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The problem of valuing American options continues to intrigue finance theorists. For 
example, in the New Palgrave Dictionary of Economics, Ross (1987) writes: 

This does not mean, however, that there are no important gaps in the (option pricing) 
theory. Perhaps of most importance, beyond numerical results. . . , very little is known 
about most American options which expire in jinite time. . . . Despite such gaps, when 
judged by its ability to explain the empirical data, option pricing theory is the most 
successful theory not only injinance, but in all of economics. 

The history of the American option valuation problem spans over a quarter of a century 
(for a survey of this theory see Myneni (1992)). In the framework of Samuelson’s equilib- 
rium pricing model, McKean (1965) showed that the optimal stopping problem for deter- 
mining an American option’s price could be transformed into a free-boundary problem. 
This insight allowed him to derive rigorous valuation formulas for finite-lived and per- 
petual American options. Although the McKean equation explicitly represents the value 
of the finite-lived American option in terms of the exercise boundary, the solution reveals 
little about the underlying sources of value for an American option and does not lend itself 
to analysis or implementation. 

Somewhat later, Black and Scholes (1973) and Merton (1973) developed a more satis- 
factory theory of option pricing using arbitrage-based arguments. Merton showed that 
while the Black-Scholes European option pricing methodology applied to American call 
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options on non-dividend-paying stocks, it did not apply to American put options. He also 
observed that McKean’s solutions could be adapted to valuing American put options by 
replacing the expected rate of return on the put and its underlying stock with the riskless 
rate. This insight foreshadowed the later development of risk-neutral pricing of Cox and 
Ross (1976) and the equivalent martingale measure technique of Harrison and Kreps 
(1979) and Harrison and Pliska (1981). The application of this technology to the optimal 
stopping problem for the American put option was studied by Bensoussan (1984) and 
Karatzas (1988). While the optimal stopping approach is both general and intuitive, it 
does not lead to tractable valuation results due to the difficulty involved in finding density 
functions for first passage times. 

The intractability of the optimal stopping approach lead Brennan and Schwartz (1977) 
to investigate numerical solutions to the corresponding free boundary problem. Jaillet, 
Lamberton, and Lapeyre ( 1990) rigorously justify the Brennan-Schwartz algorithm for 
pricing American put options, using the theory of variational inequalities. Other numeri- 
cal solutions were advanced by Parkinson (1977) and Cox, Ross, and Rubinstein (1979). 
Geske and Shastri (1985) compared the efficiency of these approaches and explained why 
an analytic solution may be more efficient. Furthermore, Geske and Johnson (1984) ar- 
gued that numerical solutions do not provide the intuition which the comparative statics 
of an analytic solution afford. 

Analytic appraximation.s have been developed by Johnson (1983), MacMillan ( 1986), 
Omberg (1987), and Barone-Adesi and Whaley (1987). Blomeyer (1986) and Barone- 
Adesi and Whaley ( 1988) extend these approximations to account for discrete dividends. 
However, these approximations cannot be made arbitrarily accurate. In contrast, the 
Geske and Johnson (1984) formula is arbitrarily accurate, although difficult to evaluate 
unless extrapolation techniques are employed. 

The purpose of this paper is to explore alternative characterizations of the American 
put’s value. These characterizations enhance our intuition about the sources of value of 
an American put. They also provide computational advantages, new analytic bounds, and 
new analytic approximations for this value. Our first characterization decomposes the 
American put value into the corresponding European put price and the early exercise 
premium. In contrast to approximations by MacMillan (1987) and Barone-Adesi and 
Whaley (1988), we provide an exact determination of the early exercise premium. This 
decomposition was also derived independently in Jacka (1991) and Kim (1990), using 
different means. We provide another proof of the result and offer intuition on the nature 
of the early exercise premium. In particular, we show that the early exercise premium is 
the value of an annuity that pays interest at a certain rate whenever the stock price is low 
enough so that early exercise is optimal. 

As in McKean (1965), the formula for the American put value is a function of the 
exogenous variables and the exercise boundary. While the function relating the boundary 
to the exogenous variables remains an unsolved problem, the boundary can be determined 
numerically. Having priced American put options in terms of a boundary, we also value 
European put options in terms of a boundary. We prove that our result is equivalent to 
the Black-Scholes (1973) formula for the price of a European put. This work generalizes 
earlier papers by Siedenverg (1988) and Carr and Jarrow (1990), and should be of interest 
in its own right. 

’ Jacka (199 I )  obtains the rcsult using probability theory applied to the optimal stopping problem, while Kim 
(1990) obtains it as a limit of the Geske-Johnson (1984) formula. 
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From our main valuation results and a particular choice of a boundary for our European 
put formula, we are able to decompose the American put value into its intrinsic value and 
its time value (or delayed exercise value). Just as the early exercise premium capitalizes 
the additional benefit of allowing exercise prior to maturity, the delayed exercise value 
yields the additional value of permitting exercise after the valuation date. A second 
boundary choice for our European put formula then recovers the McKean equation. In 
contrast to Geske and Johnson (1984), all of our characterizations for the value of an 
American put involve only one-dimensional normal distribution functions. 

