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The Valuation of Sequential Exchange
Opportunities

PETER CARR*

ABSTRACT

Sequential exchange opportunities are valued using the techniques of modern option-
pricing theory. The vehicle for analysis is the concept of a compound exchange option.
This security is shown to exist implicitly in several contractual settings. A valuation
formula for this option is derived. The formula is shown to generalize much previous
work in option pricing. Several applications of the formula are presented.

FINANCIAL CONTRACTS FREQUENTLY ASSIGN one party the right to exchange one
asset for another. For example, bondholders can often convert debt into equity.
Alternatively, in an exchange offer, the target firm’s shareholders can exchange
their shares for those of the acquiring firm. In each case, the party having the
option to exchange is said to own an exchange option. Margrabe [6] defines an
exchange option as the right to exchange one asset for another within a specified
period of time. If either asset has constant value over time, then an exchange
option degenerates into an ordinary call or put.

A complication that arises in valuing these opportunities occurs when one
exchange leads to another. In the above examples, a bondholder converting into
stock may find himself or herself later exchanging the shares received for those
of an acquiring firm. This paper also identifies several other situations involving
multiple exchanges, most of which are more likely but less obvious.

Sequential exchange opportunities exist whenever an exchange of assets creates
the potential for further exchange. This paper is concerned with the valuation of
a sequence of potential exchanges. For simplicity, the timing and terms of each
possible transaction are assumed to be known in advance. The paper integrates
work on compound option pricing' by Geske [4] with work on exchange option
pricing by Fischer [2] and Margrabe [6]. A valuation formula for a security called
a compound exchange option is developed. Exercise of this instrument involves
delivering one asset in return for an exchange option. The option received upon
delivery may then be used to make another exchange at a later date. The paper
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demonstrates that any finite number of exchanges can be valued. However, for
simplicity only the last two transactions in any series will usually be examined.
To keep the analysis tractable, the asset delivered in each exchange is assumed
to be the same. Despite this limitation, the formula can be used in a wide variety
of contexts.

The remainder of this section briefly describes some of these applications.
These illustrations need not literally involve the physical exchange of assets if
cash settlement is equivalent. For example, a firm usually retires its expiring
debt with cash. However, no harm is done in imagining that the firm delivers
simultaneously maturing bonds instead.

In their seminal paper, Black and Scholes [1] discuss how the shareholders of
a levered firm are regarded as owning a call option written on the firm’s assets.
They also illustrate how coupon payments compound this option’s character.
With only two payments remaining, the shareholders have the option either to
pay the coupon or to default. By making the penultimate payment, the share-
holders receive the option to default at the bond’s maturity. Modeling the equity
in this manner, Geske [3] explicitly values it as a compound call option. The
equity can also be viewed as a compound exchange option if it is imagined that
maturing bonds are delivered instead of cash paid. Viewed this way, it is also
possible to value the equity if the debt is denominated in a different currency
from the assets. In this case, the equity is a compound exchange option, where
the asset delivered in each exchange is a foreign bond.

Compound exchange options may similarly be used to value sinking-fund debt
or floating-rate debt subject to default risk. As in the above example, consider
the shareholder’s position when there are only two payments outstanding. In
both cases, the equity of the firm has the option either to make the penultimate
outlay or to default. By making the required payment, the shareholders receive
the option to default at the bond’s maturity. Consequently, the equity may be
valued as a compound option. Furthermore, the equity is also an exchange option
because, in both cases, the size of the cash payment is tied to the market value
of a traded asset. In the sinking-fund case, the payments are tied to the corporate
bond’s market value, while, under the floating-rate scenario, the payments are
linked to the value of some reference instrument. Note, however, that pricing the
equity as a compound exchange option is tricky because the underlying simple
option does not trade. Once the equity can be valued, the Modigliani-Miller
Theorem can be invoked to price the debt.

Turning to the asset side of the balance sheet, this paper demonstrates how
compound exchange option pricing may be used in capital budgeting. The
opportunity to invest in a project may be characterized as a simple call option
on the value of the project’s cash inflows, with the exercise price equal to the
required investment. If investing in a project unveils further opportunities, then
compound option pricing is appropriate. Furthermore, the analogy best captures
the essence of the opportunity when the series of investments required are
random. If the randomness in the investments can be hedged using traded assets,
then the valuation technique developed in this paper can be implemented.

The pricing of compound exchange options also has implications outside of
corporate finance. Margrabe [6] discusses how performance-incentive fees may
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be valued as exchange options. Suppose that a portfolio manager’s fee will consist
of a portion of the difference in value, if positive, between his or her managed
portfolio and some benchmark portfolio. Then the manager’s fee is proportional
to the profit obtained from exchanging the benchmark portfolio for the managed
one. Furthermore, if the contract is guaranteed in a manner described later in
the paper, then the manager’s fee can be valued using the formula developed in
this paper.

The plan of this work is as follows. Section I presents assumptions and some
distribution-free results on the valuation of compound exchange options. Section
II then uses these results along with a distributional assumption to derive an
exact pricing formula for this security. It is shown that the valuation formulas
of Black and Scholes [1], Margrabe [6], and Geske [4] are all special cases of the
general result. The following two sections then elaborate on the applications
described above. The final section summarizes the paper and contains suggestions
for future research. A comparative-statics analysis in Appendix A suggests that
the formula aaccords well with intuition and with distribution-free results.
Appendix B contains two extensions to the valuation formula.

