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This paper develops a novel class of hybrid credit-equity models with state-dependent
jumps, local-stochastic volatility, and default intensity based on time changes of
Markov processes with killing. We model the defaultable stock price process as a time-
changed Markov diffusion process with state-dependent local volatility and killing
rate (default intensity). When the time change is a Lévy subordinator, the stock price
process exhibits jumps with state-dependent Lévy measure. When the time change is
a time integral of an activity rate process, the stock price process has local-stochastic
volatility and default intensity. When the time change process is a Lévy subordinator
in turn time changed with a time integral of an activity rate process, the stock price
process has state-dependent jumps, local-stochastic volatility, and default intensity. We
develop two analytical approaches to the pricing of credit and equity derivatives in this
class of models. The two approaches are based on the Laplace transform inversion and
the spectral expansion approach, respectively. If the resolvent (the Laplace transform
of the transition semigroup) of the Markov process and the Laplace transform of the
time change are both available in closed form, the expectation operator of the time-
changed process is expressed in closed form as a single integral in the complex plane.
If the payoff is square integrable, the complex integral is further reduced to a spectral
expansion. To illustrate our general framework, we time change the jump-to-default
extended constant elasticity of variance model of Carr and Linetsky (2006) and obtain
a rich class of analytically tractable models with jumps, local-stochastic volatility, and
default intensity. These models can be used to jointly price equity and credit derivatives.
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1. INTRODUCTION

Until recently, equity derivatives pricing models and credit derivatives pricing models
have developed more or less independently of each other. Equity derivatives models
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largely concentrated on modeling the implied volatility smile by introducing jumps and
stochastic volatility into the stock price process (see Gatheral 2006 for a survey), and
ignored the possibility of default of the firm underlying the option contract. At the same
time, credit models focused on modeling the default event and ignored the information
available in the equity derivatives market (see Bielecki and Rutkowski 2004, Duffie and
Singleton 2003, and Lando 2004 for surveys of credit risk models). Recently, market
practitioners have realized that equity derivatives markets and credit markets are closely
related, and a variety of cross-market trading and hedging strategies have emerged in
the industry under such names as equity-to-credit and credit-to-equity. Indeed, a deep-
out-of-the-money put on a firm’s stock that has little chance to be exercised unless the
firm goes bankrupt and its stock price drops to zero or near zero is effectively a credit
derivative that pays the strike price in the event of bankruptcy. Over the past several
years, every time the credit markets become seriously concerned about the possibility
of bankruptcy of a firm, the open interest, daily volume of trading, and the implied
volatility of deep-out-of-the-money puts on the firm’s stock explode many times over
their historical average. In late 2005 and early 2006, the credit markets were concerned
about the possibility of a General Motors (GM) bankruptcy. While the GM stock traded
between $18 and $22 in the December 2005–January 2006 period, January 2007 puts
with strikes of $10, $7.50, $5, and even $2.50 all had very substantial open interest,
large daily trading volumes, and implied volatilities of between 100% and 140%. In
August and September of 2007, a similar story took place with deep-out-of-the-money
puts on Countrywide Financial based on Countrywide’s bankruptcy concerns due to its
substantial exposure to subprime mortgages.

In this paper, we propose a flexible analytically tractable modeling framework which
unifies the valuation of all credit derivatives and equity derivatives related to a given firm.
We model the firm’s stock price as the fundamental state variable that is assumed to follow
a time-changed Markov process with killing. Our model architecture is to start with an
analytically tractable Markov process with killing (e.g., a one-dimensional diffusion with
killing) and subject it to a stochastic time change (clock) with an analytically tractable
Laplace transform. If the resolvent (the Laplace transform of the transition semigroup)
of the Markov process and the Laplace transform of the time change are both known in
closed form, then the expectation operator of the time-changed process, and hence the
corresponding pricing operator, can be recovered via the Laplace transform inversion.
Moreover, if the spectral representation of the transition semigroup is known in closed
form, then the Laplace inversion for the time-changed process can also be accomplished
in closed form, leading to analytical pricing of credit and equity derivatives.

Many properties of the clock are inherited by the time-changed process, allowing us to
produce desired behavior in the stock price process modeled as a time-changed Markov
process. To introduce jumps, we add a jump component into the clock. To introduce
stochastic volatility, we add an absolutely continuous component into the clock. By
composing the two types of time changes, we construct models that exhibit both state-
dependent jumps and stochastic volatility. The time-changed process also inherits many
properties of the original process. If the original process is a Markov process with killing,
then the time-changed process also has killing with the state-dependent killing rate,
leading to models with the default intensity dependent on the stock price. Thus, our
modeling framework incorporates diffusive dynamics, state-dependent jumps, stochastic
volatility, and state-dependent default intensity in an analytically tractable way.

Our modeling framework can parsimoniously capture many fundamental empirical
observations in equity and credit markets, including the well-known positive relationship
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between credit default swap (CDS) spreads and corporate bond yields and implied
volatilities of equity options, the leverage effect (the negative relationship between the
realized volatility of a stock and its price level), the volatility skew/smile effects, and
jumps in the stock price process. As such, the class of models we propose is very general,
nesting many of the models already in the credit and equity derivatives literatures as
special cases corresponding to a particular choice of the Markov process and the time
change.

The class of models developed in this paper can be thought of as a far-reaching
generalization of the hybrid credit-equity models that describe the stock price dynamics
as a one-dimensional diffusion with the local volatility and default intensity specified
to be some functions of the stock price. In this class of models, in the event of default
the stock price is assumed to drop to zero. Along these lines, Linetsky (2006) recently
solved in closed form an extension of the Black–Scholes–Merton (BSM) model with
bankruptcy, where the hazard rate of bankruptcy (default intensity) is a negative power
of the stock price. The limitation of this model is that, while the default intensity is a
function of the stock price, the local volatility of the diffusive stock price dynamics is
constant, as in the original BSM model. To relax this restriction, Carr and Linetsky
(2006) proposed and solved in closed form a jump-to-default extended constant elasticity
of variance model (JDCEV). This model introduces stock-dependent default intensity
into Cox’s CEV model. This model features state-dependent local volatility and default
intensity. Moreover, the default intensity is specified to be a linear function of the local
variance. This specification provides a direct link between the stock price volatility and
default intensity. However, the JDCEV is still a one-dimensional diffusion model, with
all the attendant limitations. In particular, the stock price volatility does not have an
independent stochastic component, and there are no jumps in the stock price process.
By appropriately time changing one-dimensional diffusions with killing, such as the
Brownian motion with killing in Linetsky (2006) and the JDCEV diffusion in Carr and
Linetsky (2006), we obtain models with jumps, stochastic volatility, and default.

