
Risk and Decision Analysis 00 (2017) 1–7 1
DOI 10.3233/RDA-170123
IOS Press

Why is VIX a fear gauge?

Peter Carr
NYU Tandon School of Engineering, 12 MetroTech Brooklyn, NY 11201, USA
E-mail: pc73@nyu.edu

Abstract. VIX is a widely followed volatility index constructed from the market prices of out-of-the-money (OTM) puts and
calls written on the S&P500. VIX is often referred to as a fear gauge. While the market prices of OTM puts clearly reflect the
fear that the S&P500 will drop, about half of the options used in constructing VIX are actually OTM calls. The market prices of
these OTM calls clearly reflect greed rather than fear. In this note, we offer several explanations as to why VIX can properly be
regarded as a fear gauge.
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1. Introduction

VIX is a widely followed index constructed from
the market prices of out-of-the-money (OTM) puts and
calls written on the S&P500. The V in VIX stands
for volatility. It is well known that since its redesign
in 2003, VIX2 approximates the cost of synthesizing
a newly issued 30 day variance swap under a set of
widely accepted assumptions.

Besides its well known role as a volatility index,
VIX is often referred to as a fear gauge. While the mar-
ket prices of OTM puts clearly reflect the fear that the
S&P500 will drop, about half of the options used in
constructing VIX are actually OTM calls. The market
prices of these OTM calls clearly reflect greed rather
than fear. In this note, we explain why VIX is a volatil-
ity index and we also offer several explanations as to
why VIX can properly be regarded as a fear gauge.

An overview of this paper is as follows. The next
section shows why VIX can properly be regarded as a
volatility index. In the following section, we focus on
why VIX can also be regarded as a fear gauge. The
final section summarizes the paper and offers sugges-
tions for future research.

2. VIX as a volatility index

Market prices of options are widely used to calibrate
the stochastic process governing the market price of the
underlying asset. When the underlying is a stock index,
the stochastic process must respect positivity; a stock
index will never hit zero or become negative. One of

the easiest ways to respect positivity is to start the in-
dex at a positive level and to assume that the worst pos-
sible down move in the index over any period is always
the same fixed fraction of its beginning of period size.
For example, suppose an index starts at 100 and can
halve every period, but can never drop by more than
half. Then if the worst possible move occurs every pe-
riod, the index levels are 100, 50, 25, 12.5 etc., so index
levels remain positive.

If we couple a constant fractional down move with a
constant proportional up move, we obtain a multiplica-
tive binomial process. For example, if the index level
can either halve or double each period, then it is fol-
lowing a multiplicative binomial process. For simplic-
ity, consider the further special case of a multiplica-
tive binomial process when the two possible percent-
age moves differ only in sign. For example, suppose an
index is presently at 100 and can only rise or fall by
10% each period. Since the percentage down move is
still between 0 and 100%, the index level will alway be
positive.

For the remainder of this section,we only assume
that the S&P500 index level is positive and arbitrage-
free. However, we will illustrate all of our results in
this context by assuming that the index can only rise
or fall by the round figure of 10% each period. Let
Si > 0 be the closing level of S&P500 on day i. Con-
sider the difference Si+1 − Si between the closing in-
dex levels on two adjacent dates. The daily return is
defined as the ratio of this difference to the initial index
level. We refer to this random variable as the forward
return fi ≡ Si+1−Si

Si
. In contrast, we define the back-

ward return as the ratio of the difference to the final in-
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dex level bi ≡ Si+1−Si

Si+1
. If time ran backward, then the

backward return would become the forward return in
the reversed clock. With time running forward, we now
show that the backward return is always arithmetically
lower1 than the forward return, i.e. bi � fi .