I. Assumptions and Distribution-Free Results

This section develops distribution-free results for exchange options analogous to
those given in Merton [9]. The first major result is a generalization of the put-
call parity relation to compound exchange options. A second result develops
conditions under which an American exchange option may be valued as Euro-
pean.? Finally, pricing bounds are developed for compound exchange options.

The following terminology is employed in this paper. An asset is either primary
or derivative. All of the derivative assets examined in this paper are exchange
options. Such an option gives its owner the right to exchange one asset for
another. The asset given up is termed the delivery asset. The asset received is
called the optioned asset. These assets are referred to collectively as the under-
lying assets. Exchange options may be simple or compound. If either underlying
asset is another option, then the original option is considered compound. Oth-
erwise, the exchange option is simple. Exchange options may be further catego-
rized as American or European. The valuation formula developed in this paper
will be for European compound exchange options. However, the formula is shown
to apply to American options under certain assumptions.

These assumptions are as follows.

(A1) Frictionless markets: There are no transaction costs, indivisibilities, or
differential taxes. Short selling is allowed without restriction.

This assumption ensures that a portfolio of assets with payoffs that weakly
exceed those of a second portfolio must sell for at least as much. If short-selling
restrictions are present, a no-dominance assumption must be added. In the next
section, the market structure is strengthened to allow for continuous trading.

2 An American option gives its owner the right to exercise at any date prior to expiration. In
contrast, a European option can only be exercised at expiration.
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(A2) Identical delivery assets: All options in the series have the same delivery
asset.

This assumption is not required in this section but is used subsequently. It is
only made here to reduce the notational burden.

(A3) Known terms of exchange: The times and terms of each possible trans-
action are known on the valuation date.

While the identity of the delivery asset must be the same for each option, the
quantity required can vary across options. However, these quantities must be
known in advance. The above assumptions are made throughout the paper. In
contrast, the next two assumptions will be relaxed later.

(A4) No payouts: No asset makes any payouts over the lives of the options.

This assumption ensures that American options are never rationally exercised
early.

(A5) Last two exchanges: An investor can purchase a compound exchange
option (CEO) written on a simple exchange option (SEO).

This final assumption serves to simplify notation by focusing attention on the
last two exchanges in any series. The units of the primary assets are assumed to
be normalized so that the simple option involves a one-for-one exchange. In
contrast, the compound exchange option is allowed to involve the exchange of
an arbitrary quantity of the delivery asset in return for one SEO. This arbitrary
quantity is termed the exchange ratio.

The notation used throughout the paper is given below. Let

g be the exchange ratio of the CEO,?

t be the valuation date,

T. be the expiration date of the CEO,

7. = T, — t be the time to expiration of the CEO,

T, be the maturity date of the SEO where T, > T,

7. = T, — t be the time to maturity of the SEO,

T = 7, — 7. be the time between the expirations of the two options,
C denote the value of an American CEO,

¢ denote the value of a European CEQ,

S denote the value of an American SEO,

s denote the value of a European SEQ,

V denote the value of the optioned asset of the SEO, and
D denote the value of the common delivery asset.

Using this notation, the functional relationship between the value of the simple
exchange option and the relevant state variables may be expressed as s(V, D, 7,).
At the option’s maturity date, this functional relationship is known since the
option must sell for its exercise value to avoid arbitrage:

s(V, D, 0) = max(0, V — D).

3 The exchange ratio q is taken to be constant or, at most, a deterministic function of time.
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Similarly, the functional governing the compound exchange option’s value
c(s, gD, 7.) is known at expiration to be max(0, s — gD).

Another distribution-free result is Margrabe’s generalization of put-call parity
to European exchange options. Consider a portfolio consisting of a simple
exchange option on V and its delivery asset D. At the maturity of the option,
this portfolio is worth the more valuable underlying asset since max(0, V — D)
+ D = max(D, V). A second portfolio that pays off this maximum consists of a
simple exchange option on D and its delivery asset V. Since the two portfolios
have identical terminal value, arbitrage is avoided only if their current values are
equal:*

PARITY THEOREM: European exchange options satisfy
s(V,D, 1,) =V =D+ s, V, 7).

The limited liability of an exchange option implies that its value can never be
negative. Consequently, the Parity Theorem implies that a lower bound for the
European option price is the difference in the underlying asset prices:

s(V, D, 7) 2 max(0, V- D) =V — D. (1)

Transitivity implies the same lower bound for an American option since it
must be worth at least as much as its European counterpart:

S(V,D, =) =2s(V,D, 7,) = V— D. (2)

Since an American option is never priced below its exercise value, its early-
exercise privilege is redundant. As this feature is the only distinction between an
American option and its European cousin, a second theorem holds:®

EQUIVALENCE THEOREM: An American exchange option will be priced as if it
were European:

S(V, D, 7,) = s(V, D, 7). 3)

This powerful theorem allows the parity equation to be restated in terms of
American options:

S(V,D,r)=V—-D+8SWD,V,r,). 4)

Furthermore, since CEOs are themselves exchange options, the Equivalence and
Parity Theorems apply to them, i.e.,

C(S, gD, 1.) = c(s, gD, 7.) (5)
and
C(S, gD, r.) =S — gD + C(qD, S, 7.). (6)

* All of the theorems in this section depend on assumptions (A1) to (A5). The no-payout assumption
is particularly critical for the Equivalence Theorem.