The class of models developed in this paper can also be thought of as a far-reaching
generalization of the framework of time-changed Lévy processes with stochastic volatility
of Carr et al. (2003). Clark (1973) introduced into finance the notion of stochastic
time changes, in which the observed price process is assumed to arise by running a
time-homogeneous process on a second process called a clock. A clock is an increasing
process which is normalized to start at zero and which can have a stochastic component.
The requirement that time increases precludes the modeling of the clock as a diffusion,
although it is frequently modeled as a time integral of a positive diffusion. Alternatively,
the clock is often modeled as a Lévy subordinator, a Lévy process with positive jumps and
nonnegative drift. Time changing (subordinating) with Lévy subordinators goes back to
the pioneering work of Bochner (1949, 1955) and is often called Bochner’s subordination.
It is well known that, if we subordinate a Lévy process, we obtain another Lévy process
(see Sato 1999). In fact, many Lévy processes popular in finance can be represented as
subordinate Brownian motions with drift with appropriately chosen subordinators (see
Geman, Madan, and Yor 2001 for a survey). The variance gamma (VG) model of Madan
and Milne (1991), Madan and Seneta (1990), and Madan, Carr, and Chang (1998); the
normal inverse Gaussian (NIG) model of Barndorff-Nielsen (1998); and the Carr et al.
(2002) model (CGMY) can all be represented as subordinate Brownian motions (for
the latter, see Madan and Yor 2008). On the other hand, if one time changes Brownian
motion with a time change that is a time integral of a CIR diffusion, one obtains
Heston’s (1993) stochastic volatility model. Building on this idea, Carr et al. (2003) time
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change general Lévy processes with time changes that are time integrals of other positive
processes (e.g., CIR processes) and introduce a class of models termed Lévy processes
with stochastic volatility. If the time change is an integral of another process, called the
activity rate process, then the Lévy measure of the time-changed process scales with the
activity rate process. Thus, the activity rate speeds up or slows down jumps in the time-
changed process, in addition to speeding up or slowing down diffusive dynamics when
time changing a Brownian motion (see also Barndorff-Nielsen, Nicolato, and Shephard
2002 for related work on time changes and stochastic volatility).

However, there are two significant limitations in the framework of Carr et al. (2003).
First, the process to be time changed is a space-homogeneous Lévy process with state-
independent Lévy measure and constant volatility. Through the time change, both the
volatility and the Lévy measure scale with the activity rate process, but there is no
explicit dependence of the volatility and the Lévy measure on the stock price. This
space homogeneity contradicts the accumulated empirical evidence. In the context of
pure diffusion models, the so-called local-stochastic volatility models take the volatility
process to be a product of a function of the stock price (such as the power function in
the CEV model) and the stochastic volatility component (see Hagan et al. 2002; Lipton
2002; Lipton and McGhee 2002). These models generalize stochastic volatility models
such as Heston’s to introduce explicit stock price dependence into the local volatility.
In the context of jump models, we would like the Lévy measure to include both some
explicit state dependence on the stock price as well as on the stochastic volatility. This is
not addressed in the framework of Carr et al. (2003). The second limitation of Carr et al.
(2003) is that they do not include default in their models. The original process is a Lévy
process with infinite lifetime. As a result, the time-changed Lévy process with stochastic
volatility also has infinite lifetime. Thus, these are pure equity derivatives models that do
not capture the possibility of default of the firm.

Several interesting recent papers also exploit time changes in derivatives pricing.
Albanese and Kuznetsov (2004) apply time changes to construct equity derivatives pric-
ing models with stochastic volatility and jumps, Boyarchenko and Levendorskiy (2007)
apply time changes to construct interest rate models with jumps, and Ding, Gieseckey,
and Tomecekz (2009) apply time changes to birth processes to generate multiple defaults
processes for multiname credit derivatives. However, in contrast to the focus of this pa-
per, neither of these references model equity derivatives and credit derivatives in a unified
fashion.

This paper develops the next generation of hybrid credit-equity models with state-
dependent jumps, local-stochastic volatility, and default intensity based on time changes
of Markov processes with killing. The class of models proposed here remedy a number
of limitations of the previous generations of models. By starting from a one-dimensional
diffusion with killing and time changing it with a composite time change that can be
represented as a subordinator in turn time changed with a time integral of another process
(a subordinator with stochastic volatility), we construct processes with state-dependent
jumps, local-stochastic volatility, and state-dependent default intensity. Moreover, due
to special properties of one-dimensional diffusions, we retain analytical tractability in
this general framework. This is in contrast with the previous generations of analytically
tractable jump diffusion and pure jump models based on Lévy processes with space
homogeneous jumps (Merton 1976; Kou 2002; Kou and Wang 2004; Barndorff-Nielsen
1998; Eberlein, Keller, and Prause 1998; Madan et al. 1998; Carr et al. 2002). The state
dependence of the Lévy measure in our approach is inherited from the state dependence
of the local volatility of the original diffusion subject to time change. At the same time,
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many existing models, including local volatility models (e.g., CEV), stochastic volatility
models (e.g., Heston), local-stochastic volatility models (e.g., SABR), Lévy processes with
stochastic volatility, and diffusion models with state-dependent default intensity are all
nested as special cases in our general framework. Advantages of our hybrid credit-equity
modeling framework include the ability to consistently price the entire book of credit as
well as equity derivatives, in addition to the ability to incorporate a rich assortment of
empirically relevant features.

