certain rate whenever the stock price is low
enough so that early exercise is optimal.

As in McKean (1965), the formula for the American put value is a function of the
exogenous variables and the exercise boundary. While the function relating the boundary
to the exogenous variables remains an unsolved problem, the boundary can be determined
numerically, Having priced American put options in terms of a boundary, we also value
European put options in terms of a boundary. We prove that our result is equivalent to
the Black-Scholes (1973) formula for the price of a European put. This work generalizes
earlier papers by Siedenverg (1988) and Carr and Jarrow (1990), and should be of interest
in its own right.

tJacka (1991) obtains the result using probability theory applied to the optimal stopping probiem, while Kim
(1990) obtains it as a limit of the Geske-Johnson (1984) formula.
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From our main valuation results and a particular choice of a boundary for our European
put formula, we are able to decompose the American put value into its intrinsic value and
its time value (or delayed exercise value). Just as the early exercise premium capitalizes
the additional benefit of allowing exercise prior to maturity, the delayed exercise value
yields the additional value of permitting exercise after the valuation date. A second
boundary choice for our European put formula then recovers the McKean equation. In
contrast to Geske and Johnson (1984), all of our characterizations for the value of an
American put involve only one-dimensional normal distribution functions.

The outline for this paper is as follows. In Section 1, we decompose the American put
value into the corresponding European put price and the early exercise premium. Sec-
tion 2 represents the corresponding European put price in terms of an arbitrary boundary.
In Section 3, we select boundaries in order to decompose the American put value into its
intrinsic and time value, and to show the equivalence of our results to McKean’s equation.
Section 4 summarizes the paper and indicates some extensions and avenues for future
research. An appendix contains proofs of our main results.

1. THE EARLY EXERCISE PREMIUM

Throughout the paper, we assume the standard model of perfect capital markets, continu-
ous trading, no-arbitrage opportunities, a constant interest rate r > 0, and a stock price
S, following a geometric Brownian motion with no payouts; i.e.,

ds
(1.1) ?'= wdt + odw, for all r € [0, T,

r

where the expected rate of return per unit time u and the instantaneous volatility per unit
time o > 0 are constants. The term ¢W, denotes increments of a standard Wiener process
defined on the time set {0, T] and on a complete probability space (2, &, Q).

Consider an American put option on the stock with strike price K and maturity date 7.
Let P, denote the value of the American put at time ¢ € [0, T]. For each time ¢ € [0, T,
there exists a critical stock price B, below which the American put should be exercised
early; i.e.,

(1.2) if S, = B,, then P, = max|0, K — §/],
(1.3) and if §, > B,, then P, > max[0, K — §,].

The exercise boundary is the time path of critical stock prices B,, t € {0, T|. This
boundary is independent of the current stock price Sy and is a smooth, nondecreasing
function of time f terminating in the strike price; i.e., By = K. The put value is also a
function, denoted P(S, 1), mapping its domain & = (§, 1) € [0, «) X [0, T] into the
nonnegative real line. The exercise boundary B,, t € [0, T], divides this domain 9 into
a stopping region ¥ = [0, B,} X [0, T] and a continuation region €= (B, ») x [0, T].
Equation (1.2) indicates that in the stopping region, the put value function P(S, ) equals
its exercise value, max[0, K — S]. In contrast, the inequality expressed in (1.3) shows
that in the continuation region, the put is worth more “alive” than “dead.” Since the



90 PETER CARR, ROBERT JARROW AND RAVI MYNENI

American put value is given by (1.2) if the stock price starts in the stopping region, we
henceforth assume that the put is alive at the valuation date 0; i.e., §q > By.

The partial derivatives, dP/dt, dP/3S, and 92P/0S? exist? and satisfy the Black-Scholes
partial differential equation? in the continuation region 6; i.e.,

252 52P(S, t aP(S, ¢ aP(S, t
z G0, ED  ps 4 BED

1.4
a9 = N G at

for (S, 1) € €.

McKean’s analysis implies that the American put value function P(S, #) and the exercise
boundary B, jointly solve a free-boundary problem, consisting of (1.4) subject to the
following boundary conditions:

(1.5) P(S, T) = max[0, K — §],
(1.6) lim P(S, 1) = 0,
St=
(1.7) lim P(S, 1) = K — B,
SiB;
aP(S,
(1.8) lim—(-——t) = —1.
siB, 95

Equation (1.5) states that the American put is European at expiration. Expression (1.6)
shows that the American put’s value tends to zero as the stock price approaches infinity.
The value-matching conditions (1.7) and (1.2) imply that the put price is continuous
across the exercise boundary. Furthermore, the high contact conditions (1.8) and (1.2)
further imply that the slope is continuous. This condition was postulated by Samuelson
(1965) and proved by McKean (1965). Equations (1.7) and (1.8) are jointly referred to as
the smooth fit conditions.