If the index rises, then the backward return divides
the positive gain by a larger denominator than the for-
ward return, so the fraction is less positive. For exam-
ple, if the index rises from 100 to 110, then the for-
ward return is 10/100 = 0.1 or 10%, while the back-
ward return is less positive at 10/110 = 0.0909 or
9.09%. If the index falls, then the backward return di-
vides the negative gain by a smaller denominator than
the forward return, so the fraction is more negative.
For example, if the index instead falls from 100 to
90, then the forward return is −10/100 = −0.1, or
−10%, while the backward return is more negative at
−10/90 = −0.1111 or −11.11%.

The square of the daily return is an estimate of the
variance of the daily return. It turns out that the square
of the forward return is quite close to the difference
between the forward return and the backward return.
For example, if the index rises from 100 to 110, then
the squared return is (0.1)2 = 0.0100, while the dif-
ference between the forward return and the backward
return is 0.1 − 0.0909 = 0.0091. If the index in-
stead falls from 100 to 90, then the squared return
is still (−0.1)2 = 0.0100, while the difference be-
tween the forward return and the backward return is
−0.1−(−0.1111) = 0.0111. In both cases, the squared
return is quite close to the difference between the for-
ward return and the backward return.

Some simple algebra can be used to gain under-
standing on the magnitude of the approximation er-
ror. Since Si+1 = Si(1 + fi), the backward return
bi ≡ Si+1−Si

Si+1
can be written in terms of the forward

return fi ≡ Si+1−Si

Si
:

bi = Si+1 − Si

Si(1 + fi)
= fi

1

1 + fi

.

Now from long division taught in elementary algebra,
1

1+fi
= 1 − fi + f 2

i − f 3
i · · · . As a result:

bi = fi − f 2
i + f 3

i − f 4
i · · ·

It follows that the difference between the forward re-
turn and the backward return is just the squared for-

1As a mnemonic, notice that the letter b comes before the letter f

in the alphabet.

ward return, plus an error whose leading order is a
cubed percentage return:

fi − bi = f 2
i + O(fi)

3. (1)

In continuous time, and for continuous sample path
stochastic processes, the cubes and higher powers of
returns vanish. As a result, the difference between the
forward return and the backward return is the square of
the forward return.

The forward return fi ≡ Si+1−Si

Si
can be manufac-

tured by holding 1
Si

units of the index at time i and
borrowing the cost. Assuming no dividends and no in-
terest, the realized gain on this position at time i + 1
is 1

Si
(Si+1 − Si) = fi , the forward return. How can

we manufacture the backward return? The backward
return cannot be manufactured by holding 1

Si+1
units

of the index at time i because the required holding in
the index is anticipating. Fortunately, the gains from a
static position in an option can be interpreted as equiv-
alent to the gains from a particular anticipating dy-
namic trading strategy in its underlying index, even
when the volatility process is unknown. For example,
consider the gain in intrinsic value |Si+1 − Si | that
arises from being long one ATM straddle at time i. Re-
gardless of the S dynamics, this gain can always be
represented as Na

i (Si+1 − Si), where the number of
shares held from time i to time i+1 is Na

i = 1(Si+1 �
Si) − 1(Si+1 < Si). In words, the strategy is long one
share if S rises and short one share if S falls. The super-
script a on Ni indicates that this trading strategy is an-
ticipating since the holdings at period i clearly depend
on Si+1. This example illustrates that a static position
in an option is equivalent to a dynamic trading strategy
in its underlying which in general is anticipating.

To understand the option position needed to access
the backward return, we first recall from calculus that
any differentiable function of S can be treated as the
area under the plot of its derivative against S. Let A(S)

be a given differentiable function of S and consider the
plot of A′(S) against S. As S moves, A moves. Let
�Si = Si+1 − Si be the change in S and let �Ai =
Ai+1 − Ai be the corresponding change in A. Using
the trapezoidal rule:

�Ai =
[

1

2
A′(Si) + 1

2
A′(Si+1)

]
�Si + e, (2)

where the error term is:

e = − (�Si)
3

12
A′′(mi), (3)
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with mi between Si+1 and Si . In words, (2) says that
the change in the area under a function such as A′(S)

is approximated by the product of the average height
of the function and its base. From (3), the leading term
in the error is the cube of the index change.