5When both assets pay dividends at constant rates, the Equivalence Theorem holds when the
dividend rate of the optioned asset is less than that of the delivery asset. This result explains why
American calls are not exercised early while American puts may be.
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Substituting (4) into (6) leads to a parity result unique to compound options:
C(S(V, D, 75), gD, 7.)
=V-Q0+4q)D+SMD,V,r)+ C(gD, S(V, D, 1), 7). (7)

Since option values are never negative, the CEO value is bounded below by the
difference in values between the optioned asset and the sum of the delivery
assets:

C(S(V,D,1,),qD,7.) =2max(0, V—(1+q)D)=V—-(1+q)D. 8)

The right-hand side is the present value of the profit obtained if both options
must be exercised. Since neither option need be exercised, the option value
exceeds this bound. Limited liability also implies non-negativity.

Turning from lower to upper bounds, it should be clear that an option is always
less valuable than its optioned asset:

C@S,qD, 7.) =S(V,D, 7,) = V. 9)

The reason is that the payoffs from ownership of the optioned asset can always
be achieved through exercise of the option, but this requires delivery of an asset
of positive value.

To summarize, this section has shown how certain assumptions led to a parity
theorem for compound exchange options. This parity theorem was used to show
that an American option may be valued as European under these assumptions.
The parity theorem also bounded the value of a compound exchange option. The
next section makes a distributional assumption that leads to an exact valuation
formula for this option.

II. Distributional Assumption and Formula

In this section, an assumption concerning the underlying assets’ return dynamics
is added in order to derive a closed-form solution for the value of a compound
exchange option. The formula is shown to contain the solutions of Black and
Scholes [1], Margrabe [6], and Geske [4] as special cases.

Assume that investors agree on the following stochastic process for asset
returns.

(A6) Underlying-asset-return dynamics: The rates of return on the underlying
assets V and D are described by the stochastic differential equations:

dv

v = a,dt + o,dZ, (10)
and
dVD = aydt + 0,dZ,, (11)

where «, and «, are the expected rates of return on the two assets per
unit time, o2 and o2 are the corresponding variance rates, and dZ, and
dZ, are the increments to standard Wiener processes with correlation
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coefficient p. While the expected rates of return «, and a, can depend on
the state variables, the return variances o> and o3 and correlation
coefficient p are assumed constant although they can be allowed to be
deterministic functions of time. Similarly, while investors may differ on
the expected rates of return, o, and «,, agreement is required on the
constants in the covariance® matrix ¢2, 3, and p.

These dynamics have the important property that the return distribution over
any interval is independent of the initial price level. For processes with this
characteristic, the following theorem can be proven:

HOMOGENEITY THEOREM: The CEO pricing function C is linearly homogeneous
in the underlying asset prices Vand D:

VA=0, C(S(\V, D, 7,), gqA\D, 7.) = \C(S(V, D, 1), qD, 7.).

Intuitively, doubling the underlying asset prices V and D doubles the price of
the simple exchange option, which then doubles the price of a compound option.
Exact pricing of a compound exchange option begins by postulating that the
current CEO value C is a twice-differentiable function of the state variables V,
D, and 7.. Thus, by Euler’s theorem, linear homogeneity implies that
aC aC

c(S, gD, 7.) = W V+ E D. (12)

Consequently, a portfolio H consisting of long one compound exchange option

aC oC
C, short — units of V and short” — units of D, is costless:

av aD
aC aC
H=C—WV—ED—O.

For a self-financing portfolio, the change in value over any infinitesimal incre-
ment of time is given by
aC aC

dV — —= dD. (13)

dH=dC—W 3D

As the compound option value C is ultimately a function of the state variables
V, D, and 7., Itd’s Lemma implies that its stochastic differential may be written
as

. |1 aC 2C 1 d*C aC

P E ST, SN ) LA

C [20V6V2+pa adVDaV8D+20dD 3D? a“_c]dt
oC .. dC
+WdV+EdD. (14)

6 Actually, investors need only agree on ¢ = ¢2 + o> — 2pa,04, which is the variance of percentage
changes in the price ratio P = V/D.

aC . . . .
7 3D will turn out to be negative, so the portfolio actually involves a long position in the delivery

asset D.
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Substituting (14) into (13) leads to the result that the change in the portfolio

value over the time increment is riskless:

aVC;‘l'pJ”Ud VD ———

2 2
C  1,.,8C ac] i (15)

dH=|=0¢2V? eiD*—

H= [ 7 avaD 274" 3D o,
As the hedge portfolio is both costless and riskless, the no-arbitrage condition
implies that it must have zero return:

1, ,0°C #C 1, ,0°C oC
570V gyrtpood VD oo n + oo 7aD* S h or.

=0. (16)

This fundamental equation partially describes the behavior of any contingent-
claim value that is linearly homogeneous in both of its underlying asset prices.
Appending appropriate boundary and terminal conditions completely describes
this behavior. For a compound exchange option, these conditions were developed
in Section I:

S=C=0 (17)
and
C(S, ¢D, 0) = max(0, S — ¢D). (18)

Equations (16) to (18) completely summarize the behavior of the CEQ’s value.
However, the boundary and terminal conditions are expressed in terms of the
possibly unobservable value of the underlying option S. As the objective is to
express the compound-option value in terms of the observable asset prices V and
D, these conditions must be rewritten in terms of these state variables.

Since the value of a simple exchange option is linearly homogeneous in its
underlying asset prices, it must also be governed by the fundamental equation
(16); i.e.,

a8 v S oL ,9%8 98
P ARG 7y, R Ly, v or.