Working within Samuelson’s equilibrium framework, McKean (1965) solved the free-
boundary problem for the American call option. By applying his analysis to the American
put option, and by replacing the expected rate of return on the option and stock by the
riskless rate, one obtains an analytic valuation formula for the put value and an integral
equation for the exercise boundary B,. Numerical evaluation of this integral equation is
complicated by the fact that the integrand depends on the slope of the exercise boundary,
which becomes infinite at maturity (lim, ;- dB,/dt = ). To avoid this difficulty, we seek
an alternative characterization for the American put’s value which does not involve the
slope of the exercise boundary. Our first theorem obtains such a characterization.*

THEOREM 1.1 (Main Decomposition of the American Put). On the continuation re-
gion €, the American put value Py can be decomposed into the corresponding European
put price po and the early exercise premium eg:

(19) PO = Po + €0,

2See Jaillet, Lamberton, and Lapeyre (1990, Theorem 3.6) or Van Moerbeke (1976, p- 116, Theorem I).
3See McKean (1965, p. 38), and Merton (1973, p. 173).
4Independently, Jacka (1991) and Kim (1990) derive the same result by different means.
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where

r In{(B,/Sy) —
e = 1K J'O e”N(—————n( 50) p2£> dt,

0'\/7
2
e =r- . and,
_ * exp(—z%/2)
N = Jo vir ~

is the standard normal distribution function.

To understand this decomposition, consider the following trading strategy which con-
verts an American put option into a European one. Suppose that an investor holds one
American put> whenever the stock price is above the exercise boundary. When the stock
price is at or below the boundary, the investor duplicates the put’s exercise value by keep-
ing K dollars in bonds and staying short one stock. Since the American put is worth more
alive than dead above the boundary, the value of this portfolio at any time ¢ € [0, T]
is the larger of the put’s holding and exercise values, i.e., max[P,, K — §,].

The strategy’s opening cost is the initial American put price P, since the stock price
starts above the boundary by assumption (i.e., Sy > Bg). If and when the stock price
crosses the exercise boundary from above, the investor exercises his put by shorting one
share of stock to the writer and by investing the exercise price received in bonds. The
“smooth fit” conditions (1.7) and (1.8) guarantee that these transitions at the exercise
boundary are self-financing. However, when the stock price is below the boundary, inter-
est earned on the K dollars in bonds must be siphoned off to maintain a level bond
position. If and when the stock price crosses the exercise boundary from below, the
investor liquidates this bond position, using the K dollars to buy one put for K — S dollars
and to close his short stock position for S dollars. The “smooth fit” conditions again
guarantee self-financing at the exercise boundary. At expiration, the strategy’s liquidation
value matches the payoff of a European put, max[0, K — S7], since the alive American
put is worthless above the boundary.

The present value of this terminal payoff is the initial European put price p,. The initial
early exercise premium e, as defined in (1.9), equals the present value of interest accu-
mulated while the stock price is below the boundary. The decomposition (1.9) then states
that the initial investment in the trading strategy, P, equates to the present value of the
terminal payoff, py, and the present value of these intermediate interest withdrawals, ey .

The price of a European put at the valuation date O is given by the Black-Scholes
formula:

(1.10) Po = Ke "TN(kyp) — SoN(k7),

where kyr = (IN(K/Sy) — poTVoNVT, kip = kyy — oNT = [In(KISy) —p, TVo VT,
and p; = p, + 02 = r + o?/2. Consequently, in the continuation region €, the initial
American put value may be expressed as a function of the exogenous variables (S, K, T,
r, o) and the exercise boundary (B,, t € [0, T]):

S Alternatively, if the put is mispriced, the investor can manage the self-financing portfolio of stocks and
bonds which replicates the put’s payoff. We determine this portfolio shortly.
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(7

(1.11) Py = Ke~"TN(kyp) — SoN(kip) + rKJ e~T'N(by,) di,

0

where by, = (In(B,/Sy) — p2tlla\t, p, = r — o22.
The initial boundary value By is the initial stock price Sy which implicitly solves the
value-matching condition (1.7):

T
(112) K(’irTN(k;)T) - SoN(le) + rK fo Eﬁ”N(bzt) d’ =K — So.

Since the critical stock price By depends on future boundary values, B,, 1t € (0, T), it
must be determined by setting the terminal boundary value to the strike price (By = K)
and working backwards through time.

Our equations (1.11) and (1.12) do not involve the slope of the exercise boundary, as
in McKean’s equation. In addition, we have localized the effect of the exercise boundary
B,, t € [0, T], on the American put value to the last term in (1.11). Unfortunately, the
boundary satisfies the nonlinear integral equation (1.12), which has no known analytic
solution. However, solving (1.12) numerically for the exercise boundary should prove
easier than in McKean’s formulation.

The early exercise premium is increasing in the boundary. This observation allows us
to bound the American put value analytically. Suppose that an estimate for the boundary
is known to be always greater (lesser) than the true boundary B,. This estimate along with
(1.11) then generates an upper (lower) bound on the put option. For example, the true
boundary B, always lies between the strike price K and the exercise boundary for the
perpetual put, B. (i.e., K = B, = B, for all 1+ € [0, T}). McKean (1965) and Merton
(1973) calculate the perpetual boundary to be B, = rK/p,. Consequently, we can bound
the American put value P analytically:

r In(K/Sy) — pot
1.13 + Kf N ——= P2 = p
(1.13) py + r o € ( pey d 0

T
ln(By/So) - pzf
= + Kf NN ———————=| 4.
R < oV

Section 3 shows that for at or out-of-the-money puts (S, = K), the upper bound in (1.13)
is tighter than the bound given by the price of the corresponding European put with strike
price growing at the riskless rate. As far as we know, there are no explicit tighter bounds
to the exercise boundary. However, another upper bound on the American put value can
be generated by using that initial stock price S;;, which equates the right side of (1.13) to
the exercise value max[0, K — S,]. Since this quantity lies between B, and K, inserting
itin (1.11) yields an even tighter upper bound than the left side of (1.13). This procedure
can also be used to generate lower bounds and can be applied iteratively.