To illustrate, suppose A(S) = ln S. Then since
A′(S) = 1

S
:

�(ln S)i =
[

1

2

1

Si

+ 1

2

1

Si+1

]
�Si + O

(
f 3

i

)
. (4)

The LHS is just the log price relative �(ln S)i =
ln(

Si+1
Si

) ≡ ci , which is the continuously compounded
rate of return. Hence, (4) shows that the continuously
compounded rate of return is approximated by the
blended return that arises by averaging the forward re-
turn with the backward return:

ci = 1

2
fi + 1

2
bi + O

(
f 3

i

)
. (5)

Since bi � fi , we obviously have bi � ci � fi when
the O(f 3

i ) term can be ignored. In words, the contin-
uously compounded return ci is always between2 the
backward return bi and the forward return fi . From (5),
the leading term in the error in treating ci as a simple
average of bi and fi is the cube of the return, f 3

i , which
is typically quite small.

To see how small this approximation error is in prac-
tice, let’s examine the error when the daily percentage
moves are ±10%, which corresponds to a huge annu-
alized volatility of

√
252 × 0.1 = 158%. If the in-

dex rises from 100 to 110, then the continuously com-
pounded non-annualized return is ln(1.1) = 0.0953
or 9.53%. The simple average of the forward return
of 10% and the backward return of 9.09% is 9.545%,
which is quite close. If the index instead falls from
100 to 90, then the continuously compounded return is
ln(0.9) = −0.1053, or 10.53%. The simple average of
the forward return of −10% and the backward return
of −11.11% is −10.55%, which is also quite close.

Now consider the difference between the forward re-
turn and the continuously compounded return. Since
the continuously compounded return is quite close to
the blended return, this difference is quite close to half
the difference between the forward return and the back-

2As a mnemonic, notice that the letter c is between the letter b and
the letter f in the alphabet.

ward return which is half the squared return:

fi − ci = fi −
[

1

2
fi + 1

2
bi

]
+ O

(
f 3

i

)

= 1

2
(fi − bi) + O

(
f 3

i

)

= 1

2
f 2

i + O
(
f 3

i

)
, (6)

from (1). It follows that if we double the difference be-
tween the forward return and the continuously com-
pounded return, we approximate the squared return:

2(fi − ci) = f 2
i + O

(
f 3

i

)
. (7)

This observation lies at the heart of the following VIX
construction.

Summing over 30 days implies:

29∑
i=0

2(fi − ci) =
29∑
i=0

f 2
i +

29∑
i=0

O
(
f 3

i

)
. (8)

The LHS contains the continuously compounded re-
turn ci = ln Si+1 − ln Si . The summing causes tele-
scoping so that:

−2 ln S30 + 2 ln S0 +
29∑
i=0

2fi

=
29∑
i=0

f 2
i +

29∑
i=0

O
(
f 3

i

)
. (9)

Solving for the sum of squared returns:

29∑
i=0

f 2
i ≈ −2 ln(S30/S0)

+
29∑
i=0

2

Si

(Si+1 − Si),

(10)

since fi = Si+1−Si

Si
. The first term on the RHS is path-

independent, so can be spanned by a static position in
30 day OTM options. Carr and Madan[2] show:

−2 ln(S30/S0)

= − 2

S0
(S30 − S0) +

∫ S0

0

2

K2
(K − S30)

+ dK
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+
∫ ∞

S0

2

K2
(S30 − K)+ dK

= − 2

S0

29∑
i=0

(Si+1 − Si)

+
∫ S0

0

2

K2
(K − S30)

+ dK

+
∫ ∞

S0

2

K2
(S30 − K)+ dK. (11)

Substituting (11) in (10) and multiplying by 252
30 im-

plies that an estimate of the annualized daily variance
rate is:

252

30

29∑
i=0

f 2
i

≈
∫ S0

0

252

15K2
(K − S30)

+ dK

+
∫ ∞

S0

252

15K2
(S30 − K)+ dK

+
29∑
i=0

252

15

1

Si

− 1

S0
(Si+1 − Si). (12)

In words, an estimate of the annualized daily variance
is approximated by the P&L arising from combining
a static position in OTM puts and calls with daily dy-
namic trading in the index.