- av v =0. (19)

Margrabe [6] shows that the unique solution of (19), subject to the boundary
conditions
V=8=0 (20)
and the terminal condition
S(V, D, 0) = max(0, V — D), (21)
is

S(V, D, ;) = VN1(di(P, 7)) — DN:1(dz(P, 7)), (22)
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where

N:(d) is the value of the standard univariate normal distribution function
evaluated at d,
Iny+ o%r
ovr
do(y, 7) = di(y, 7) — o7,

dl(y3 7) =

\%
=5 is the price ratio of V to D, and

02 = 02+ o5 — 2po,0, is the instantaneous variance of the percentage change

dP
in this price ratio | var 7= o?dt ).
To simplify notation, the second argument of d; and ds will be dropped when

it can be understood from the context. Using Margrabe’s solution, the boundary
conditions (17) become

VN1(di(P)) — DN:(d2(P)) = C = 0, (23)
and the terminal condition (18) is
C(V, gD, 0) = max[0, VN,(d,(P)) — DN,(d2(P)) — ¢D], (24)

where the second argument of d; and d, is understood to be 7 = 7, — 7.
The compound exchange option will be exercised at expiration if the simple
option value exceeds the cost of exercise:

VN1(d:(P)) — DN:1(d2(P)) = ¢D.

The simple option value depends on the random prices of the two underlying
assets. The dimensionality of the problem can be halved by taking the delivery
asset to be the numeraire. Dividing by the delivery-asset value D makes the
exercise condition depend on only a single random variable, namely the price

. _Vv
ratloP—D.

PN, (d,(P)) — N:1(d2(P)) = g. (25)

The left-hand side of (25) is the Black-Scholes formula for the value of a
simple call option on the price ratio P with an exercise price of one.® Since this
option price is increasing in P, there is a unique value of P where (25) holds with
equality. This critical price ratio P* is defined by

P*Ny(di(P*)) — Ni(dz(P*)) = q. (26)

Note that the critical ratio P* can be calculated from (26) at any time. Conse-
quently, P* is a parameter that may legitimately be included in the pricing
equation for a compound exchange option.

8 The risk-free rate in the Black-Scholes formula is zero.
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This pricing equation is the solution to the fundamental equation (16) subject
to the boundary conditions (23) and the terminal condition (24):

C(S(V, D, ,), aD, 72) = VNz<d1(7,%, ) dy(P, Ts))

P
- DN2<d2<F ’ Tc)a d2(P’ Ts))

- qDN1<d2<§, T» @7)

where N, (a, b) is the standard bivariate normal distribution function evaluated

at a and b with correlation coefficient ? .

This formula is the solution to a previously unsolved problem and will be
applied repeatedly in this paper.® The solution shares all of the appealing features
of its predecessors. Like the Black-Scholes formula, there is no direct dependence
on the unobservable expected rates of return «, and «y. Like the Margrabe
formula, there is no presumption that the term structure of interest rates be flat
or even known. Like Geske’s formula, the result does not depend directly on the
value of the simple option S, which may be unobservable in certain applications.

Under certain parameter restrictions, the solution (27) yields the valuation
formulas of Margrabe [6], Geske [4], and Black and Scholes [1] as special cases.
If the exchange ratio vanishes (¢ = 0) so that the compound exchange option
can be exercised freely, the formula collapses to Margrabe’s result for a simple
exchange option with maturity 7,:

C(S(V’ D’ Ts)’ O X D’ Tc) = VNl(dl(P)) - DNl(d2(P)) = S(V’ D’ Ts)- (28)

On the other hand, if the exchange ratio g remains positive but the delivery
assets are nonrandom (gy = 0), then the formula reduces to Geske’s solution for
a compound call option, under the additional assumption of a constant interest
rate r:

Vv Vv
C(S(V’ F’ Tc)’ Ka Ts) = VN2(d1(V * e-,-.,g)a dl(Fe_""))

—rr 14 14
penfol i) o)

\%
— Ke™™Nj <d2<"7;-;"—c>> R (29)

where K and F are the exercise prices of the simple and compound calls,
respectively, and where the critical value V* satisfies

v v
v (a7 - vl -

9 Again, notation is simplified by dropping the second argument of d; and d, whenever possible.
This argument will always be 7. for the first argument of N and 7, for its second argument.
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If the exchange ratio and the variance of the delivery assets both vanish, the
Black-Scholes formula for a call option results:

CS(V,F,7,),0 XK, 7.) = VNl(dl(—‘:)) — Fe"”Nl(dz)(——‘g—)).
Fe™s Fe™s

III. Applications

In the next two sections, the valuation formula is applied to several different
sequential exchange opportunities. Two applications presented by Geske involv-
ing compound call options are extended by considering the effect of stochastic
exercise prices. Similarly, an application presented by Margrabe involving simple
exchange options is extended to more than one exchange date. In the next
section, some new applications for compound exchange option pricing are pre-
sented. In both sections, the emphasis is on displaying the versatility of CEO
pricing, rather than attempting to analyze thoroughly each application.

Compound call options will have stochastic exercise prices if their strike prices
are denominated in a foreign currency. Foreign discount bonds can be used to
hedge the compound call in this case. The valuation formula (27) for a compound
exchange option can be applied if the foreign interest rate is assumed constant
at rate r and if the exchange rate follows geometric Brownian motion.°

A. Foreign Call Option on a Stock with Foreign Debt

Black and Scholes [1] model the stock of a levered firm as a call option on the
value of the firm’s assets. If the debt is denominated in a currency different from
that of the assets, then the exercise price of this call option is random. Further-
more, an exchange-traded call on this stock is compound.™ If the call’s exercise
price is denominated in the same currency as the debt, then the call is priced by
the CEO valuation formula developed in this paper.