The outline for this paper is as follows. In Section 1 ,  we decompose the American put 
value into the corresponding European put price and the early exercise premium. Sec- 
tion 2 represents the corresponding European put price in terms of an arbitrary boundary. 
In Section 3 ,  we select boundaries in order to decompose the American put value into its 
intrinsic and time value, and to show the equivalence of our results to McKean’s equation. 
Section 4 summarizes the paper and indicates some extensions and avenues for future 
research. An appendix contains proofs of our main results. 

1.  THE EARLY EXERCISE PREMIUM 

Throughout the paper, we assume the standard model of perfect capital markets, continu- 
ous trading, no-arbitrage opportunities, a constant interest rate r > 0, and a stock price 
S, following a geometric Brownian motion with no payouts; i.e.,  

dsr 
Sr 
- = p dt + (T dw,, for all t E [O, TI ,  

where the expected rate of return per unit time p and the instantaneous volatility per unit 
time c > 0 are constants. The term dW, denotes increments of a standard Wiener process 
defined on the time set [O, TI and on a complete probability space (a, 9, Q). 

Consider an American put option on the stock with strike price K and maturity date T. 
Let P, denote the value of the American put at time t E [0, TI.  For each time t E [O, T I ,  
there exists a critical stock price B ,  below which the American put should be exercised 
early; i.e.,  

(1.2) if S, 5 B,, then P,  = maxl0, K - S , ] ,  

( 1  - 3 )  and if S ,  > B , ,  then P ,  > max[O, K - S,] 

The exercise boundary is the time path of critical stock prices B,, t E [0, TI.  This 
boundary is independent of the current stock price So and is a smooth, nondecreasing 
function of time t terminating in the strike price; i.e.,  B ,  = K .  The put value is also a 
function, denoted P ( S ,  r ) ,  mapping its domain 9 = (S, t )  E [0, x )  x [0, TI into the 
nonnegative real line. The exercise boundary B,, t E [0, TI,  divides this domain Eb into 
a stopping region 9’ = lo, B,] X (0, TI and a continuation region % = ( B r ,  a) X [0,  TI. 
Equation (1.2) indicates that in the stopping region, the put value function P ( S ,  t )  equals 
its exercise value, max[O, K - S]. In contrast, the inequality expressed in (1.3) shows 
that in the continuation region, the put is worth more “alive” than “dead.” Since the 
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American put value is given by (1.2) if the stock price starts in the stopping region, we 
henceforth assume that the put is alive at the valuation date 0; i .e. ,  So > Bo . 

The partial derivatives, dPlat, dPIdS, and d2PldS2 exist2 and satisfy the Black-Scholes 
partial differential equation3 in the continuation region %; i.e., 

~ - 2 ~ 2  a 2 P ( s ,  t )  
2 dS2 

(1.4) ~ + 

McKean’s analysis implies 
boundary B, jointly solve 

for (S, t )  E %. 

that the American put value function P(S ,  t )  and the exercise 
a free-boundary problem, consisting of (1.4) subject to the 

following boundary conditions: 

(1.5) P ( S ,  T )  = max[0, K - S], 

(1.7) 

lim P ( S ,  t )  = 0 ,  
sr- 

lim P ( S ,  t )  = K - B, 
S l B r  

Equation (1.5) states that the American put is European at expiration. Expression (1.6) 
shows that the American put’s value tends to zero as the stock price approaches infinity. 
The value-matching condidons (1.7) and (1.2) imply that the put price is continuous 
across the exercise boundary. Furthermore, the high contact conditions (1.8) and (1.2) 
further imply that the slope is continuous. This condition was postulated by Samuelson 
(1965) and proved by McKean (1 965). Equations (1.7) and ( 1.8) are jointly referred to as 
the smooth,fit conditions. 

Working within Samuelson’s equilibrium framework, McKean ( 1965) solved the free- 
boundary problem for the American call option. By applying his analysis to the American 
put option, and by replacing the expected rate of return on the option and stock by the 
riskless rate, one obtains an analytic valuation formula for the put value and an integral 
equation for the exercise boundary B,. Numerical evaluation of this integral equation is 
complicated by the fact that the integrand depends on the slope of the exercise boundary, 
which becomes infinite at maturity (lim, I dB,ldt = m). To avoid this difficulty, we seek 
an alternative characterization for the American put’s value which does not involve the 
slope of the exercise boundary. Our first theorem obtains such a chara~terization.~ 

THEOREM 1.1 (Main Decomposition of the American Put). On the continuation re- 
gion %, the American put value Po can be decomposed into the corresponding European 
put price po and the early exercise premium eo : 

(1.9) Po = Po + eo, 

2See Jaillet, Lamberton, and Lapeyre (1990, Theorem 3.6) or Van Moerbeke (1976, p. 116, Theorem 1). 
3See McKean (1965, p.  38), and Merton (1973, p. 173). 
41ndependently, Jacka (1991) and Kim (1990) derive the same result by different means, 
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where 

r2 
2 

e2 = r - -, and, 

exp( - z2/2)  
N ( n )  = dz 

is  the standard normal distribution function. 