Our characterization also allows us to approximate the American put value by replacing
the exercise boundary B, in (1.11) with an estimate for it, E, N

, .
In(B,/Sy) — pat
Py =~ pg + Kf o~ IN| —L=— 2} 4y,
0 Po r 0 e < 0_\/;
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At a minimum, an estimator should satisfy the characteristics of the exercise boundary
described at the start of this section. An example of such an estimator which leads to an
analytic approximation is the discounted strike price 1§, = Ke~*T-1 @ = 0. For small
times to matur\i/ty,_Van Moerbeke (1976) shows that the exercise boundary B, is approxi-
mately Ke-«sVT-7 where « is a unitless constant.® Conversely, for very long times to
maturity, B, converges at an exponential rate to B... An estimator which also accounts for
both of these characteristics is an exponentially weighted average’ of the strike price and
the perpetual boundary, B, = Ke=NT-1 4 B.(1 — ¢-VT-1y =0,

Besides the above benefits, our characterization also facilitates the analysis of limiting
values and comparative statics. For example, as the initial stock price approaches infinity,
(1.11) indicates that the premiums for the European put and early exercise both tend to
zero. Consequently, the American put value also vanishes, verifying the boundary con-
dition (1.6) and confirming intuition. Differentiating (1.11) with respect to the initial
stock price yields the ““delta” for the American put:

aP, f’f‘ e "'N'(b,,)
1.14) — = —N(k - K —==dr =0,
, exp( — x%/2)
here N = —
where N'(x) NG

is the standard normal density function. Thus, as the initial stock price falls, the premiums
for the European put and early exercise both rise. The early exercise premium rises be-
cause of the increased probability of stock price trajectories entering into the stopping
region. As the initial stock price falls below the critical stock price, the American put is
valued by (1.2). Consequently, as the stock price approaches zero, the American put value
approaches the strike price, which acts as an upper bound. Although the observed Ameri-
can put value remains constant at the strike price over time, this does not represent an
arbitrage opportunity, since all puts written with positive strike prices are immediately
exercised.

Beyond indicating the sensitivity of the American put value to stock price changes, the
delta of an alive American put also represents the number? of shares to hold when repli-
cating it in a self-financing strategy. Consequently, since the early exercise premium’s
delta is negative (before expiration), more stock is shorted than for a European put be-
cause of the possibility of early exercise.

The delta can also be used to determine a simpler integral equation for the exercise
boundary B,, + € [0, T]. If the high-contact condition (1.8) is used, the critical stock
price By, 1s the initial stock price Sg, which solves the integral equation

Te—rtN'(bz)
1.1 Kf —————=L g = N(—kp).
( 5) r 0 S()O'\/; ! ( lT)

Once again, the entire exercise boundary is generated numerically by working backwards
through time.
Calculation of the other derivatives verifies that (1.11) satisfies the free-boundary prob-

6See Van Moerbeke (1976), p. 144.

7See Barone-Adesi and Whaley (1987) for a similar approximation.

8The amount of dollars invested in bonds when replicating an alive American put in a self-financing strategy
is given by Py — (4Py/S9)Sy-
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lem (1.4)-(1.8). Kim (1990) also verifies that the limiting value of (1.11) yields the
perpetual put formulae given in McKean (1965) and Merton (1973).

2. REPRESENTING EUROPEAN PUTS IN TERMS OF A BOUNDARY

The previous section priced American puts in terms of the exercise boundary. This section
represents the value of a European put in terms of an arbitrary boundary. The appendix
proves that this representation is mathematically equivalent to the Black-Scholes formula
(1.10). We then select alternative boundaries to generate various valuation formulas for a
European put. These formulas enhance intuition on the sources of value of a European
put and are employed in the next section to generate additional characterizations of the
American put’s value.

As in the Black-Scholes dynamic hedge, we consider a trading strategy in stocks and
bonds whose liquidation value at the expiration date T is the put’s terminal payoff, max|0,
K — S7]. Consider a strategy with the amount m, dollars held in bonds earning interest
continuously at constant rate r and with the number of shares of stock equal to #,. The
value of this strategy at any time 7 is

2.1) V,=m, + nS,.

Suppose transitions in stock holdings occur only at a positive, smooth, but otherwise
arbitrary boundary A,, which terminates at the strike price

(2.2) Ar = K.

Examples of such a boundary include the strike price itself, K, the exercise boundary
for an American put, B,, or an estimator for this boundary, I§’,, as given in Section 1.
We study an example of this type of strategy, termed the stop-loss start-gain strategy,
defined by

(23) m, = 1(51§A,)AI’ n, = - 1(5’5/‘1) for all r € [O, T],

where 15, is the indicator function of the set {B}. This strategy involves keeping A, dollars
in bonds whenever the stock price S, is at or below the boundary A,. Funds are injected
and withdrawn as required after accounting for the interest earned. The strategy also
requires that one share of stock be held short when the stock price is at or below the
boundary. No bonds or stocks are held above the boundary. The stop-loss start-gain
strategy for specified boundaries has been previously studied by Hull and White (1987),
Ingersoll (1987), and Siedenverg (1988), among others.

Substituting (2.3) in (2.1) implies that the value of the stop-loss start-gain strategy at
any time ¢ € [0, T] is

(24) VI = l(SISA,}AI - l(S[SA[)S[ = maX[O, A[ - S,]

Consequently, from (2.2), this strategy replicates the payoff of a European put; i.c.,
Vr = max|[0, K — Sy]. From (2.4), the initial investment in the strategy is Vo =
max[0, Ay — Sp). Since the strategy replicates the European put’s payoff, the put’s value
is given by this initial investment plus the present value of the external financing required
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to implement this strategy. The appendix determines this present value, yielding the fol-
lowing theorem.