To be concrete, consider a call option trading in Canada on all of the shares of
a firm operating in the U.S.'* Suppose that the firm’s sole liability is denominated
in Canadian dollars. Let F be the face value of this debt and K the exercise price
of the call, where both amounts are fixed in Canadian dollars. Then the U.S.
dollar value of this call is given by equation (27) for C(S(V, D, 7,), gD, .), where

S is the stock value of the firm,

V is the value of the firm’s assets,

D = EFe™"" is the domestic value of a discount bond paying F Canadian dollars
at the expiration of the firm’s debt at 7, and

K .. .
qg= T e’ so that, at the call’s expiration (7 = 7,), the product of g and D (i.e.,

the quantity delivered when exercising a CEQ) will equal E X K, the domestic
value of the foreign option’s exercise price.

1% The assumptions concerning the behavior of interest rates and exchange rates are not necessary.
For stochastic interest rates, alternatively assume that the conversion factor relating future foreign
currency to current dollars follows a lognormal diffusion.

! The call must expire before the debt matures.

'2 The price of a call on a hundred shares of stock should be scaled down appropriately.
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The stock value is given by Margrabe’s formula (22) for a simple exchange
option S(V, D, 7,). By the Parity Theorem of Section I, this value can also be
written as V— D + S(D, V, 7,). The first two terms represent the equity value
if the debt were riskless. The third term is the value of the shareholder’s default
option. The debt value is given by the firm value less this equity value, i.e.,
V — S(V, D, 7). Thus, by the same Parity Theorem, the value of the debt can
alternatively be written as D — S(D, V, 7,), i.e., an equivalent default-free bond,
less the default option written to the shareholders.

B. Stock of a Firm with a Coupon Bond

Suppose a firm’s sole liability is a bond with one coupon payment and one
final payment remaining. If the shareholders skip the coupon, the firm is
bankrupt and the shareholders get nothing. On the other hand, by paying the
coupon, the shareholders are in a position characterized by a simple call on
the value of the firm’s assets. Thus, the coupon payment may be regarded as the
exercise price of a call on this call, i.e., a compound call. Geske’s compound-call
formula (29) may be employed to value the equity under the standard assump-
tions.!?

If the coupon bond is denominated in a foreign currency, then both the coupon
payment K and the final payment F will be random in dollar terms. Thus, the
equity of a firm with foreign denominated debt is a compound exchange option.
The equity may be valued by formula (27) for C(S(V, D, 7,), gD, 7.), where

S is the stock value if there are no coupon payments,**
V is the value of the firm’s assets,
D = EFe™"" is the dollar value of the final payment F at time T, and

K
g= T e’ so that, at the coupon-payment date (7 = 7,), the product of g and D
will equal E X K, the domestic value of the coupon payment.

From the Parity Theorem for compound exchange options, the value of the
equity may also be written as

V—Q+q)D+ SD,V,r)+ C(gD, S(V, D, 7,), 7).

The first two terms reflect the value of the equity if the debt is riskless. The
other two terms are default options, one for each payment date. Again the debt
value is given by the firm value less the above equity value. From the parity
result, this debt value is also given by

D + qD - S(D, V, Ts) - C(qD, S(V, D, Ts), Tc)°

The first two terms are the value of an equivalent riskless bond with two payments
remaining. This value is reduced by the two default options issued to the
shareholders.

3 Assuming that the coupon payments are financed through the sale of assets violates the
presumption that the value of the firm’s assets V follows a diffusion. One can alternatively assume
that the coupon payments are financed through a rights offering.

“ Thus, S is a nontraded asset. This result shows why formula (27) for a compound exchange
option is expressed in terms of the underlying asset price V and not S.
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If the foreign bond has more than two payments outstanding, then a formula
for a nested series of exchange options is required to value the equity. This
formula is presented in Appendix B as equation (33). This equation may also be
used to value a call'® option on the stock if its exercise price is denominated in
the same foreign currency as the debt. Given this call value, the corresponding
put value'® may be derived through the parity relationship.

C. Performance-Incentive Fee

Margrabe [6] shows how a performance-incentive fee can be valued using his
formula for a simple exchange option. A portfolio manager may be paid a fee of
the form

F=m %X max(0, B, — R}), (30)
where

I?D is the return on his or her managed portfolio V,
R, is the return on the benchmark portfolio B (e.g., the S&P 500), and
m is a multiplier converting returns to dollars.

The property that the fee cannot be negative arises either contractually or
through the possibility of default by the portfolio manager. Substituting return
definitions into (30) implies that the fee is proportional to the payoffs from a
simple exchange option:

N vV B

F—meax(O,VO—E)
—_ VO 3
=V X max(O, \% B, B)

= a max(0, V — D),

where a = % and D = % X B. Thus, if the contract terminates at time T, then
0 0

the current value of the manager’s contract is given by o times Margrabe’s
formula for a simple exchange option S(V, D, 7).