The rest of this paper is organized as follows. In Section 2, we present our model
architecture. We define the defaultable stock price process as a time-changed Markov
diffusion process with killing. In Section 3, we describe the four major classes of time
changes studied in this paper: subordinators, absolutely continuous time changes (time
integrals of an activity rate process), sums of subordinators and absolutely continuous
time changes, and composite time changes (subordinators with stochastic volatility).
In Section 4, we prove a series of key theorems on the martingale and Markov prop-
erties of our time-changed stock price processes. In Section 5, we apply our default-
able stock model to set up the general framework for the unified valuation of credit
derivatives and equity derivatives. In Section 6, we present our Laplace transform ap-
proach to the valuation of contingent claims on time-changed Markov processes with
the known resolvent (Laplace transform of the transition semigroup) and the known
Laplace transform of the time change. In Section 7, we present our spectral expansion
approach that works in the special case of symmetric Markov processes and contin-
gent claims with square-integrable payoffs. In this case, the Laplace transform inversion
is accomplished in closed form and results in a spectral expansion for the contingent
claim value function. To illustrate our general approach, in Section 8, we present a
detailed study of time changing the JDCEV process of Carr and Linetsky (2006). Sect-
ion 8.1 presents explicit expressions for the resolvent kernel, the spectral expansion of the
transition probability density, the survival probability for the JDCEV process, and the
spectral expansion for put options under the JDCEV process (call options are obtained
via the call-put parity). In Section 8.2, we introduce jumps and stochastic volatility into
the JDCEV process and construct and numerically illustrate the time-changed JDCEV
by calculating default probabilities, term structures of credit spreads, and implied volatil-
ity skews in a JDCEV time changed with an Inverse Gaussian subordinator in turn time
changed with a time integral of a CIR process (subordinator with stochastic volatility).
The resulting stock price process is a pure jump process with state-dependent Lévy mea-
sure, stochastic volatility, and default intensity dependent both on the stock price and on
the stochastic volatility. The computations are done by applying our analytical methods
based on the Laplace transform and on the spectral expansion. Section 9 summarizes
our results and discusses avenues for further research and applications. The Appendix
contains the proofs. The paper also has an online companion appendix available from
the authors upon request.

2. MODEL ARCHITECTURE

We assume frictionless markets and no arbitrage and take an equivalent martingale
measure (EMM) Q chosen by the market on a complete filtered probability space
(�,F, {Ft, t ≥ 0}, Q) as given. All stochastic processes defined in the following live on
this probability space, and all expectations are with respect to Q unless stated otherwise.
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We model the stock price dynamics under the EMM as a stochastic process {St, t ≥ 0}
defined by

St = 1{t<τd }eρt XTt ≡
{

eρt XTt , t < τd ,

0, t ≥ τd .
(2.1)

We now describe the ingredients in our model.

(i) Background Markov process X. {Xt, t ≥ 0} is a time-homogeneous Markov diffu-
sion process starting from a positive value X0 = x > 0 and solving a stochastic
differential equation (SDE)

dXt = [μ + h(Xt)]Xt dt + σ (Xt)Xt dBt,(2.2)

where σ (x) and μ + h(x) are the state-dependent instantaneous volatility and drift
rate, μ ∈ R is a constant parameter, and {Bt, t ≥ 0} is a standard Brownian motion.
We assume that σ (x) and h(x) are Lipschitz continuous on [ε, ∞) for each ε >

0, σ (x) > 0 on (0, ∞), h(x) ≥ 0 on (0, ∞), and σ (x) and h(x) remain bounded as
x → ∞. We do not assume that σ (x) and h(x) remain bounded as x → 0. Under
these assumptions, the process X does not explode to infinity (infinity is a natural
boundary for the diffusion process; see Borodin and Salminen 2002, p. 14, for
boundary classification of diffusion processes), but, in general, may reach zero,
depending on the behavior of σ (x) and h(x) as x → 0. The SDE (2.2) has a unique
solution up to the first hitting time of zero, H0 = inf{t ≥ 0 : Xt = 0}. If the process
can reach zero, we kill it at H0 and send it to an isolated state � called the cemetery
state in the terminology of Markov processes (see Borodin and Salminen 2002,
p. 4), where it remains for all t ≥ H0 (zero is a killing boundary). If the process
cannot reach zero (zero is an inaccessible boundary), we set H0 = ∞ by convention.
We call the process X the background Markov process. We could have included
jumps in the process X , thus starting from a jump-diffusion process, rather than
a pure diffusion as is done here. Instead, we start from a diffusion process and
introduce jumps through time changing the diffusion with a Lévy subordinator. By
introducing jumps via time changes we gain some important analytical tractability
as will be seen later. After the jump-inducing time change, we have a Markov
jump-diffusion process, which we can again time change to introduce stochastic
volatility.

(ii) Time change process T . The process {Tt, t ≥ 0} is a random time change (called
a directing process) assumed independent of X . It is a right-continuous with left
limits (RCLL) increasing process starting at zero, T0 = 0. We also assume that
E[Tt] < ∞ for every t > 0. In this paper, we focus on two important classes of
time changes: Lévy subordinators (Lévy processes with positive jumps and non-
negative drift) that are employed to introduce jumps and absolutely continuous time
changes Tt = ∫ t

0 Vu du with a positive rate process {Vt, t ≥ 0} called activity rate
that are employed to introduce stochastic volatility. We also consider time changes
Tt = T1

t + T2
t with both jump and absolutely continuous components, as well as

composite time changes of the form Tt = T1
T2

t
, where T1

t is a Lévy subordinator
and T2

t is an absolutely continuous time change with some activity rate process
V . This can be thought of as first time changing the diffusion process X with the
Lévy subordinator T1 to introduce jumps, and then time changing the resulting
Markov jump-diffusion process with the absolutely continuous time change T2
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to introduce stochastic volatility. Alternatively, the process T can be understood
as a subordinator with stochastic volatility along the lines of time-changed Lévy
processes of Carr et al. (2003). We describe these classes of time changes in detail
in Section 3.