THEOREM 2.1 (Main Decomposition of the European Put). The European put price
Do is given by

(2.5) pg = max[0, Ag — Sg] + O-—szJTM dr + JT N(ay)d(Ae ),
2 Jo oVt 0 d d

where a;, = [In(A,/Sy) — pitl/a\N/t, py = r + 022 and a,, = [In(A/Sy) — pytl/
oVt py=r— a2,

In general, the European put value decomposes into three terms. The first term in (2.5)
is the initial investment in the stop-loss start-gain strategy (2.3). The next term represents
the present value of the external financing required because of adverse movements of the
stock price at the arbitrary boundary A,. The final term represents the present value of
funds injected and withdrawn in order to keep A, dollars in bonds whenever the stock
price is at or below this boundary. The appendix proves that our representation (2.5) is
equivalent to the Black-Scholes formula.

In addition, our representation (2.5) is a generalization of the formula given in Carr
and Jarrow (1990). To get this formula, we use the exponential boundary

(2.6) A, = Ke "T-0,

Substituting (2.6) into Theorem 2.1 yields a decomposition? of the initial European put
price into its intrinsic and time value:

(2.7 po = max[0, Ke='T — §,] +

a2S, f T N In(K/Fg) — a?t/2 ”
2 Jo oVt oVt '

where Fy = Spe’T is the initial forward price of the stock. The corresponding result for
the binomial model is developed in Siedenverg (1988).

Equation (2.7) indicates that the payoff of a European put is replicated by holding a
pure discount bond paying K dollars at T and being short one stock whenever the stock
price is at or below the present value of the strike price, Ke="7 -0, While this strategy is
self-financing below this boundary, external financing is required at the boundary. The
first term in (2.7) is the initial investment in the strategy, while the second is the present
value of this external financing.

Suppose that on the valuation date O, we wish to price a European put with current
strike price K growing at the riskless rate r. By the expiration date 7, the exercise price
will be Ke'T. Let the current price of this put be g,. Replacing K in (2.7) with Ke'T yields

o285, f T N,(ln(K/so) — oZt/z) 0

. = — Sol +
(2.8) 8o max[0, K — Sp] 3 Jo oV oI

$To directly prove the equivalence of (2.7) to the Black-Scholes formula (1.10),Ause (1.10) to express the
forward price of the European put p(T) in terms of the forward price of the stock S, and differentiate it with
respect to time to maturity 7, holding the forward price constant. Then integrate back over 7, using the boundary
condition p(0) = max[0, K — .f] to determine the constant of integration.
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Margrabe (1978) shows that this put is an upper bound for an American put with strike
price K. In Section 3, we prove that the upper bound generated in the last section is tighter
than (2.8), if the American put is at or out-of-the-money (Sy = K).

A second boundary choice in our representation of the European put option leads to
another important decomposition. Consider a constant boundary equal to the strike price:

2.9 A =K.

Substituting (2.9) into Theorem 2.1 leads to the following decomposition 10 of the Euro-
pean put value:

T [0250 N'(ky,)

(2.10)  py = max[0, K — Sy] + f o

o rKe”N(kQ,):l dr,

where recall k;, = [In(K/S,) — plt]/a'\/?, pL=r+ o?/2 and ky, = [In(K/Sy) — potl/
a\V'1, p, = r — o%/2. Equation (2.10) indicates that the payoff of a European put can be
replicated by keeping K dollars in bonds and being short one share whenever the put is at
or in-the-money. No bonds or stocks are held when the put is out-of-the-money. The first
term represents the initial investment in the strategy, while the other term gives the present
value of the external financing needed to timplement the strategy.

3. VARIOUS AMERICAN PUT REPRESENTATIONS

This section uses our main decomposition of the American put value in Theorem .1 and
our representation of the European put price in Theorem 2.1 to derive two alternative
characterizations of the American put’s value.

Substituting the European put formula (2.10) arising from the constant boundary
A, = K into Theorem 1.1 yields a decomposition of the American put value into its
intrinsic value, max[0, K — S,], and its time value, also called the delayed exercise
value dy:

(3.1) Py = max[0, K — Syl + dp,
where
0'250 TNl(k ) T
to = T [, T = | i) — N

This representation can be given a financial interpretation by rearranging it as

(32) PO - maX[O, K - S()] = do
(TSN
- [0{ o E — ke INGeg) = N(by)] ¢ di.

10Note that if the interest rate vanishes (r = 0), then the boundary in (2.6) simplifies to that in (2.9) and the
European put value in (2.10) simplifies to that in (2.7) (with r = 0).
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The following strategy duplicates the time value of the American put in the continuation
region. Suppose an investor holds an American put when it is at or out-of-the-money.
When the stock price is strictly between the strike price and the exercise boundary, the
investor continues to hold the American put, and, in addition, holds one share of the stock
while keeping K dollars in borrowings. When the stock price enters the stopping region,
the investor exercises his put by delivering the share held and using the strike price re-
ceived to pay off his borrowing. Consequently, the investor holds nothing in this region.
The value of this strategy at any time ¢ € [0, T}is V, = lig-p,(P; — max[0, K — §,]),
which is the time value in the continuation region. Since the stock price starts in the con-
tinuation region (S, > B(), the strategy has an initial investment of Py — max[0, K — S].
Since the exercise boundary terminates at the strike price (By = K), this strategy has
zero terminal value. The delayed exercise value, as determined in (3.1), equals the present
value of the intervening cash flows. Since there is no terminal payoff, (3.2) then states
that the initial investment in this strategy equates to the present value of these cash flows.
The American put has the same value as a claim which pays the exercise value immedi-
ately, and a flow equal to the sum of the stock price movement *‘around” the strike price
less interest on the strike price paid while the put is in-the-money but optimally held alive
(ie., K>S5,>B).