Now suppose instead that the portfolio manager guarantees a certain perform-
ance level by an intermediate date T,. Specifically, the managed portfolio return
must exceed the benchmark portfolio return by a specified proportion to avoid
termination at time 7,. When translated into price space, the guarantee is
equivalent to requiring that the ratio of portfolio values P = 1‘—; exceed some
specified critical value P* at the intermediate date T.. The current value of this
fee is given by equation (27) for a compound exchange option, where the third
term is ignored. The formula for a nested series of exchange options can similarly

** The call must expire before the next coupon payment.
1% Since the stock is assumed not to pay dividends, the call option valued may be American.
However, the corresponding put value is European.
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be modified to value a contract that requires a set of hurdles to be cleared before
payment is finally received.

IV. New Applications

In this section, applications of CEO pricing are presented that were not previously
developed as illustrations of compound call options or simple exchange options.
In particular, the focus is on variable-rate corporate debt and the investment
decision. Both of these applications involve features that do not permit them to
be valued using the pricing of compound calls or simple exchange options alone.

A. Variable-Rate Corporate Debt

Suppose a corporation has a coupon bond outstanding that has one coupon
payment due at time T, and one final payment due at time T,. As in Section
IIIB, the equity can be valued as a compound option since the shareholders can
default at either date. Further, suppose that the coupon payment is calculated as
a specified fraction g of the market value of another debt instrument D. With
stochastic interest rates, the coupon payment is random since the market value
of the reference bond D is also random at the coupon date. Consequently, the
equity is a compound exchange option, the delivery asset of which is the reference
bond. If the reference bond is the default-free equivalent of the corporate bond,
then equation (27) can be used, where S and V are defined as in Section IIIB.
The nested formula (33) may be used for a series of coupon payments, all
calculated as some fraction of the contemporaneous market value of the reference
bond. As in the last section, the debt can be valued by subtracting this equity
value from the firm value.

B. The Investment Decision

The traditional approach to capital budgeting has been to accept a project if
its net present value (NPV) is positive. Some authors have recognized that the
mutually exclusive alternative of delaying the project may have a greater NPV
than accepting a positive NPV project immediately. McDonald and Siegel [8]
have valued this timing option as an American exchange option, which is
infinitely lived. In this setting, investment in a project corresponds to the exercise
of an option. The value of a finite-lived American exchange option can be
determined using CEO pricing theory.

Let V be the value of the revenues from the project and D the value of the
costs. Since the values of the revenues and costs are not prices of traded assets,
their expected rates of change need not equal the expected rate of return required
for their risk in equilibrium. This subsection follows McDonald and Siegel in
supposing that the difference between these two expected rates is constant over
time. Thus, the dynamics of the underlying assets are amended to
i‘}‘{ = (ﬂv - Bv)dt + a'udZ~v
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and

= (ug — 84)dt + 0adZs,

SIS,

where 6, and 8, are the assumed constant difference between the equilibrium
expected rates of return, u, and u,, and the expected percentage rates of change.
These dynamics also correspond to those of traded assets paying dividend yields
d, and §,, respectively. The formal development in this section allows for either
interpretation. McDonald and Siegel [7] show that, in either case, the current
value of a European exchange option is now given by

S(V’ D’ Tss 6v’ 5d) = Ve*sstNl(dl(Pe_afs)) - De_5d1sN1(d2(Pe_-51s)), (31)

where 6 = 6, — 64.

Unfortunately, for a strictly positive “dividend yield” (6, > 0), premature
exercise of American options is rational for large enough values of the optioned
asset V. Consequently, the above formula need not apply to American options
unless 8, = 0. To value an American exchange option, suppose initially that it
can be exercised only at times T, or T;. Thus, if a project is rejected now, then it
may be accepted only at time T’ or at time T',. If the project is also rejected at
the intermediate date T, then the firm’s pseudo-American option will revert into
a simple exchange option with value given by (31). On the other hand, if the
project is accepted at time T., then the firm receives the NPV of the project,
V — D. The firm will further delay the project at time 7, if and only if the benefit
of delaying exceeds the opportunity cost:

Ve_6"1Nl(d1 (Pe“s’)) - De‘6d1Nl(d2(Pe_—51)) =V-D.
The problem is again simplified by treating the delivery asset as numeraire.

. N
Dividing by D and recalling that the price ratio P is P gives

Pe " N,(d,(Pe™)) — e Ni(da(Pe™)) > P — 1.

Let @* be the unique value of P that makes the above an equation. For values
of P below @%*, the option won’t be exercised at T, and reverts to a European
exchange option with value S(V, D, 7). Otherwise, the option is exercised to yield
V — D. These contingent payoffs are duplicated by a portfolio of three European
exchange options as indicated by Table I.

The table generalizes one developed by Roll [10] for pricing American call
options on stocks paying discrete dividends. The first option is simply the

Table I
At time T,
At Valuation Date
IfP=@Q* If P> Q*
Long s(V, D, 7,) s(V,D, 1) s(V,D, 1)
Long s(V, @ x D, r.) 0 V-@*D
Short ¢(s(V, D, 7,), (@* — 1) X D, 7.) 0 Q*D—-D-s(V,D, 1)

s(V,D, 1) V-D
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European counterpart to the American option to be replicated. The second option
involves exchanging @* units of D for one unit of V. The third option is a
compound exchange option, which involves exchanging @* — 1 units of asset D
for the first European option. The last two options in the table both expire
at T..