(iii) Default time τd . The stopping time τd models the time of default of the firm on its
debt. We assume that in default strict priority rules are followed, so that while debt
holders receive some recovery, the stock becomes worthless (stock price is equal
to zero in default). The time of default τd is constructed as follows. Let H0 be the
first time the diffusion process X reaches zero as defined previously. Let E be an
exponential random variable with unit mean, E ∼ Exp(1), and independent of X
and T . Define

ζ := inf
{

t ∈ [0, H0] :
∫ t

0
h(Xu) du ≥ E

}
,(2.3)

where h(x) is the function appearing in the drift of X (in equation [2.3] we assume
that inf{∅} = H0 by convention). It can be interpreted as the first jump time of a
doubly stochastic Poisson process with the state-dependent intensity (hazard rate)
h(Xt) if it jumps before time H0, or H0 if there is no jump in [0, H0]. At time ζ ,
we kill the process X and send it to the cemetery state �, where it remains for
all t ≥ ζ . We note that, in general, the process X may be killed either at time H0

via diffusion to zero if ζ = H0 or at the first jump time ζ of the doubly stochastic
Poisson process with intensity h if ζ < H0 (according to our definition, ζ ≤ H0). In
the latter case, the process is killed from a positive value Xζ− > 0. The process X
is thus a Markov process with killing with lifetime ζ .1

The drift in (2.2) includes the hazard rate h to make the process 1{t<ζ } Xt with
μ = 0 into a martingale. The inclusion of the hazard rate in the drift compensates
for the possibility of killing the process from a positive state, that is, a jump
of the process Xt from a positive value Xζ− > 0 to the cemetery state � and,
correspondingly, a jump of the process 1{t<ζ } Xt from a positive value Xζ− > 0 to
zero. This compensation of the jump to zero makes the process 1{t<ζ } Xt with μ = 0
into a martingale (our assumptions on σ (x) and h(x) ensure that this process is a
true martingale and not just a local martingale).

After applying the time change T to the process X with lifetime ζ , the lifetime of
the time-changed process XTt is

τd := inf{t ≥ 0 : Tt ≥ ζ }.(2.4)

Although the process Xt is in the cemetery state for all t ≥ ζ , the time-changed
process XTt is in the cemetery state for all times t such that Tt ≥ ζ or, equivalently,
t ≥ τd with τd defined by equation (2.4). That is, τd defined by equation (2.4) is the
first time the time-changed process XTt is in the cemetery state. We take τd to be the
time of default. Because we assume that the stock becomes worthless in default,
we set St = 0 for all t ≥ τd , so that St = 1{t<τd }eρt XTt .

1The process killed at ζ ≤ H0 is a subprocess of the process killed at H0. We could have used different
notation for the process killed at ζ to distinguish it from the process killed at H0. To simplify notation,
we denote both processes by X . It should not lead to any confusion as it should be clear from the context
whether we are working with the process killed at H0 or its subprocess killed at ζ ≤ H0.
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(iv) Scaling factor eρt. To gain some additional modeling flexibility, we also include a
scaling factor eρt with some constant ρ ∈ R in our definition of the stock price
process (2.1).

(v) The Martingale condition. For the model (2.1) to be well defined, the functions
σ (x), h(x), the time-change process T , and the constant parameters μ and ρ must
be such that the discounted stock price process with the dividends reinvested is a
nonnegative martingale under the EMM Q, that is,

E[St] < ∞ for every t(2.5)

and

E[St2 |Ft1 ] = e(r−q)(t2−t1)St1 for every t1 < t2,(2.6)

where r ≥ 0 is the risk-free interest rate and q ≥ 0 is the dividend yield (in this
paper, we assume r and q are constant). The martingale condition (2.5–6) imposes
important restrictions on the model parameters. In Section 3, we describe the
classes of time changes we work with and, in Section 4, prove key theorems that
give the necessary and sufficient conditions for the martingale condition (2.5–6) to
hold.

3. TIME-CHANGE PROCESSES

3.1. Lévy Subordinators

Let {Tt, t ≥ 0} be a Lévy subordinator, that is, a nondecreasing Lévy process with
positive jumps and nonnegative drift with the Laplace transform

E[e−λTt ] = e−tφ(λ)(3.1)

with the Laplace exponent given by the Lévy–Khintchine formula

φ(λ) = γ λ +
∫

(0,∞)
(1 − e−λs)ν(ds)(3.2)

with the Lévy measure ν(ds) satisfying
∫

(0,∞)(s ∧ 1)ν(ds) < ∞, with nonnegative drift
γ ≥ 0, and the transition probability Q(Tt ∈ ds) = πt(ds),

∫
[0,∞) e−λsπt(ds) = e−tφ(λ).

The standard references on subordinators include Bertoin (1996, 1999) and Sato (1999)
(see also Geman et al. 2001 for finance applications). A subordinator starts at zero, T0,
drifts at the constant nonnegative drift rate γ , and experiences positive jumps controlled
by the Lévy measure ν(ds) (we exclude the trivial case of constant time changes with
ν = 0 and γ > 0). The Lévy measure ν describes the arrival rates of jumps so that jumps
of sizes in some Borel set A bounded away from zero occur according to a Poisson pro-
cess with intensity ν(A) = ∫A ν(ds). If

∫
R+ ν(ds) < ∞, the subordinator is of compound

Poisson type with the Poisson arrival rate α = ∫
R+ ν(ds) and the jump size probability

distribution α−1ν. If the integral
∫

R+ ν(ds) is infinite, the subordinator is of infinite ac-
tivity. Subordinators are processes of finite variation and, hence, the truncation of small
jumps is not necessary in the Lévy–Khintchine formula (3.2).