The exercise boundary B,, ¢ & [0, T], can be determined implicitly from the condition
(1.7) that there is no value in delaying exercise at this boundary (d,lsr:B, = 0). Conse-
quently, the critical stock price By, is the initial stock price Sy that solves

e~ T
(3.3) o f N “‘ N k) JO e~ M[N(ky) — N(byp)] dr.

Thus, the put is exercised as soon as the present value of the flow arising from movement
of the stock price at the strike price equates to the present value of interest paid, while
the stock price is between the exercise boundary and the strike price.

The decomposition (3.1) into intrinsic and time values can also be used to bound the
American put’s value. Since the difference in cumulative normals in (3.2) is nonnegative,
setting the difference to zero yields the following upper bound:

o2 T
(3.4) Py = max|0, K — Sp| + ZSO fo NU(\k/“)

where &, = [In(K/Sy) — p,f]/c\/t. From (2.10), this is the same upper bound as in
(1.13). Comparing (3.4) with (2.8), we see that our upper bound given by (3.4) is tighter
if the American put is at!! or out-of-the-money (S, = K). Using a result from Hadley
and Whitin (1963, Appendix 4, Property 9), our upper bound can be rewritten in terms
of standard normal distribution functions:

PO = max[O, K — S()J
S

K A
+ 'A—O {[1{50<](} - Nkpl — (S_) [1<S(J51K} — N(kyp + )\(T\/T)]},
1]

ILA slightly weaker condition is Sq = Ke=#17.
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where A = 2p,/c2.
Finally, to generate McKean’s characterization of the American put value, let the
boundary used to price the European put be the exercise boundary for the American put:

(3.5) A, = B,.

Then substituting (3.5) into Theorem 2.1 yields the following representation for the Eu-
ropean put value:

a8y [T N'(by,) T
max[0, By — Sp] + —2—0 0 O_—\/l;' dt + fo N(b,) d(B,e™")

(3.6) pg
— ﬂ)JT N’(blt)

T
3 o 0_\/; dr + fo N(bz,) d(Bte-rt)’ since SO > Bo.

Equation (3.6) indicates that the payoff to a European put can be achieved by keeping B,
dollars in bonds and staying short one share whenever the stock price is in the stopping
region. No bonds or stocks are held when the stock price is in the continuation region.
Since the stock price starts in this region, no investment is initially required. However,
transitions at the exercise boundary and the bond position below it are not self-financing.
The first term in (3.6) gives the present value of the external financing required at the
boundary, while the second term gives this present value below it.

Substituting formula (3.6) for the European put price into Theorem 1.1 yields the fol-
lowing formula !2 for the value of an American put:

0'250 TN,(blt)

37 P 2 Jo oVt

T T
dr + fo N(by,) d(B,e ™ + rK fo e "N(b,,) dt
a8, (T N'(by,)

T
o o U fo N(by,) d((K — Bpe~").

To understand this decomposition, consider a strategy of holding one American put
whenever the stock price is above the exercise boundary. When the stock price is in the
stopping region, keep K — B, dollars in bonds, but hold no puts or stocks. Since the
stock price starts in the continuation region, the startup cost of the strategy is the initial
American put price Py. Since the American put is worthless in the continuation region at
expiration and By = K, the strategy has no terminal payoff. In contrast to the strategy
underlying Theorem 1.1, this strategy is not self-financing at the exercise boundary. The
first term in (3.7) is the present value of the external financing at this boundary, while the
second is this present value below it. Since there is no terminal payoff to this strategy,
(3.7) indicates that its startup cost equates to the present value of its external financing
requirement.

12Equation (3.7) is in fact equivalent to the McKean equation for the American put value. To see this, replace
SoN'(by,) with the equivalent value B,e~""N'(b,,) in the first term in (3.7) and integrate the second term by
parts.
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4. SUMMARY AND EXTENSIONS

This paper makes several contributions. We decompose the American put’s value into the
corresponding European put price and the early exercise premium. This formulation leads
to increased understanding, more efficient numerical evaluation, tighter analytic bounds,
and new analytic approximations. In addition, we employ a stop-loss start-gain strategy
at an arbitrary smooth boundary to obtain a new European put valuation formula. This
allows us to alternatively decompose the American put price into intrinsic and time value
and to prove the equivalence of our results to the McKean equation.

Although we considered the case of no dividends, our results easily extend to the case
where the underlying asset pays continuous proportional dividends.!3 This extension to
continuous dividends can be used to price American options on commodities, foreign
currencies, or futures prices. By letting interest rates be the underlying state variable,
American bond options can also be priced (see Jamshidian (1989) and El Karoui, Myneni,
and Viswanthan (1991)). By generalizing the payoff function, other American claims can
be valued by this approach, such as compound options, prepayment options, or callable
bonds. It is also possible to relax the assumption that the stock price follows a geometric
Brownian motion. The results in the paper easily generalize to the case where the stock
price follows an arbitrary diffusion process.