To understand this decomposition, consider the following trading strategy which con- 
verts an American put option into a European one. Suppose that an investor holds one 
American put5 whenever the stock price is above the exercise boundary. When the stock 
price is at or below the boundary, the investor duplicates the put’s exercise value by keep- 
ing K dollars in bonds and staying short one stock. Since the American put is worth more 
alive than dead above the boundary, the value of this portfolio at any time t E [0, TI 
is the larger of the put’s holding and exercise values, i.e., max[P,, K - S,]. 

The strategy’s opening cost is the initial American put price P o ,  since the stock price 
starts above the boundary by assumption (i.e., So > E o ) .  If and when the stock price 
crosses the exercise boundary from above, the investor exercises his put by shorting one 
share of stock to the writer and by investing the exercise price received in bonds. The 
“smooth fit” conditions (1.7) and (1.8) guarantee that these transitions at the exercise 
boundary are self-financing. However, when the stock price is below the boundary, inter- 
est earned on the K dollars in bonds must be siphoned off to maintain a level bond 
position. If and when the stock price crosses the exercise boundary from below, the 
investor liquidates this bond position, using the K dollars to buy one put for K - S dollars 
and to close his short stock position for S dollars. The “smooth fit” conditions again 
guarantee self-financing at the exercise boundary. At expiration, the strategy’s liquidation 
value matches the payoff of a European put, max(0, K - ST], since the alive American 
put is worthless above the boundary. 

The present value of this terminal payoff is the initial European put price po . The initial 
early exercise premium eo , as defined in (1.9), equals the present value of interest accu- 
mulated while the stock price is below the boundary. The decomposition (1.9) then states 
that the initial investment in the trading strategy, P o ,  equates to the present value of the 
terminal payoff, po , and the present value of these intermediate interest withdrawals, eo . 

The price of a European put at the valuation date 0 is given by the Black-Scholes 
formula: 

where k2T = [ln(K/So) - p 2 ~ 1 i a f l ,  kIT = [InWSo) - P I T I / ~ V T ,  
and p1 = p 2  + a2 = r + a2/2.  Consequently, in the continuation region %, the initial 
American put value may be expressed as a function of the exogenous variables (So, K, T, 
r, a) and the exercise boundary ( B t ,  t E [O, TI): 

k2T - 

5Alternatively, if the put is mispriced, the investor can manage the self-financing portfolio of stocks and 
bonds which replicates the put’s payoff. We determine this portfolio shortly. 
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where b,, = [In(B,/SO) - p 2 t ] / c 6 ,  p 2  = r - (r2/2. 

value-matching condition ( I  .7): 
The initial boundary value Bo is the initial stock price So which implicitly solves the 

(1.12) K c r T N ( k 2 , )  - S&'(k,,) + rK jde- ' . 'N(b2 , )  dt = K - So. 

Since the critical stock price Bo depends on future boundary values, B,,  t E (0, TI,  i t  
must be determined by setting the terminal boundary value to the strike price ( B r  = K )  
and working backwards through time. 

Our equations ( I .  11) and ( I .  12) do not involve the slope of the exercise boundary, as 
in McKean's equation. In addition, we have localized the effect of the exercise boundary 
B,, t E [0, TI ,  on the American put value to the last term in ( I .  11). Unfortunately, the 
boundary satisfies the nonlinear integral equation (1.12), which has no known analytic 
solution. However, solving ( 1.12) numerically for the exercise boundary should prove 
easier than in McKean's formulation. 