Consider an exponential moment E[eμTt ] of a subordinator T with Lévy measure
ν. When μ < 0, it is always finite and is given by the Lévy–Khintchine formula with
λ = −μ. We will also need to consider the case μ ≥ 0. Generally, we are interested in
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the set Iν of all μ ∈ R such that E[eμTt ] < ∞. As a corollary of Theorem 25.17 of Sato
(1999), E[eμTt ] < ∞ for all t ≥ 0 if and only if∫

[1,∞)
eμsν(ds) < ∞.(3.3)

For a given subordinator with Lévy measure ν, the set Iν of all μ such that (3.3) holds is
an interval (−∞, μ̄) or (−∞, μ̄]. The right endpoint μ̄ ≥ 0 may be finite or infinite and,
if it is finite, may or may not belong to the set Iν . It is also possible that μ̄ = 0. For all
μ ∈ Iν we have

E[eμTt ] = e−tφ(−μ).(3.4)

Further information on subordinators can be found in Applebaum (2004), Bertoin (1996,
1999), and Sato (1999). For applications in finance, see Geman et al. (2001), Boyarchenko
and Levendorskiy (2002), Cont and Tankov (2004), and Schoutens (2003). Some exam-
ples of subordinators are listed in Appendix C in the companion appendix available from
the authors upon request.

3.2. Absolutely Continuous Time-Change Processes

Let {Zt, t ≥ 0} be a conservative n-dimensional Markov process independent of X (Z
can have a diffusion component and a jump component, but no killing, so that Z has
infinite lifetime). Consider an integral process Tt = ∫ t

0 V(Zu) du, where V (z) is some
positive function from the state space D ⊂ Rn of the process Z into (0, ∞) so that the
activity rate process {Vt := V(Zt), t ≥ 0} is positive (we exclude the trivial case of constant
time changes with constant V > 0). The process Tt is strictly increasing and starts at the
origin. We are interested in such Markov processes Z and such functions V (z) that the
Laplace transform

Lz(t, λ) = Ez[e−λ
∫ t

0 V(Zu ) du ](3.5)

is known in closed form (the subscript z signifies that the Laplace transform Lz(t, λ)
explicitly depends on the initial state Z0 = z of the Markov process Z).

A key example is given by the CIR activity rate process (V(z) = z so that Vt = Zt)

dVt = κ(θ − Vt)dt + σV

√
VtdWt,

where the standard Brownian motion W is independent of the Brownian motion B driving
the SDE (2.2), the activity rate process starts at some positive value V0 = v > 0, κ > 0 is
the rate of mean reversion, θ > 0 is the long-run activity rate level, σV > 0 is the activity
rate volatility, and it is assumed that the Feller condition is satisfied 2κθ ≥ σ 2

V to ensure
that the process never hits zero (zero is an inaccessible boundary for the CIR process
when the Feller condition is satisfied). Due to the Cox, Ingersoll, and Ross (1985) result
giving the closed-form solution for the zero-coupon bond in the CIR interest rate model
(note that the Laplace transform (3.5) can be interpreted as the price of a unit face value
zero-coupon bond with maturity at time t when the short rate process is rt = λVt), we
have

Lv (t, λ) = A(t, λ)e−B(t,λ)v ,
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where V0 = v is the initial value of the activity rate process and (here � =
√

2σ 2
Vλ + κ2)

A(t, λ) =
(

2�e(�+κ)t/2

(� + κ)(e� t − 1) + 2�

) 2κθ

σ2
V

, B(t, λ) = 2λ(e� t − 1)
(� + κ)(e� t − 1) + 2�

.

Heston’s stochastic volatility model is based on Brownian motion time changed with the
integral of the CIR process. The CIR activity rate process has been used more generally
in Carr et al. (2003) to time change Lévy processes to introduce stochastic volatility in
the popular Lévy models, such as VG, NIG, CGMY, etc.

More generally, there are several known classes of Markov processes that yield closed-
form expressions for the Laplace transform (3.5). The first class are affine jump-diffusion
processes with the affine function V (z) (Duffie, Pan, and Singleton 2000; Duffie, Filipovic,
and Schachermayer 2003). In this class, the Laplace transform of the time change is the ex-
ponential of an affine function of the initial state Z0 = z of the Markov process Z driving
the activity rate process. The CIR example is a particular representative of the affine class.
The second class are the so-called quadratic models (Leippold and Wu 2002), where the
function V (z) is quadratic in the state vector, and the state vector follows an n-dimensional
Gaussian Markov process (an n-dimensional Ornstein–Uhlenbeck process). In this case,
the Laplace transform of the time change is the exponential of a quadratic function of the
initial state Z0 = z of the Markov process. The third class are Ornstein–Uhlenbeck pro-
cesses driven by Lévy processes used by Carr et al. (2003) to time change Lévy processes.
Explicit expressions for the Laplace transforms of these time changes can be found in this
reference. Carr and Wu (2004) use all three of these classes of absolutely continuous time
changes to time change Lévy processes (a listing of closed form expressions for Laplace
transforms of these time changes can be found in tables 1 and 2 in this reference). Here
we use them to time change Markov processes. We note that, while the Laplace trans-
forms are known in closed form for these three classes of absolutely continuous time
changes, in general the transition probability distributions Qz(Tt ∈ ds) = πt(z, ds) can
only be obtained numerically by Laplace transform inversion (note that they explicitly
depend on the initial state Z0 = z of the Markov process Z driving the activity rate
V ).

REMARK 3.1. Time changing Brownian motion with the integral of the CIR process
leads to the zero-correlation Heston’s model. Carr and Wu’s (2004) complex-valued
measure change approach extends it to Heston’s model with nonzero correlation. More
generally, Carr and Wu’s approach is applicable to time changing general Lévy processes.
However, so far we have not been able to extend their approach to general Markov
processes. This is an interesting problem for future research.

3.3. Combining and Composing Time Changes

We can also combine the two types of time changes Tt = T1
t + T2

t , where T1
t is a

subordinator with Laplace exponent φ and T2
t is an integral of some positive function of

a Markov process with analytically tractable Laplace transform Lz(t, λ). The combined
time change has a jump component, as well as an absolutely continuous component.



TIME-CHANGED MARKOV PROCESSES IN UNIFIED CREDIT-EQUITY MODELING 537

The Laplace transform of the combined time change is simply a product of the Laplace
transforms for its components

E[e−λTt ] = e−tφ(λ)Lz(t, λ).