Under zero interest rates and dividends, the last term
on the RHS of (12) can be synthesized at zero cost by
holding 252

15 ( 1
Si

− 1
S0

) units of the index and borrowing
the cost. In contrast, the first two terms on the RHS
of (12) each cost money to create. For K < S0, let
P0(K) > 0 be the initial cost of a 30 day OTM put
struck at K > 0. Similarly for K > S0, let C0(K) > 0
be the initial cost of a 30 day OTM call struck at K .
The cost of creating the first two terms on the RHS of
(12) is S0

0
252

15K2 P0(K) dK + ∞
S0

252
15K2 C0(K) dK .

This is very close to the CBOE formula for VIX2:

VIX2 = 2

T

∑
i

�Ki

K2
i

eRT Q(Ki) − 1

T

[
F

K0
− 1

]2

,

where K0 is the first strike below the index level and Ki

is the strike price of the ith out-of-the-money option;
a call if Ki > Ko; and a put if Ki < Ko; both put

and call if Ki = Ko and Q(Ki) is the midpoint of the
bid-ask spread for each option with strike Ki .

It differs from VIX2 for several reasons:

1. We have assumed that R = 0.
2. VIX2 uses options of two maturities and then lin-

early interpolates to achieve a 30 day expiration.
As long as the convexity of the term structure of
variance rates is small, the impact of this differ-
ence is small.

3. VIX2 separates puts from calls using the initial
forward at their common maturity rather than the
initial spot. As long as short term interest rates
and short term dividends are small, the impact of
this difference is small.

4. VIX2 uses discrete strikes rather than a contin-
uum of strikes. As long as there is a fine grid and
a wide range of S&P500 strikes trading, the im-
pact of this difference is small.

This section has shown why VIX can properly be
regarded as a volatility index. In the next section, we
focus on why VIX can also be regarded as a fear
gauge.

3. VIX as a fear gauge

There are a few obvious reasons why VIX can also
be regarded as a fear gauge. First, the market as a
whole is usually considered to be long the S&P500 and
risk-averse. Suppose that the S&P500 moves up and
down relative to its expected level by the same percent-
age amount of this level. When the magnitude of these
daily moves increases from e.g. ±1% to ±2%, then
VIX obviously rises and the utility of risk-averse mar-
ket participants falls. Alternatively, if the daily moves
stay constant at ±1% but the aversion to these moves
increases, then VIX might well rise and again the util-
ity of risk-averse market participants falls. Hence, if
fear is interpreted as the lowering of expected utility
for a risk-averse agent, then a rise in VIX leads to
fear.

Suppose now that all investors are risk-neutral, but
we continue to assume that the market as a whole is
long the S&P500. There are a couple of other reasons
why VIX can still be regarded as a fear gauge. It is well
known that VIX2T is well approximated by the cost
of creating the path-independent payoff −2 ln(ST /S0).
We consider the delta of this position to be negative,
even though the Black Scholes value of this payoff is
independent of S0. The apparent contradiction is re-
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solved by recognizing that the payoff depends on S0.
As a result, the definition of delta as a hedge ratio and
as a first derivative diverge. We treat delta as funda-
mentally a hedge ratio. Given this definition, delta can
be calculated as a first derivative provided the contri-
bution from the payoff function is ignored. As a result,
the delta of the claim paying off −2 ln(ST /S0) in neg-
ative. This can be regarded as a rationale for treating
VIX as a fear gauge.