The reasoning leading to this replicating portfolio is straightforward. The
pseudo-American exchange option is similar to a portfolio of the first two
European exchange options, with each expiring at a possible exercise date.
However, if an American option is exercised early, then it cannot be exercised at
expiration. This feature is accounted for by writing a compound option on the
long-maturity option. The terms of exchange on the compound and short-
maturity options are set so that they are both exercised whenever early exercise
is rational. In this case, simultaneous exercise of the two European options leads
to the receipt of the exercise value and the surrender of the long-maturity option.
If early exercise is unwarranted, then these two options expire worthless and a
European option is retained.

The first two options’ value may be calculated using (31). The third option’s
value can be calculated using the following formula for a European CEO on assets
paying dividends at a constant yield:

P —o7,
C(S(V, D, Ts), qD, Tey 6v, 5d) = Ve_‘S"T’N2<d1<-%T)’ dl(Pe_ﬁrs))

where P* satisfies
P*e_auTNl (dl (P*e—ﬁ‘r)) — e—5d7N1 (dz(P*e—ﬁ‘r)) =q.

Combining the three formulas leads to the value of the pseudo-American
timing option:'’

5,7 Pe™" o -
t.o.= Ve™ ’N2<—d1<“QT),d1(Pe o) — \/%)
, Pe™" . e
- Deéd ’N2<—d2(_—Q* >, dg(Pe é "), - \/::)
=07,
+ Ve_aUTCN].(dl(P—fQ;k_))

— De %™ N, <d2(P—Z_;;>> , (32)

where the last argument in the bivariate normals is the correlation coefficient.

17 The identity Nz2(—a, b; —p) = N1(b) — Nz(a, b; p) has been used to simplify the formula.
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If the timing-option value exceeds the current NPV of the project, V — D, it
will be worthwhile to delay accepting the project. Note that, as the investment
decision is isomorphic to the abandonment decision and the replacement decision,
the approach taken here can also be applied to these problems.

Appendix B presents the valuation formula for an exchange option with an
arbitrary number of possible exercise dates. As the number of these dates
increases, the formula value becomes arbitrarily close to the value of a true
American exchange option, i.e., one with a continuum of possible exercise dates.
By appropriately restricting dividend yields and variances, the formula specializes
to those for American or European call or put options. In particular, the American
put-option formula was previously advanced by Geske and Johnson [5].

Unfortunately, formula evaluation requires calculating distribution functions
with order equal to the number of possible exercise dates. As in Geske and
Johnson, the computational burden can be eased by extrapolating from the values
of options with a small number of possible exercise dates. For example, the two-
point Richardson extrapolation for the value of an American exchange option E
is

E ~ E1 + I/B(Eg - El),
where

E, is the value of the corresponding European option and
E, is a pseudo-American exchange option with two possible exercise dates,
with the first occurring when the option has half its current time to maturity.

All options have the same underlying assets and time to expiration. E; and E,
can be valued using (31) and (32), respectively.

V. Summary

This paper values sequential exchange opportunities using modern option-
pricing theory. In particular, the notion of a compound exchange option is
developed. Some distribution-free valuation results for the option are presented.
A pricing formula is derived for a particular stochastic process. The formula may
be extended and applied in a variety of ways as discussed. The author has also
applied it to valuing sinking-fund bonds, tax-timing options, bankruptcy options,
pension-fund obligations, two-tier exchange offers, and convertible debt.

One of the most important avenues for future research in this area would relax
the requirement that the delivery assets of the compound and simple options be
the same. The principal difficulty in developing this formula lies in the exercise
condition. This condition generates a complex functional relationship between
critical values of the underlying assets. Numerical integration techniques may be
employed to overcome this difficulty.

Appendix A

Comparative-Statics Analysis

The comparative-statics results for compound exchange options accord well
with our intuition and distribution-free results. Differentiating (27) with respect
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to the underlying asset prices V and D yields

aC p
6_‘7 = N2<dl<1§>, d, (P)) >0,

aC P P
3D —[Ng(d2<};>, d,(P)) + qu(d2<—*>)] <0.

As expected, the value of a compound exchange option is increasing in the
value of the optioned asset and decreasing in the value of the common delivery
asset. The magnitude of these partials determines the number of underlying
assets that one must short to hedge a compound exchange option.

Inspection of the CEO-pricing formula (27) indicates that the relevant variance
for this option ¢ = ¢2 + ¢ — 2po,04, which is the variance of the price ratio.
When the underlying assets have equal variance (62 = ¢2) and perfect negative
correlation (p = —1), then this variance vanishes. Under this restriction, the
CEO-pricing formula (27) reduces to

C(S(V’ D’ Ts)’ qD’ Tc) =V- (1 + Q)D-

The right-hand side was shown to be a lower bound for C in Section 1. Thus,
this bound is sharp under the distributional assumption in Section II. As the
price-ratio variance rises from zero, the CEO value will rise above this lower
bound since the option value is increasing in it:

9C _3C 38 _ No(-) Dmu(do(P, 7)),

= —= — = 0,
dae?  3S d¢%2 N.(-) 20
1 2 . - . .
where n;(2) = -\/—;— e *7? is the standard-normal probability-density function.
27

The partial derivative can be used in conjunction with standard numerical
techniques to imply out the variance used by the market if the market price is
observable.