Alternatively, we can compose the two types of time changes and consider a composite
time-change process

Tt = T1
T2

t
,(3.6)

where T1
t is a subordinator with Laplace exponent φ and T2

t is an integral of some positive
function of a Markov process with analytically tractable Laplace transformLz(t, λ). That
is, the process T is obtained by time changing a Lévy subordinator T1 with an absolutely
continuous time change T2. The process T is in the class of Lévy processes time changed
with an integral of an activity rate process studied by Carr et al. (2003). By conditioning
on T2, the Laplace transform of the composite time change is

E[e−λTt ] = E
[
E
[

exp
(− λT1

T2
t

) ∣∣T2
t

]] = E[e−T2
t φ(λ)] = Lz(t, φ(λ)).(3.7)

We note that, after we have done the absolutely continuous time change T2
t , further time

changes will no longer have analytically tractable Laplace transforms, because, in contrast
to subordinators with the Laplace transform e−tφ(λ) that depends on time exponentially,
the Laplace transform Lz(t, λ) may have a complicated general dependence on time.

As we show in Section 4.3, diffusion processes time changed with a combined time
change acquire stochastic volatility in the diffusion component, but do not have stochas-
tic volatility in the jump component. In contrast, diffusions time changed with a com-
posed time change acquire stochastic volatility both in the diffusion and in the jump
component.

4. MARTINGALE AND MARKOV PROPERTIES OF THE DEFAULTABLE
STOCK MODEL

We now prove key theorems that establish when our stock price model (2.1) satisfies the
martingale condition (2.5)–(2.6) and when it is a Markov process.

4.1. Time Changing with Lévy Subordinators

THEOREM 4.1. Let X be a background diffusion process as described in Section 2(i)
with μ ∈ R and h(x) and σ (x) satisfying the assumptions listed there, let T be a Lévy
subordinator with drift γ ≥ 0 and Lévy measure ν with the characteristic exponent φ(λ)
and with the interval Iν as described in Section 3.1, and let τd be the default time as
described in Section 2 (iii). Then the stock price process (2.1) satisfies the martingale
condition (2.5)–(2.6) if and only if

μ ∈ Iν(4.1)

and

ρ = r − q + φ(−μ).(4.2)
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Proof. The proof is by conditioning on the time change T that is independent of X
and using Equation (3.4) to compute the expectation and is given in Appendix A. �

Thus, when the time change T is a Lévy subordinator, our model (2.1) is characterized
by the local volatility function σ (x), hazard rate h(x), Lévy measure ν and drift γ ≥ 0 of
the Lévy subordinator, and a constant μ ∈ Iν . Depending on the Lévy measure, it may
or may not be possible to select μ ∈ Iν so that

ρ = r − q + φ(−μ) = 0.(4.3)

From (3.2) we see that −φ(−μ) is a strictly increasing function on Iν . Thus, the equa-
tion (4.3) has at most one solution in Iν . If it exists, we denote it μ0 and call the
corresponding model (2.1) with μ = μ0 and ρ = 0 the zero-ρ model. If the equation (4.3)
has no solution in Iν , one possible choice is to set μ = 0 so that ρ = r − q. We call
this choice the zero-μ model. For this choice, the process 1{t<ζ } Xt and the time-changed
process 1{t<τd } XTt are both martingales, and the desired mean for the stock price process
St = 1{t<τd }e(r−q)t XTt is achieved by including the factor eρt = e(r−q)t. We now establish
when equation (4.3) has a solution.

THEOREM 4.2. Equation (4.3) has at most one solution in Iν . If r < q, then equa-
tion (4.3) has no solution in Iν if and only if γ = 0 and the subordinator is of finite activity
with finite Lévy measure with Poisson intensity α = ∫(0,∞) ν(ds) such that −α > r − q. If
r > q, then equation (4.3) has no solution in Iν if and only if μ̄ is included in Iν (i.e.,∫

[1,∞) eμ̄sν(ds) < ∞) and r − q > −φ(−μ̄). If r = q, equation (4.3) has a unique solution
μ = 0 in Iν .

Proof. The proof follows from the analysis of equation (3.2) and is given in Appen-
dix A. �

We now turn to the question of whether the model (2.1) is Markovian. It turns out that
when T is a Lévy subordinator, the time changed process XTt is again a Markov process.

THEOREM 4.3. Let X be a background diffusion process with lifetime ζ as described in
Section 2(i) with assumptions listed there, and let T be a Lévy subordinator with drift γ ≥ 0
and Lévy measure ν(ds) as described in Section 3.1. Then the time changed process (the
superscript φ refers to the subordinate quantities with the subordinator with the Laplace
exponent φ)

Xφ
t := XTt =

{
XTt , Tt < ζ

�, Tt ≥ ζ
≡
{

XTt , t < τd

�, t ≥ τd

(4.4)

is a Markov jump-diffusion process with lifetime τd and with the Lévy-type infinitesimal
generator Gφ that for any twice continuously differentiable function with compact support
f ∈ C2

c ((0, ∞)) can be written in the form

Gφ f (x) = 1
2
γ σ 2(x)x2 d2 f

dx2
(x) + b(x)

d f
dx

(x) − k(x) f (x)

+
∫

(0,∞)

(
f (y) − f (x) − 1{|y−x|≤1}(y − x)

d f
dx

(x)
)

�(x, dy)

(4.5)
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with the jump measure (state-dependent Lévy measure)

�(x, dy) = π (x, y)dy(4.6)

with the density defined for all x, y > 0, x 
= y, by

π (x, y) =
∫

(0,∞)
p(s; x, y)ν(ds),(4.7)

killing rate

k(x) = γ h(x) +
∫

(0,∞)
Ps(x, {�})ν(ds),(4.8)

and drift with respect to the truncation function 1{|y−x|≤1}

b(x) = γ [μ + h(x)]x +
∫

(0,∞)

(∫
{y>0:|y−x|≤1}

(y − x)p(s; x, y) dy
)

ν(ds).(4.9)

Here p(t; x, y) is the transition probability density of the background Markov process X
with lifetime ζ , so that the probability to find the process in a Borel set A ⊂ (0, ∞) at time
t if the process starts at X0 = x at time zero is Pt(x, A) = ∫A p(t; x, y) dy, and

Pt(x, {�}) = 1 −
∫

(0,∞)
p(t; x, y) dy(4.10)

is the transition probability of the background process X with lifetime ζ from the state
x > 0 to the cemetery state � by time t.