The early exercise premium is increasing in the boundary. This observation allows us 
to bound the American put value analytically. Suppose that an estimate for the boundary 
is known to be always greater (lesser) than the true boundary B,.  This estimate along with 
( 1 . 1 1 )  then generates an upper (lower) bound on the put option. For example, the true 
boundary B, always lies between the strike price K and the exercise boundary for the 
perpetual put, B,  (i.e., K 2 B,  2 B ,  for all t E 10, TI ) .  McKean (1965) and Merton 
(1973) calculate the perpetual boundary to be B ,  = r K / p l .  Consequently, we can bound 
the American put value Po analytically: 

dt 1 Po 
In(K/So) - p 2 t  

U V 5  
(1.13) p o  + rK j O r c r r N (  

Section 3 shows that for at or out-of-the-money puts (S, 2 K ) ,  the upper bound in ( 1.13) 
is tighter than the bound given by the price of the corresponding European put with strike 
price growing at the riskless rate. As far as we know, there are no explicit tighter bounds 
to the exercise boundary. However, another upper bound on the American put value can 
be generated by using that initial stock price S,, , which equates the right side of ( 1.13) to 
the exercise value max(0, K - So]. Since this quantity lies between B, and K ,  inserting 
it in (1 .11)  yields an even tighter upper bound than the left side of ( I .  13). This procedure 
can also be used to generate lower bounds and can be applied iteratively. 

Our characterization also allows us to approximate the American put value by replacing 
the exercise boundary B, in ( 1 . 1 1 )  with an estimate for i t ,  B,:  
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At a minimum, an estimator should satisfy the characteristics of the exercise boundary 
described at the start of this section. An example of such an estimator which leads to an 
analytic approximation is the discounted strike price B ,  = K e - H ( T - f ) ,  0 2 0. For small 
times to maturit Van Moerbeke (1976) shows that the exercise boundary B ,  is approxi- 
mately Ke-[?" A, where a is a unitless constant.(' Conversely, for very long times to 
maturity, B,  converges at an exponential rate to B ,  . An estimator which also accounts for 
both of these characteristics is an exponentially weighted average7 of the strike price and 
the perpetual boundary, B, = K c H C  + B,( 1 - e-"), 0 2 0. 

Besides the above benefits, our characterization also facilitates the analysis of limiting 
values and comparative statics. For example, as the initial stock price approaches infinity, 
(1.11) indicates that the premiums for the European put and early exercise both tend to 
zero. Consequently, the American put value also vanishes, verifying the boundary con- 
dition (1.6) and confirming intuition. Differentiating (1.11) with respect to the initial 
stock price yields the "delta" for the American put: 

is the standard normal density function. Thus, as the initial stock price falls, the premiums 
for the European put and early exercise both rise. The early exercise premium rises be- 
cause of the increased probability of stock price tmjectories entering into the stopping 
region. As the initial stock price falls below the critical stock price, the American put is 
valued by (1.2). Consequently, as the stock price approaches zero, the American put value 
approaches the strike price, which acts as an upper bound. Although the observed Ameri- 
can put value remains constant at the strike price over time, this does not represent an 
arbitrage opportunity, since all puts written with positive strike prices are immediately 
exercised. 

Beyond indicating the sensitivity of the American put value to stock price changes, the 
delta of an alive American put also represents the number8 of shares to hold when repli- 
cating it in a self-financing strategy. Consequently, since the early exercise premium's 
delta is negative (before expiration), more stock is shorted than for a European put be- 
cause of the possibility of early exercise. 

The delta can also be used to determine a simpler integral equation for the exercise 
boundary B,, t E [0, TI.  If the high-contact condition (1.8) is used, the critical stock 
price B ,  is the initial stock price So, which solves the integral equation 

(1.15) 

Once again, the entire exercise boundary is generated numerically by working backwards 
through time. 

Calculation of the other derivatives verifies that ( 1 . 1  1) satisfies the free-boundary prob- 

6See Van Moerbeke (1976). p .  144. 
'See Barone-Adesi and Whaley (1987) for a similar approximation. 
8The amount of dollars invested In bonds when replicating an alive American put in a self-financing strate&y 

is given by P ,  - (dP,ldS,)S,. 
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lem (1.4)-(1.8). Kim (1990) also verifies that the limiting value of (1.11) yields the 
perpetual put formulae given in McKean (1965) and Merton (1973). 

2. REPRESENTING EUROPEAN PUTS IN TERMS OF A BOUNDARY 

The previous section priced American puts in terms of the exercise boundary. This section 
represents the value of a European put in terms of an arbitrary boundary. The appendix 
proves that this representation is mathematically equivalent to the Black-Scholes formula 
(1.10). We then select alternative boundaries to generate various valuation formulas for a 
European put. These formulas enhance intuition on the sources of value of a European 
put and are employed in the next section to generate additional characterizations of the 
American put’s value. 