There are at least three important avenues for future research. First, as the integral
equations determining the exercise boundary remain unsolved, it would be useful to in-
vestigate the nature of the solution and its approximations based on a study of those
equations. A second significant avenue for future research involves valuing American puts
when the underlying asset has discrete payouts. A third avenue involves multiple state
variables, for example, combining stochastic stock prices with stochastic interest rates
and/or dividends.

5. APPENDIX

Proof of Theorem 1.1

We wish to prove 14 that

T In(B,/Sy) — pat
Py = py + Kf -yl =20 T2 gy
0 Po r o e ( o1

Let Z, = e~"'P, be the discounted put price, defined in the region @ = {(S,0):S€[0,®),
t € [0, T]}. In this region, the pricing function P(S, 1) is convex in § for all ¢, continu-
ously differentiable in ¢ for all S, and a.e. twice continuously differentiable in S for all 7.
Consequently, the discounted pricing function

(5.1) Z(S, )= e "P(S, D)

13The only nontrivial change is the determination of the exercise boundary at expiration. For American put
options, if the dividend rate & = 0 is less than or equal to the riskless rate r, then the exercise boundary B,
converges to the strike price K at expiration as before (i.e., By = K). However, if the dividend rate & exceeds
the riskless rate, then By = (r/8)K < K, reflecting the reduced incentive to exercise early; Van Moenbeke
(1976) p. 142.

14D, Lamberton communicated this proof to us. It was motivated by our earlier proof based on Fourier
transforms.
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inherits these properties. Although the partial derivative 42P/3S? is discontinuous at the
boundary B,, Itd’s lemma extends '3 to Z(S, 1), so that

T 92(8,. 1 IT 32 Z(S,, n o282 9Z(S, D
Zr = Z +j———"’ ds, + L Lo+ - it
TTAT T s ‘ 382 2 ar | ¢

Therefore from (5.1)

T 4P,
Tp_ = p J' - 0 ds
“T =T ¢ aS !
r 92P(S,, t) 0282 OP(S,. 1)
S S St At S —rt ~rt o
+ J;) I:e 552 > re"P(S,, ) + e o d

Now P = max[0, K — S;], and there exists '® a probability measure Q, equivalent to
Q, such that

(5.2) dS, = 1S, dt + oS, aw,,

where W, =W, — [(u — r)/o]t is a standard Brownian motion on (Q, %, Q). Separating
the put value into the two regions, P(S;, 1) = lig.p,P(S;, 1) + lig=p (K — §;), we
have

15 A sketch of the proof for the extension can be obtained as follows. Unless specified otherwise, all theorem
and equation references are to Karatzas and Shreve (1988). The proof of (7.4), p. 219, can be modified and
extended to apply to f: [0, ®) x O — N, denoted f(x, 1), where f is convex in x for all r, continuously
differentiable in s for all x, and a.e. twice continuously differentiable in x for all 1. 1t6’s lemma (see Theorem
3.6, p. 153) is used to get a slight modification of (7.5), p. 219:

8f,,( oS I
fX, 0 = f{Xe. 0) + l + f” o 8 dM, + f,,(XA, 5)dv, + 2J f(X,. ) dM),,

where the prime(s) on f denote partial differentiation with respect to the first argument of f. The identical
argument gives

R SE

Fu X = fX,. 0, J;) 35

ds
1 1
J:)f,’,(X‘(, s) dV, — J;f’(XS, N dviae.,

1 !
fo,f,'xxy 5) dM, — f() F'(X,. 5) dM,

in probability for every fixed ¢, and 4 [}, f(X,. s) d(M), converges to a limit in probability. Since f(x, 1) is a.e.
twice continuously differentiable in x, this limit is determined as

f frXe s) dM), = = f~»e X Falx, 8) d¥ dx from Rogers and Williams (1987, p. 104 (45.4))
I !
= jﬂ Lf”(,r, $) dJ¥ dx  from Karatzas and Shreve (1988, top of p. 215)
Ve

H
=51 f'(X,. s) dM), from Rogers and Williams (1987, p. 104 (45.4)).

6 Define @ by its Radon-Nikodym derivative

~ 2
2l (9 (9)
a0 a Isa 2
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e "Tmax[0, K — Sy]

T OP(S,, 1) .
= P0+ e"” 1{SI>Br) - ](St‘—\—'Bl’ [rS, d[ + O'Sl th]

0 aS
T 82P(S, 1) o252 oP(S,, 1)
_n I r r
+ JO 14 {1(81>Bx)|: 852 7 rP(S,, f) + o1

-+ 1<S[r:BI){_r(K - Sr)] d[

On the continuation region, the pricing function P(S, 1) satisfies the Black-Scholes partial
differential equation (1.4). Consequently, the terms multiplying gz, sum to zero,
leaving

T T oP .
e~ max[0, K — Sl = Py — 1K J'O efnl{s,sB,} dr + jo e~ O-S,EdW.

Taking expectations with respect to the martingale measure Q establishes the result

B} r In(B,/Sy) — pyt
po = E{e T max[0, K — S;]} = Py — 1K fo e"N(—’—;\/;—z de. [

Proof of Theorem 2.1

To determine the discounted external financing of the strategy (2.3), define the process

D, = e " max[0, A, — §,] for all r € [0, T]

e A, max|0, 1 — §,/A,]
= e " A, max[0, ] — Y],
where Y, = S/A,. Using integration by parts, we find
(5.3) Are T max[0, 1 — Y;] = Age "™ max[0, I — Y]

T

+ Jo Ae " d(max[0, 1 — Y, ])
T

+ J;) max[0, 1 — Y] d(A,e~").