The transition density pφ(t; x, y) of the time-changed Markov process Xφ with lifetime
τd is given by

pφ(t; x, y) =
∫

[0,∞)
p(s; x, y)πt(ds),(4.11)

where p(s; x, y) is the transition density of the background Markov process X with lifetime
ζ and πt(ds) is the transition measure of the subordinator T . The transition probability of
the process Xφ with lifetime τd from the state x > 0 to the cemetery state � by time t is
given by

Pφ
t (x, {�}) = 1 −

∫
(0,∞)

pφ(t; x, y) dy =
∫

[0,∞)
Ps(x, {�})πt(ds).(4.12)

Proof. The proof relies on R.S. Phillips’ theorem on subordination of Markov semi-
groups and is given in Appendix A. �

The theorem asserts that when the background process is Markov and the time change
is a Lévy subordinator, the time-changed process is again Markov and gives explicitly its
local characteristics (volatility, drift with respect to the truncation function, killing rate,
and jump measure). Intuitively, for any x > 0 and a Borel set A ⊂ (0, ∞)\{x} bounded
away from x, the Lévy measure �(x, A) gives the arrival rate of jumps from the state x into
the set A, that is, the transition probability from the state x into the set A bounded away
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from x has the following asymptotics: Pt(x, A) ∼ �(x, A)t as t → 0. The truncation
function in the integral in (4.5) is only needed when jumps are of infinite variation. When∫

{y>0:|x−y|≤1}
|y − x|�(x, dy) < ∞(4.13)

for all x > 0, jumps of the time-changed process are of finite variation, the truncation
is not needed, and the infinitesimal generator (4.5) of the time-changed Markov process
simplifies to

Gφ f (x) = 1
2
γ σ 2(x)x2 d2 f

dx2
(x) + γ [μ + h(x)]x

d f
dx

(x) − k(x) f (x)

+
∫

(0,∞)
( f (y) − f (x)) �(x, dy).

(4.14)

If � is a finite measure with λ(x) := �(x, (0, ∞)) < ∞ for every x > 0, then the process
has a finite number of jumps in any finite time interval, and λ(x) is the (state-dependent)
jump arrival rate. The subordinated process Xφ has finite activity jumps if and only if
the subordinator T has finite activity jumps. Note that, while subordinators are jump
processes of finite variation, the subordinated processes Xφ may have jumps of either
finite or infinite variation, depending on whether the Lévy measure (4.6)–(4.7) satisfies
the integrability condition (4.13).

From equations (4.5)–(4.8), we see that time changing the process X with a Lévy
subordinator with drift γ ≥ 0 and Lévy measure ν scales volatility and drift with
γ , introduces jumps with state-dependent Lévy measure with Lévy density π (x, y) =∫

(0,∞) p(s; x, y)ν(ds) determined by the Lévy measure of the subordinator and the tran-
sition density of the diffusion process X , and modifies the killing rate by scaling the
original killing rate with γ and adding the term

∫
(0,∞) Ps(x, {�})ν(ds) determined by

the Lévy measure of the subordinator and the killing probability of the Markov pro-
cess X . If γ > 0, we can set γ = 1 without loss of generality. Then the effect of the
time change is to introduce jumps into the original diffusion process, so that the result-
ing process is a jump diffusion with the same diffusion as the original process X plus
jumps induced by the time change, and to modify the killing rate. Thus, the subordina-
tion procedure allows us to introduce jumps into any diffusion process. If γ = 0, then
the time-changed process has no diffusion component and is a pure jump process with
killing.

Thus, we have a complete characterization of the time-changed process Xφ
t as a Markov

process with killing. The stock price process (2.1) can be written as St = 1{t<τd }eρt Xφ
t .

The stock price process stays positive prior to the default time τd (lifetime of Xφ
t ) and

jumps into zero at τd . We call this jump to default. It is thus a Markov jump-diffusion
process with zero specified as an absorbing state.

4.2. Absolutely Continuous Time Changes

We now turn to absolutely continuous time changes.

THEOREM 4.4. Let X be a background diffusion process as described in Section 2(i)
with μ ∈ R and h(x) and σ (x) satisfying the assumptions listed there, let T be an absolutely
continuous time change with a positive activity rate process Vt as described in Section 3.2,
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and let τd be the default time as described in Section 2(iii). Then the stock price process
(2.1) satisfies the martingale condition (2.5)–(2.6) if and only if

μ = 0, ρ = r − q.(4.15)

Proof. The proof is given in Appendix A.

Because the time-change process {Tt, t ≥ 0} is continuous and strictly increasing (we
assume the activity rate process V is strictly positive), the inverse process {At, t ≥ 0}
defined by TAt = t is also continuous and strictly increasing and ATt = t. To understand
the effect of the absolutely continuous time change on the process X , we write for Tt < ζ

(equivalently t < τd )

XTt = x +
∫ Tt

0
h(Xu)Xu du +

∫ Tt

0
σ (Xu)Xu dBu

= x +
∫ t

0
h(XTs )XTs dTs +

∫ t

0
σ (XTs )XTs dBTs

= x +
∫ t

0
h(XTs )XTs V(Zs) ds +

∫ t

0
σ (XTs )XTs

√
V(Zs) dB̃s .