As in the Black-Scholes dynamic hedge, we consider a trading strategy in stocks and 
bonds whose liquidation value at the expiration date T is the put’s terminal payoff, max[O, 
K - ST]. Consider a strategy with the amount m, dollars held in bonds earning interest 
continuously at constant rate r and with the number of shares of stock equal to n,. The 
value of this strategy at any time t is 

Suppose transitions in stock holdings occur only at a positive, smooth, but otherwise 
arbitrary boundary A,, which terminates at the strike price 

Examples of such a boundary include the strike price itself, K ,  the exercise boundary 
for an American put, B , ,  or an estimator for this boundary, B r ,  as given in Section 1 .  
We study an example of this type of strategy, termed the stop-loss start-gain strategy, 
defined by 

where I,,, is the indicator function of the set { B } .  This strategy involves keeping A ,  dollars 
in bonds whenever the stock price S ,  is at or below the boundary A,. Funds are injected 
and withdrawn as required after accounting for the interest earned. The strategy also 
requires that one share of stock be held short when the stock price is at or below the 
boundary. No bonds or stocks are held above the boundary. The stop-loss start-gain 
strategy for specified boundaries has been previously studied by Hull and White (1987), 
Ingersoll (19871, and Siedenverg (1988), among others. 

Substituting (2.3) in (2.1) implies that the value of the stop-loss start-gain strategy at 
any time t E [0, TI is 

Consequently, from (2.21, this strategy replicates the payoff of a European put; i.e., 
VT = max[O, K - ST]. From (2.4), the initial investment in the strategy is V, = 
maxl0, A ,  - So]. Since the strategy replicates the European put’s payoff, the put’s value 
is given by this initial investment plus the present value of the external financing required 
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to implement this strategy. The appendix determines this present value, yielding the fol- 
lowing theorem. 

THEOREM 2.1 (Main Decomposition of the European Put). The European pur price 
po is given by 

(2.5) po  = max[O, A0 - SO] + N(a2,)d(Atcrf) ,  

where a l r  5 [In(A,ISo) - p l t ] luV '? ,  p1 = r + u2/2 and a2, = [ln(Af/So) - p2r ] l  
crV'?, p2 = r - ~ 2 1 2 .  

In general, the European put value decomposes into three terms. The first term in (2.5) 
is the initial investment in the stop-loss start-gain strategy (2.3). The next term represents 
the present value of the external financing required because of adverse movements of the 
stock price at the arbitrary boundary A,. The final term represents the present value of 
funds injected and withdrawn in order to keep A, dollars in bonds whenever the stock 
price is at or below this boundary. The appendix proves that our representation (2.5) is 
equivalent to the Black-Scholes formula. 

In addition, our representation (2.5) is a generalization of the formula given in Carr 
and Jarrow (1990). To get this formula, we use the exponential boundary 

Substituting (2.6) into Theorem 2.1 yields a decomposition9 of the initial European put 
price into its intrinsic and time value: 

) dt, 
ln(KIFo) - u2t12 

O ]  + 9 loT& N ' (  UV5 (2.7) po = max[0, Ke-rT - S 

where Fo = Soerr is the initial forward price of the stock. The corresponding result for 
the binomial model is developed in Siedenverg (1988). 

Equation (2.7) indicates that the payoff of a European put is replicated by holding a 
pure discount bond paying K dollars at T and being short one stock whenever the stock 
price is at or below the present value of the strike price, Ke-'fT-'). While this strategy is 
self-financing below this boundary, external financing is required at the boundary. The 
first term in (2.7) is the initial investment in the strategy, while the second is the present 
value of this external financing. 

Suppose that on the valuation date 0, we wish to price a European put with current 
strike price K growing at the riskless rate r .  By the expiration date T, the exercise price 
will be KerT. Let the current price of this put be go. Replacing K in (2.7) with KerT yields 

dt. 
u2So I T  2 N ,  (In(K/So) - u2 t /2  

U.\/i 
(2.8) go = max[O, K - Sol + - 

2 ou.\/i 

'To directly prove the equivalence of (2.7) to the Black-Schole, formula (1. 10),Ause (1.10) to express the 
forward price of the European put @ ( T )  in terms of the forward price of the stock S, and differentiate it with 
respect to time to maturity T, hol$ing the forward price constant. Then integrate back over T, using the boundary 
condition 8(0) = max[O, K - S ]  to determine the constant of integration. 
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Margrabe (1978) shows that this put is an upper bound for an American put with strike 
price K.  In Section 3, we prove that the upper bound generated in the last section is tighter 
than (2.8), if the American put is at or out-of-the-money ( S o  2 K ) .  

A second boundary choice in our representation of the European put option leads to 
another important decomposition. Consider a constant boundary equal to the strike price: 

(2.9) A, = K .  

Substituting (2.9) into Theorem 2.1 leads to the following decomposition l o  of the Euro- 
pean put value: 

c2so N ' ( k l r )  rKe-rlN(k2t)  dt, 1 (2.10) p o  = max[O, K - Sol + 

where recall k , ,  = [In(K/So) - p l t ] / c ~ ,  p ,  = r + a2 /2  and k2, E [ln(K/So) - p z t ] /  
cV'?, p2 = r - a2/2 .  Equation (2.10) indicates that the payoff of a European put can be 
replicated by keeping K dollars in bonds and being short one share whenever the put is at 
or in-the-money. No bonds or stocks are held when the put is out-of-the-money. The first 
term represents the initial investment in the strategy, while the other term gives the present 
value of the external financing needed to implement the strategy. 