Now, from the Tanaka-Meyer formula: 7
4

max[0, 1 — Y,] = max[0, | — Y,] — f

0 Ly,<py dY, + Ay(1, 1),

where Ay(1, 1) is the local time of the process Y at 1 by time 1. Consequently, (5.3)
becomes

(5.4) Are”Tmax{0,1 — Yy = Agmax[0, 1 — Y]

17See Karatzas and Shreve (1988, p. 220 (7.7)).
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T
+ jo Atefrt[_ 1(Y1<” dYt -+ dAy(l, I)]

T T
+ L) Ly« d(Ae™") — J'() Ly<pY, d(Ae™").

Since Y, = §,/A;and A7 = K by (2.2), the left side of (5.4) becomes e~"T max[0, K — Sy],
while the right side is

[0, Ay — Sp] - JTA - [——’ — (—’) dA] + jTA e " dA (1, 1)
max[0, e A< y(1,
0 0 o 1 {SdA <1} At Ar2 t o ¢t

T T St
+ J; Ligya<n d(Aje™") — Jo Lig/a<y Xt e~ dA,

T
+ jo Lisya<uSere” " dt

i

T
max[0, Ay — So] — fo Lis<asle™ dS, — Spre" di]

T e T
+ J’O T SII(Sy<A,) dAt + J’O e At dAy(l, t)
t
T ,-rt

T
(4
+ fo lig<ap d(Ae™") — L ‘;T Silis<an dA;

Il

T
maX[O, AO - 50] - f() 1(SI<A/} d(S,e*”)

T T
+ fo e""A; dAy(l, t) + fo I{S(<A1} d(AIE‘I‘I).

Taking expectations using the equivalent martingale measure Q implies

(5.5) pg= E{e'T max|0, K — S;l}

T T

Ae "E dAW(1, D) + J

= maX[O, AO - So] + J’ 0

. Elg s, d(Ae",

from Fubini’s theorem and from the fact that the expectation of [T lg.<s, d(S;e™), a
martingale, vanishes. To evaluate the first integral, recall Y, = S,/A,. From (5.2) and 1t&’s
lemma:

d, 1
dr A,

YI

v,

-~

= (r— wp) dt + ocdW,  where u, =
Then from the properties of local time, the first integral can be rewritten as

T ; o2 (T
fo Ae "E dAy(1, 1) = £ fo Ae (1, 1, Y, 0) dr,
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where £(Y,, 1; Yy, 0) denotes the (lognormal) transition density function:

' 2

) i In(Y,/Yy) — pyt + Jo Mg du
Y\ 2mo?t cxp ) oVt

€Y, 1; Yy, 0) =

Consequently, in the standard normal notation of (1.14), the first integral in (5.5) has the
form

(5.6)
!
jr ] o2 [T Aer In(1/Yy) = pot + Jo @, du
A "EdAy(l, 1) = — ! dt
0o ¢ iy 1) 2 Jo oVt o\t

!
In| A, ex f du /Sy — pot
2 J_T Aert ( 0¢€ P( o Ma ”) o) P2
= — N’ dt
2 Jo oVt Vi

o [TAe N In(A/Sg) — pot u
T2 )0 oVt oVt '

Substituting (5.6) in (5.5) yields

o2 [T N'(a,,)

T (A,
+ jo fo €S, 1, So. 0) dS, d(A,e~"),

where a,, = [In(A,/Sg) — p,t)/oV1. To simplify the first integral, use the identity
(57) A,e'”N'(az,) = SoN,(alt),
where A, > 0 and

In(A/Sg) — pyt
5.8 = - P = ——
(5.8 ay = ay Vi o1

To simplify the second integral, perform the change of variables z = [In(S,/Sy) — p,tV/
aV/t. Thus,

2S T N/ d[
(5.9 po = max[0, Ag — Syl + g of (a)

T
> Jo TG + fo N(ay,) d(A,e~™). ]
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Proof of Equation (5.9)

To prove that (5.9) is equivalent to the Black-Scholes formula (1.10), use integration
by parts on the last integral in (5.9):

25 T N'
g 0 (all) dt

(5-10) po 2 Jo ovi

max[0, Ay — Spl +

T ' dazt
+ A,e "N(a) )| — | A "N'(ay) —= dt

0 dt
T a
= ligp<an(Ao = So) + g fo N'(ay) N dt

r da
+ Ke"TN(kZT) - I{S()<AO}AO - SO JO N'(a“) 72[(11‘

—rT T ' da2! o
= —1(SO<AO)SO + Ke N(k27) — SO o N (a“) -?d[‘ - 2\/; dt,

where the second equality follows from (2.2) and (5.7). Differentiating (5.8) and substi-
tuting in (5.10) leads to

T
Po = ~ LispeaaSo + Ke "IN(kyp) = S J; N'(ay)ay (o) d
= — lgpcapSo + Ke "TN(kyr) — SoN(an)H)‘
= — lLgpcapSo + Ke "TN(kyr) — SoN(kyp) + Liso<aSo

KeirTN(kZT) - SQN(k]T)a

which is the Black-Scholes formula (1.10). 0

REFERENCES

BARONE-ADESI, G., and R. WHALEY (1987): “Efficient Analytic Approximation of American Op-
tion Values,” J. Fin., 42, 301-320.