There is a third reason why VIX can be regarded as
a fear gauge. It is well known that the realized vari-
ance of S&500 has historically been negatively corre-
lated with the level of S&P500. Hence, realizations of
S&P500 return variance above what was expected ex
ante tend to be accompanied by realizations of S&P500
returns below what was expected ex ante. Finance aca-
demics often refer to this phenomenon as a leverage ef-
fect. It is also well known that the implied variance of
index options are positively correlated with subsequent
realized variance.

Consider a classical stochastic volatility model:

dSt = √
VtSt dWt , t � 0, (13)

where W is a Q standard Brownian motion, S is al-
ways positive, and V is an unknown stochastic process.
While VIX2 is usually defined via option prices, Carr
and Lee [1] prove in this context that VIX2 is approx-
imated by a Gaussian weighted average of appropri-
ately defined implied variance rates:

VIX2T ≈ E
Q
0

∫ T

0
Vt dt

=
∫ ∞

−∞
e− z2

2√
2π

I 2(z)T dz. (14)

In (14), the I 2(z) denotes the Black implied variance

rate as a function of z = EBXT −k

StdBXT
where XT ≡

ln(FT /F0), k ≡ ln(K/F0), and B is the forward mea-
sure in the Black model. One can think of z as the
d2 variable in the standard way of writing the Black
Scholes formula for a call.

The typical graph of I 2(z) is downward sloping and
mildly convex in z ∈ R. A standard heuristic is that
the ATM implied variance I (0) captures the expected
value of future realized variance, the ATM slope I ′(0)

captures the covariance of future realized variance with
returns, and the ATM curvature I ′′(0) captures the vari-

ance of future realized variance. An increase in I (0),
or |I ′(0)| or I ′′(0) tends to increase the integral in
(14) and hence VIX2. To the extent that a spike up
in VIX2 reflects an increase in the forecasted average
level of realized variances, the leverage effect suggests
that this VIX increase will be followed by lower re-
turns.

However, suppose that risk-neutral investors knew
for certain that realized variance of S&500 evolves in-
dependently of the level of S&P500. Is there still a rea-
son that VIX might be called a fear gauge? The Gaus-
sian in (14) is symmetric in z, so it appears that the con-
tribution from OTM put implied variances matches the
contribution from OTM call implied variances. How-
ever, it needs to be remembered that z = 0 corre-
sponds to the strike price K = S0e

−σ 2T/2, not S0.
If I 2(z) is flat and the put call separator is the mean
S0, rather than the median S0e

−σ 2T/2, then more than
half of the mass is coming from the put implied vari-
ances.

To see how much more the at and OTM puts con-
tribute than the at and OTM calls, note that so long as
(13) holds:

VIX2T ≈ E
Q
0

∫ T

0
Vt dt

=
∫ S0

0

2

K2
P0(K) dK

+
∫ ∞

S0

2

K2
C0(K) dK. (15)

The RHS is the exact initial cost of synthesizing
a hypothetical variance swap paying 〈ln S〉t =

T

0 (d ln St )
2 = ∫ T

0 Vt dt at its maturity date T .
Suppose that the constant volatility Black model

is holding so that all of the implied variance rates
are flat at σ 2. The cost of creating the floating leg
of the variance swap requires a positive investment
in both OTM puts and OTM calls. Is the dollar in-
vestment in OTM puts matched by the dollar invest-
ment in OTM calls? We now show that more dollars
are invested in OTM puts than calls when the Black
model is holding. If we interpret the dollars invested
in OTM puts as due to fear and further interpret the
dollars invested in OTM calls as due to greed, then
VIX is more about fear than greed. When the im-
plied volatilities slope down in moneyness as they have
since 1987, then even more dollars are spent buying
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OTM puts than OTM calls in synthesizing a variance
swap.