3. VARIOUS AMERICAN PUT REPRESENTATIONS 

This section uses our main decomposition of the American put value in Theorem I .  1 and 
our representation of the European put price in Theorem 2.1 to derive two alternative 
characterizations of the American put's value. 

Substituting the European put formula (2.10) arising from the constant boundary 
A, = K into Theorem 1.1 yields a decomposition of the American put value into its 
intrinsic value, max[O, K - S o ] ,  and its time value, also called the delayed exercise 
value do : 

(3.1) Po = max[O, K - So] + d o ,  

where 

c2so N r ( k l r )  dt - rK loT e-"[N(k2,)  - N(b2,)] dt. do = 2 i, 7 7 -  
This representation can be given a financial interpretation by rearranging it as 

(3.2) Po - max(0, K - So] = do 

"'Note that if the interest rate vanishes ( r  = O),  then the boundary in (2.6) simplifies to that in (2.9) and the 
European put value in (2.10) simplifies to that in (2.7) (with r = 0). 
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The following strategy duplicates the time value of the American put in the continuation 
region. Suppose an investor holds an American put when it is at or out-of-the-money. 
When the stock price is strictly between the strike price and the exercise boundary, the 
investor continues to hold the American put, and, in addition, holds one share of the stock 
while keeping K dollars in borrowings. When the stock price enters the stopping region, 
the investor exercises his put by delivering the share held and using the strike price re- 
ceived to pay off his borrowing. Consequently, the investor holds nothing in this region. 
The value of this strategy at any time t E [O, T ]  is V ,  = l{s,,Bb(Pt - max[0, K - S , ] ) ,  
which is the time value in the continuation region. Since the stock price starts in the con- 
tinuation region ( S o  > Bo) ,  the strategy has an initial investment of Po - max[O, K - S o ] .  
Since the exercise boundary terminates at the strike price (BT = K ) ,  this strategy has 
zero terminal value. The delayed exercise value, as determined in (3. l ) ,  equals the present 
value of the intervening cash flows. Since there is no terminal payoff, (3.2) then states 
that the initial investment in this strategy equates to the present value of these cash flows. 
The American put has the same value as a claim which pays the exercise value immedi- 
ately, and a flow equal to the sum of the stock price movement “around” the strike price 
less interest on the strike price paid while the put is in-the-money but optimally held alive 
(i.e.,  K > S,  > B,). 

The exercise boundary B,, t E [0, TI ,  can be determined implicitly from the condition 
(1.7) that there is no value in delaying exercise at this boundary ( d J S r z B r  = 0). Conse- 
quently, the critical stock price B, is the initial stock price So that solves 

(3.3) dr = r e - “ [ N ( k 2 , )  - N ( b 2 , ) l  dt. 6 
Thus, the put is exercised as soon as the present value of the flow arising from movement 
of the stock price at the strike price equates to the present value of interest paid, while 
the stock price is between the exercise boundary and the strike price. 

The decomposition (3.1) into intrinsic and time values can also be used to bound the 
American put’s value. Since the difference in cumulative normals in (3.2) is nonnegative, 
setting the difference to zero yields the following upper bound: 

(3.4) 

where k , ,  = [ln(K/So) - p l t ] / u d .  From (2.10), this is the same upper bound as in 
(1.13). Comparing (3.4) with (2.8), we see that our upper bound given by (3.4) is tighter 
if the American put is at” or out-of-the-money ( S o  2 K ) .  Using a result from Hadley 
and Whitin (1963, Appendix 4, Property 9), our upper bound can be rewritten in terms 
of standard normal distribution functions: 

Po 5 max[0, K - So] 

11 A slightly weaker condition is so 2 KP-”IT. 
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where A = 2p l / a2 .  
Finally, to generate McKean's characterization of the American put value, let the 

boundary used to price the European put be the exercise boundary for the American put: 

(3 .5)  A, = B,. 

Then substituting (3.5) into Theorem 2.1 yields the following representation for the Eu- 
ropean put value: 

Equation (3.6) indicates that the payoff to a European put can be achieved by keeping B,  
dollars in bonds and staying short one share whenever the stock price is in the stopping 
region. No bonds or stocks are held when the stock price is in the continuation region. 
Since the stock price starts in this region, no investment is initially required. However, 
transitions at the exercise boundary and the bond position below it are not self-financing. 
The first term in (3.6) gives the present value of the external financing required at the 
boundary, while the second term gives this present value below it. 

Substituting formula (3.6) for the European put price into Theorem 1.1 yields the fol- 
lowing formulaI2 for the value of an American put: 

dt - loT N(b,,) d ( ( K  - B,)e-"). 