BARONE-ADESI, G., and R. WHALEY (1988): “‘On the Valuation of American Put Options on Divi-
dend Paying Stocks,” Adv. Futures Options Res., 3, 1 -14.

BENSOUSSAN, A. (1984): ““On the Theory of Option Pricing,” Acta Appl. Math., 2, 139-158.

Brack, F., and M. ScHOLES (1973): “The Pricing of Options and Corporate Liabilities,” J. Polit.
Econ., 81, 637-659.

BLOMEYER, E. (1986): ““An Analytic Approximation for the American Put Price for Options on
Stocks with Dividends,” J. Fin. Quant. Anal., 21, 229-233.

BoyLg, P., and D. EMANUEL (1980): “Discretely Adjusted Option Hedges,” J. Fin. Econ., 8,
259-282,

BRENNAN, M., and E. ScHwaRTz (1977): “The Valuation of American Put Options,” J. Fin., 32,
449-462.

CARR, P., and R. JARROW (1990): “The Stop-Loss Start-Gain Paradox and Option Valuation: A
New Decomposition into Intrinsic and Time Value,” Rev. Fin. Stud., 3, 469-492,



ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS 105

Cox, J. and S. Ross (1976): The Valuation of Options for Alternative Stochastic Processes,” J. Fin.
Econ., 3, 145-166.

Cox, J., S. Ross, and M. RUBINSTEIN (1979): “Option Pricing: A Simplified Approach,” J. Fin.
Econ., 7,229-263.

Cox, J., and M. RUBINSTEIN (1983): Options Markets. Englewood Cliffs, NJ: Prentice-Hall.

ErL Karourl, N., R. MYNENI, and R. VISWANATHAN (1991): ““Arbitrage Pricing and Hedging of
Interest Rate Claims with State Variables,” working paper.

GesSkE, R., and H. JOHNSON (1984): “The American Put Option Valued Analytically,” J. Fin., 39,
1511-1524.

GESKE, R., and K. SHASTRI (1985): ““Valuation by Approximation: A Comparison of Alternative
Option Valuation Techniques,” J. Fin. Quant. Anal., 20, 45-71.

HADLEY, G., and T. M. WHITIN (1963): Analysis of Inventory Systems. Englewood Cliffs, NJ:
Prentice-Hall.

HarrisoN, J. M., and D. Kreps (1979): “Martingales and Arbitrage in Multiperiod Security Mar-
kets,” J. Econ. Theory, 20, 381-408.

HARRISON, J. M., and S. PriskA (1981): “Martingales and Stochastic Integrals in the Theory of
Continuous Trading,” Stoch. Process. Appl., 11, 215-260.

HuLr, J., and A. WHITE (1987): “Hedging through the Cap: Implications for Market Efficiency,
Hedging and Option Pricing,” Inr. Options J., 4, 17-22.

INGERSOLL, J. (1987): Theory of Financial Decision-Making. Totowa, NJ: Rowman & Littlefield.

Jacka, S. D. (1991): “Optimal Stopping and the American Put,” J. Math. Fin., 1, 1-14.

JAILLET, P., D. LAMBERTON, and B. LAPEYRE (1990); *“Variational Inequalities and the Pricing of
American Options,” Acta. Appl. Math, 21, 263-289.

JamsHIDIAN, F. (1989): “Formulas for American Options,”” Merrill Lynch Capital Markets Work-
ing Paper.

JonNson, H. (1983): “An Analytic Approximation of the American Put Price,” J. Fin. Quant.
Anal., 18, 141-148.

KARATZAS, L. (1988): “On the Pricing of American Options,” Appl. Math. Optim., 17, 37-60.

KaRATZAS, 1., and S. SHREVE (1988): Brownian Motion and Stochastic Calculus. New York:
Springer-Verlag.

KM, 1. J. (1990): “The Analytic Valuation of American Options,” Rev. Fin. Stud., 3, 547-572.

MACMILLAN, L. (1986): *“Analytic Approximation for the American Put Option,” Adv. Futures
Options Res., 1, 119-139.

MARGRABE, W. (1978): “The Value of an Option to Exchange One Asset for Another,” J. Fin.,
33, 177-186.

McKEAN, Jr., H. P. (1965): “Appendix: A Free Boundary Problem for the Heat Equation Arising
from a Problem in Mathematical Economics,” Ind. Management Rev., 6, 32-39.

MERTON, R. C. (1973): “Theory of Rational Option Pricing,” Bell J. Econ. Management Sci., 4,
141-183.

MyNENI, R. (1992): “The Pricing of the American Option,” Annals of App. Prob., 2, 1-23.

OMBERG, E. (1987): “The Valuation of American Puts with Exponential Exercise Policies,” Adv.
Futures Options Res., 2, 117-142.

PARKINSON, M. (1977): *“Option Pricing: The American Put,” J. Business, 50, 21-36.

RoGers, L. C. G., and D. WiLLIaMs (1987): Diffusions, Markov Processes, and Martingales,
Vol. 2. New York: Wiley.

SAMUELSON, P. A. (1965): “Rational Theory of Warrant Pricing,”” Ind. Management Rev., 6,
13-31.

SEIDENVERG, E. (1988): “A Case of Confused Identity,” Fin. Anal. J., 63-67.

VAN MOERBEKE, P. (1976): ““On Optimal Stopping and Free Boundary Problems,” Arch. Rational
Mech. Anal., 60, 101-148.