Let XT ≡ ln(ST /S0) be the non-annualized con-
tinuously compounded return over the period [0, T ].
Recall that the cost of creating the floating leg of a
variance swap matches the cost of creating the path-
independent payoff −2XT :

E
Q
0

∫ T

0
Vt dt = E

Q
0 (−2XT ). (16)

Now the path-independent payoff −2XT can be de-
composed into the contribution from negative XT and
the contribution from non-negative XT :

−2XT = −2XT 1(XT < 0) − 2XT 1(XT � 0)

= 2[0 − XT )+ − 2(XT − 0)+. (17)

Substituting (17) in (16) implies that

E
Q
0

∫ T

0
Vt dt

= 2E
Q
0 (0 − XT )+ − 2E

Q
0 (XT − 0)+. (18)

The results of Carr and Madan imply that:

E
Q
0 2(0 − XT )+

= 2

S0
P0(S0) +

∫ S0

−∞
2

K2
P0(K) dK (19)

and:

E
Q
0 −2(XT − 0)+

= − 2

S0
C0(S0) +

∫ ∞

S0

2

K2
C0(K) dK. (20)

Thus, the 2 zero strike puts on XT are created from at
and OTM puts on ST . Similarly, the short position in
the 2 zero strike calls on XT are created from at and
OTM calls on ST .

In the Black Scholes model, it is straightforward to
value the 2 zero strike puts on XT :

2E
Q
0 [0 − XT ]+

= 2σ
√

T N ′ σ
√

T

2
+ σ 2T N

σ
√

T

2
.

(21)

It is also straightforward to value the short position in
the 2 zero strike calls on XT :

E
Q
0 −2(XT − 0)+

= −2σ
√

T N ′ σ
√

T

2
+ σ 2T N −σ

√
T

2
.

(22)

Each position is the sum of two terms. The first term
on the RHS of (21) is positive, while the first term on
the RHS of (22) is negative and has the same abso-
lute value. Clearly, the first term on the RHS of (21)
is larger than its counterpart in (22). The last term on
the RHS of (21) is larger than the last term on the
RHS of (22), since N(·) is increasing. As a result,
the long position in the two zero strike puts is clearly
more valuable3 than the short position in the two zero
strike calls. The sum of the two values is σ 2T , since
N(σ

√
T

2 ) + N(−σ
√

T
2 ) = 1.

4. Summary and future research

VIX is both a volatility index and a fear gauge. It
is well known that it arises as a volatility index be-
cause VIX2 is essentially the cost of replicating the
floating leg of a variance swap. In this paper, we ar-
gued that the reason that the path-independent pay-
off 2(eXT − 1 − XT ) has the same value as the path-
dependent payoff 〈X〉T = ∫ T

0 (dXt )
2 is that incre-

ments of 2(eXt − 1 − Xt) capture the difference be-
tween the forward and backward returns. When the un-
derlying price process has positive continuous sample
paths in continuous time, the difference between the
forward and backward returns is just the variance rate
of X.

We also gave four reasons why VIX can properly
be regarded as a fear gauge. First, assuming that risk-
averse investors are long the S&P500, increases in ex-
pected variance or risk aversion raise VIX and lower
expected utility. Second, we argued that VIX2T has
the same value as the path-independent claim paying
ln(ST /S0) at T and that the latter claim has negative
delta. Third, the leverage effect implies that abnor-

3Notice we are not claiming that the last term in (21) has greater
value than the last term in (22). The inclusion of the ATM options on
ST is essential for our results.



P. Carr / Why is VIX a fear gauge? 7

mally high VIX levels tend to be accompanied by ab-
normally low S&P500 levels. Fourth, when the Black
Scholes model is holding, the VIX construction has
more dollars invested in at and OTM puts than in at and
OTM calls. If the at and OTM puts reflect fear while
the at and OTM calls reflect greed, then VIX is more
about fear than greed. When the negative skew is taken
into account, this fear to greed ratio increases. We con-
clude that there are valid reasons for regarding VIX as
both a volatility index and a fear gauge.

Future research should focus on weaker or alterna-
tive sufficient conditions on the risk-neutral index dy-
namics which lead to greater aggregate investment in
at and OTM puts than calls.
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