To understand this decomposition, consider a strategy of holding one American put 
whenever the stock price is above the exercise boundary. When the stock price is in the 
stopping region, keep K - B, dollars in bonds, but hold no puts or stocks. Since the 
stock price starts in the continuation region, the startup cost of the strategy is the initial 
American put price Po.  Since the American put is worthless in the continuation region at 
expiration and B ,  = K ,  the strategy has no terminal payoff. In contrast to the strategy 
underlying Theorem 1.1, this strategy is not self-financing at the exercise boundary. The 
first term in (3.7) is the present value of the external financing at this boundary, while the 
second is this present value below it. Since there is no terminal payoff to this strategy, 
(3.7) indicates that its startup cost equates to the present value of its external financing 
requirement. 

I2Equation (3 .7)  is in fact equivalent to the McKean equation for the American put value. To see this, replace 
S,,"(blr) with the equivalent value B , c r r N ' ( b z r )  in the first term in (3.7) and integrate the second term by 
parts. 
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4. SUMMARY AND EXTENSIONS 

This paper makes several contributions. We decompose the American put's value into the 
corresponding European put price and the early exercise premium. This formulation leads 
to increased understanding, more efficient numerical evaluation, tighter analytic bounds, 
and new analytic approximations. In addition, we employ a stop-loss start-gain strategy 
at an arbitrary smooth boundary to obtain a new European put valuation formula. This 
allows us to alternatively decompose the American put price into intrinsic and time value 
and to prove the equivalence of our results to the McKean equation. 

Although we considered the case of no dividends, our results easily extend to the case 
where the underlying asset pays continuous proportional dividends. l 3  This extension to 
continuous dividends can be used to price American options on commodities, foreign 
currencies, or futures prices. By letting interest rates be the underlying state variable, 
American bond options can also be priced (see Jamshidian (1989) and El Karoui, Myneni, 
and Viswanthan (1991)). By generalizing the payoff function, other American claims can 
be valued by this approach, such as compound options, prepayment options, or callable 
bonds. It is also possible to relax the assumption that the stock price follows a geometric 
Brownian motion. The results in the paper easily generalize to the case where the stock 
price follows an arbitrary diffusion process. 

There are at least three important avenues for future research. First, as the integral 
equations determining the exercise boundary remain unsolved, it would be useful to in- 
vestigate the nature of the solution and its approximations based on a study of those 
equations. A second significant avenue for future research involves valuing American puts 
when the underlying asset has discrete payouts. A third avenue involves multiple state 
variables, for example, combining stochastic stock prices with stochastic interest rates 
and/or dividends. 

5. APPENDIX 

Proof of Theorem 1.1 

We wish to prove l4 that 

Let Z,  = e-"P, be the discounted put price, defined in the region 9 = {(S, t )  : S E [0,  m), 
t E [0, TI}. In this region, the pricing function P ( S ,  t )  is convex in S for all t ,  continu- 
ously differentiable in t for all S, and a.e. twice continuously differentiable in S for all t .  
Consequently, the discounted pricing function 

(5.1) Z ( S ,  t )  = e-"P(S,  t )  

13The only nontrivial change is the determination of the exercise boundary at expiration. For American put 
options, if the dividend rate 6 2 0 is less than or equal to the riskless rate r, then the exercise boundary B ,  
converges to the strike price K at expiration as before ( i ,e , ,  B ,  = K ) .  However, if the dividend rate 6 exceeds 
the riskless rate, then B ,  = (rl6)K < K ,  reflecting the reduced incentive to exercise early; Van Moenbeke 
(1976) p.  142. 

I4D. Lamberton communicated this proof to us. It was motivated by our earlier proof based on Fourier 
transforms. 
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inherits these properties. Although the partial derivative d2P/dS2 is discontinuous at the 
boundary B,, It6's lemma extends l 5  to Z ( S ,  t ) ,  so that 

82 Z(S, ,  t )  u2Sf  az(s, t )  z, = z, + /,7 ~ azy;, t )  dsl + il: [ as2 2 + A] at (it. 

Therefore from (5. I )  

Now P,  = max[0, K - S,], and there existsi6 a probability measure Q, equivalent to 
Q, such that 

(5.21 dS, = rS, dt + US,  dW,, 

where Wt = W ,  - [ ( p  - r ) / u ] t  is a standard Brownian motion on (a, 9, Q). Separating 
the put value into the two regions, P(S, ,  t )  = lp+,gl~P(St, t )  + I ~ ~ , ~ E , ~ ( K  - S,), we 
have 