The CEO value is not monotonically increasing in the individual asset variances
o2 and ¢ when, inter alia, the correlation coefficient is held constant:

aC  3C d6®> Nu(-) Dny(ds(P, 7,)) V7,

ot _ oL da” _ _ .
ds2 3062902 Ny(-) 2 (1-Ba) =0,

a,
where By, = p — and

v

2 .
90 _ 9 90" _ Nol) DulchPrrd Ve _ 5,
do; 9d°dc; Ni(-) 20

where B,; = p L
04

The sign of the partials depends on the stochastic relationship between the

rates of return of the underlying assets as measured by the beta coefficient of a

regression between them. If the rates of return on the underlying assets V and D
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are positively correlated, a rise in either’s volatility o2 or ¢ can reduce the
relevant variance and thus the CEO value.

The greater the correlation between the rates of return of the two assets, the
less likely it is that the price of the optioned asset V will exceed that of the
delivery asset D at maturity and the lower should be the CEO value. This
intuition is confirmed by the sign of the partial derivative:

%’ _ £6_02 _ _Nz(') Dn, (d>(P, 7,)) ov

dp 902 dp  Ni(v) .

As one might suspect, the compound-option value is increasing in both its

0D<O.

.. oC
own time to maturity and that of the underlying simple option, i.e.,

>0 and
Te
oC > 0.
a7,

Finally, the partial derivative of a compound option with respect to its exchange
ratio is negative as expected:

aC P

The CEO value is also declining in ¢ when the exchange ratio of the simple
option is 1 — ¢ instead of 1. Consequently, if the holder of an option can deliver
any fraction of the delivery asset early, the position value is maximized by
choosing this fraction to be zero. In other words, prepayment never occurs
voluntarily, and, consequently, a simple exchange option is held. In a similar
manner, any individual who has the option of exchanging uncertain quantities
will find it beneficial to procrastinate for as long as possible. This result can
break down when the underlying assets pay dividends or provide other benefits
of ownership.

Appendix B

Extensions

This appendix presents two extensions to the valuation formula (27). The first
gives the value of a nested series of exchange options. The second values a
pseudo-American exchange option with an arbitrary number of possible exercise
dates. To value a nested series, let

E° be the current value of the optioned asset V,

E'(E° q.D, 7,) be the current value of the simple exchange option to receive
E° for q,D at time T',, and

E?*(E", gn—1D, 7,-1) be the current value of the compound exchange option to
receive E' for g,-, D at time T,_,.

The formula required is for E*(E™"*, q,D, 71), i.e., the current value of the
compound exchange option, to receive E"* for ¢; D at time T}.'® By induction,

'8 Note that the superscript n on E is not an exponent but refers to the degree of compoundness
of the exchange option.
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one can show that
En(En—l’ qlD, Tl)

= VNn<d1n; { ?}) -D 2?=1 QtNt<d2t; { \/;}), (33)

Nn<- ; { \/5}) is the standard n-variate normal-distribution function with
7j

. . T
correlation matrix { \/:},
7j

P P ’
di, is an n X 1 column vector with elements <d1<F R 1-1) y e, dl(ﬁ s Tn)) R
1 n

where

P P ’
dy; is a t X 1 celumn vector with elements <d2<F s 71), e, d2<1§ R n)) s
1 t

{ \/‘ —-'} is an n X n symmetric matrix whose i, j th element is
7

¢~ is normalized to be 1,

Vv
P} is the unique value of P = D that solves

E™H(ET"Y, Qer1(D, 7e41) _
D = q:,

t=1,...,n—1,

and P} =1.

Next, the formula for the value of an option with n possible exercise dates is
presented. To allow for the possibility of early exercise, constant dividend yields
on the underlying assets are assumed. Let ¢t be the valuation date and T the
expiration date. The first step is to divide the option’s time to maturity r =
T — t into n equal intervals. Let E, be the value of a quasi-American exchange
option that may be exercised at any of the n endpoints of each interval. Then,
E, is just the value of a European exchange option as given by (31). E, is the
value given by (32) of an exchange option that may be exercised at % oratT.

Once E; can be valued, it can be used to value the pseudo-American exchange

T 2T
option Ej. This option can be exercised at 3° 3 °r at T. Whether the option is
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exercised early depends on whether the price ratio reaches certain critical values

at the intermediate dates g and % . The option will not be exercised at the first

T, . .
exercise point 3 if the opportunity cost of exercise, E,, exceeds the cash proceeds

from exercise V — D. Dividing by the delivery-asset price D leads to the defining
equation for the first critical value P¥. Similarly, the second critical value P¥
can be determined by equating the holding value E, to the exercise value V — D
and dividing by the delivery-asset price D.

Proceeding in a similar fashion leads to the valuation formula for the pseudo-
American exchange option E,,:

E, = Vw, — Dw,, (34)

B Pe—éAt Pe—62At Pe—ésAt l
+e 6.,3A£N3<—d1< o5 ), —d1< P ), d1< Pt ); { \/;})
o Pe—(SAt Pe—é(n—l)At s l
e ca(F) (M) aee >{\/,})

_ Pe—éAt Pe—52At Pe—53At i
+e 6d3AtN3<_d2< Pr ), —dz( P ), dz( Pt >; { \/;})
_ P —8AL P —8(n—1)At ;
R = T == P Y




1256 The Journal of Finance

where

At =

b

S|

N, is the standard n-variate normal distribution function with correlation

matrix { \/Z} R
J

{ \/;} is the n X n-symmetric matrix whose i, j th element is

i . -
=\/;, l=1,°°',]: ]=1,...,n—1,andl=]=n,
__\ﬁ i=1,---,n—1, j=n

j, ’ ’ ’ ?

and Pi# is the critical value of P at kAt, k=1, ---,n— 1.

Arbitrary accuracy can be achieved for sufficiently large values of n.
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