I s A  sketch of the proof for the extension can be obtained as follows. Unless specified otherwise, all theorem 
and equation references are to Kardtzaa and Shreve (1988). The proof of (7.4), p. 219, can be modified and 
extended to apply to f : [0, 2) X !)I + !It, denoted f ( x .  I ) ,  where f is convex in .x for all t .  continuously 
differentiable in f for a l l  x. and a.e. twice continuously differentiable in x for all f .  118's lemma (see Theorem 
3.6, p .  153) is used to get a slight modification o f (7 .5 ) .  p. 219: 

where the prime(s) on f denote partial differentiation with respect to the first argument o f f .  The identical 
argument gives 

in probability for every fixed I ,  and i Jb , f ; ( X , .  s) d(M), converges to a limit in probability. Since,f(x.  I) is a.e.  
twice continuously differentiable in x .  this limit is determined as 

I '  y i, . f ; (x , .  5) d(M).! = - 

I 
--f 2 

i i f i ( . r ,  s )  d,P d.r from Rogers and Williams (1987, p. 104 (45.4)) 

6f.(~, s) d,/' dx from Karatzas and Shreve (1988, top of p. 215) 

= f " ( X , , .  s) d(M),  from Rogers and Williams (1987. p .  104 (45.4)) 
2 0 

I6Define by its Radon-Nikodym derivative 
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e-',max[O, K - S,] 

On the continuation region, the pricing function P ( S ,  t )  satisfies the Black-Scholes partial 
differential equation ( I  .4). Consequently, the terms multiplying l(S,ZBri sum to zero, 
leaving 

dP - 
e-rTmax[O, K - S,] = Po - rK joT e-"I{Sr5BlI dt + e-" rS, - dW. 6 dS 

Taking expectations with respect to the martingale measure 0 establishes the result 

Proof of Theorem 2.1 

To determine the discounted external financing of the strategy (2.3), define the process 

D ,  = e max[0, A,  - S,] for all t E [0, T ]  

= e-"A, max[O, I - S,/A,] 

= e-", A, max[0, 1 - Y , ] ,  

where Y, = S,/A,. Using integration by parts, we find 

(5.3) A,e-'*max[O, 1 - Y,] = AOe-ro max[O, 1 - Yo] 

+ jOTAre-', d(max[O, 1 - Y,]) 

+ loT rnaxl0, 1 - Yr] d(A,e-"). 

Now, from the Tanaka-Meyer formula: 

maxl0, 1 - Y,l = maxi0, I - Yo] - liYl,,, dY, + Ay(l ,  t ) ,  

where A y ( l ,  t )  is the local time of the process Y at 1 by time t .  Consequently, (5.3) 
becomes 

(5.4) ATe-rr max[0, I - Y,] = A, max[0, 1 - Yo]  

]'See Karatzas and Shreve (1988, p.  220 (7.7)) 
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Since Y,  = SJA, and A, = K by ( 2 . 2 ) ,  the left side of (5.4) becomes c rTmax[O,  K - S,], 
while the right side is 

= max[0, A, - So] - l{Sr<Al) d(S,e-") loT 

Taking expectations using the equivalent martingale measure Q implies 

(5 .5)  po = .!?{e-rTmax[O, K - S T ] }  

T 

0 
= max[0, A, - So] + 1 A,e-"E dA,(l, t )  + i,' E 1 ~ , < A I ~  d(A,e -"), 

from Fubini's theorem and from the fact that the expectation of j$ lISl<A3 d(S,e-"), a 
martingale, vanishes. To evaluate the first integral, recall Y ,  = S,/A,. From (5 .2 )  and ItB's 
lemma: 

dA, 1 3 = ( r  - pa) dt + u dW,, where pa = - - 
Yl dt A,' 

Then from the properties of local time, the first integral can be rewritten as 
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where e(Y,,  t ;  Yo ,  0) denotes the (lognormal) transition density function: 

Consequently, in the standard normal notation of (1.14), the first integral in ( 5 . 5 )  has the 
form 

Substituting (5.6) in ( 5 . 5 )  yields 

u2 "('2,) dt  po = max[0, A ,  - So] + - / Ale-" ~ 

2 0  UV5 

+ IT  r' e(S,, t ;  So, 0) dS, d(A,e-") ,  
0 0  

where u2, = [In(A,/So) - p 2 t ] / u d .  To simplify the first integral, use the identity 

(5.7) A,e-"N'(u2,) = SON'(  a 

where A ,  > 0 and 

To simplify the second integral, perform the change of variables z = [ln(S,/SO) - p 2 t ] /  
ul.h. Thus, 

u2S0 " ( a l , )  dt + 

UV5 (5.9) po = max[O, A0 - So] + 2 
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Proof of Equation (5.9) 

by parts on the last integral in (5.9): 
To prove that (5.9) is equivalent to the Black-Scholes formula (1. lo),  use integration 

+ Ke-rTN(k2T)  - 

where the second equality follows from (2.2) and (5.7). Differentiating (5.8) and substi- 
tuting in (5.10) leads to 

which is the Black-Scholes formula (1.10). 0 
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