(4.16)

In the first equality, we did a change of variable in the integral, u = Ts (with the inverse
s = Au). In the second equality, we observed that dTs = Vsds and dBTs = √

VsdB̃s , where
B̃t = ∫ t

0
dBTs√

Vs
is a standard Brownian motion (it is a continuous martingale with quadratic

variation t and, hence, is a standard Brownian motion by Lévy’s theorem). The process
Xt is killed at time ζ = inf{t ∈ [0, H0] :

∫ t
0 h(Xu) du ≥ E}. Then the time-changed process

XTt is killed at time

τd = inf{t ∈ [0, AH0 ] :
∫ Tt

0
h(Xu) du ≥ E} = inf

{
t ∈ [0, AH0 ] :

∫ t

0
h(XTs )V(Zs) ds ≥ E

}
,

(4.17)

where we did a change of variable u = Ts in the integral. From equations (4.16) and
(4.17), we observe that the time-changed process Yt = XTt has the local volatility

σ (x, z) =
√

V(z)σ (x)(4.18)

and killing rate

k(x, z) = V(z)h(x)(4.19)

so that for t < τd the process Y solves the SDE

dYt = V(Zt)h(Yt)Ytdt +
√

V(Zt)σ (Yt)YtdB̃t.(4.20)

Thus, the time change scales the volatility with the square root of the activity rate and
scales the killing rate with the activity rate. The activity rate plays a role of stochastic
volatility that both drives the instantaneous volatility of the time-changed process and
the killing rate (default intensity). Thus, by construction, this class of models possesses
a natural built-in connection between the stock price volatility and the firm’s default
intensity. This manifests itself in the connection between the implied volatility skew in
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the stock options market and the credit spreads in the credit markets. The linkages
between credit spreads and equity volatility (both realized and implied in options prices)
have been widely documented in the empirical literature (see the discussion and the
references in the introduction of Carr and Linetsky 2006). Our class of models based
on time changing a diffusion with killing with an integral of an activity rate (stochastic
volatility) process is ideally suited to the task of modeling the linkages between equity
volatility and credit spreads, as the activity rate drives both the local-stochastic volatility
of the stock price and the default intensity. See Carr and Wu (2009) for the empirical
support of the linkage between the volatility and default intensity in the framework of
affine models.

We thus conclude that the time-changed process Y is no longer a one-dimensional
Markov process. However, the process (Y, Z) is an (n + 1)-dimensional Markov process
with lifetime τd and with the infinitesimal generator G that for any twice continuously
differentiable function with compact support f ∈ C2

c ((0, ∞) × D) (where D ⊂ Rn is the
state space of the process Z) can be written in the form

G f (x, z) = V(z)GX f (x, z) + GZ f (x, z),(4.21)

where GX is the infinitesimal generator of the background process X with lifetime ζ ,

GX f (x) = 1
2
σ 2(x)x2 ∂2 f

∂x2
(x) + h(x)x

∂ f
∂x

(x) − h(x) f (x)(4.22)

and GZ is the infinitesimal generator of the n-dimensional Markov process Z driving the
activity rate Vt = V(Zt).

The fact that, in general, the time-changed process is not Markovian is illustrated by
the Heston model. If we start with Brownian motion and do a time change with the
time-change process taken to be an integral of an independent CIR process, the resulting
time-changed process is no longer a one-dimensional Markov process because of the
second source of uncertainty (stochastic volatility) entering through the time change.
The Markov property is restored in an enlarged two-dimensional state space with both
the stock price and its instantaneous volatility as two state variables.

4.3. Combined and Composite Time Changes

We now turn to composite time changes where we first time change the diffusion
process X with a Lévy subordinator to introduce jumps, and then time change the
resulting Markov jump-diffusion process with an absolutely continuous time change to
introduce stochastic volatility as described in Section 3.3. Equivalently, we can think
of it as a single time change, where the process Tt is a time-changed Lévy process with
stochastic volatility as in Carr et al. (2003).

THEOREM 4.5. Let X be a background diffusion process as described in Section 2(i) with
μ ∈ R and h(x) and σ (x) satisfying the assumptions listed there, let Tt be a composite time
change (3.6), where T1 is a Lévy subordinator with drift γ ≥ 0 and Lévy measure ν and
T2 is an absolutely continuous time change with a positive activity rate process Vt = V(Zt)
as described in Sections 3.2 and 3.3, and let τd be the default time as described in Sect-
ion 2(iii). Then the stock price process (2.1) satisfies the martingale condition (2.5)–(2.6)
if and only if μ = 0, ρ = r − q.
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Proof. The proof is given in Appendix A. �

Recalling Theorem 4.2 and arguing as in Section 4.2, we conclude that the process
(Y, Z), where Yt = XTt = XT1

T2
t

, is an (n + 1)-dimensional Markov jump-diffusion process

with the infinitesimal generator G that for any twice continuously differentiable function
with compact support f ∈ C2

c ((0, ∞) × D) (where D ⊂ Rn is the state space of the process
Z) can be written in the form (we set μ = 0 in the drift of X according to Theorem 4.5;
here Gφ is the infinitesimal generator (4.5) after the first time change with the Lévy
subordinator and GZ is the infinitesimal generator of the n-dimensional Markov process
Z):

G f (x, z) = V(z)Gφ f (x, z) + GZ f (x, z)

= 1
2
γ V(z)σ 2(x)x2 ∂2 f

∂x2
(x, z) + b(x, z)

∂ f
∂x

(x, z) − k(x, z) f (x, z)

+
∫

(0,∞)

(
f (y, z) − f (x, z) − 1{|y−x|≤1}(y − x)

∂ f
∂x

(x, z)
)

× �(x, z; dy) + GZ f (x, z)

(4.23)

with the jump measure (state-dependent Lévy measure)

�(x, z; dy) = π (x, z; y)dy(4.24)

with the density defined for all x, y > 0, x 
= y, z ∈ D by

π (x, z; y) = V(z)
∫

(0,∞)
p(s; x, y)ν(ds),(4.25)

killing rate

k(x, z) = V(z)
(

γ h(x) +
∫

(0,∞)
Ps(x, {�})ν(ds)

)
,(4.26)

and drift with respect to the truncation function 1{|y−x|≤1}.

b(x, z) = V(z)
[
γ h(x)x +

∫
(0,∞)

(∫
{y>0:|y−x|≤1}

(y − x)p(s; x, y)dy
)

ν(ds)
]

.

(4.27)

Here p(t; x, y) is the transition probability density of the process X with lifetime ζ and
Pt(x, {�}) is the transition probability of the process X from the state x > 0 to the
cemetery state � by time t given by equation (4.10).

The first time change T1 scales the volatility with γ , introduces jumps with the Lévy
measure (4.6–7), and modifies the killing rate by scaling the old killing rate h with γ and
adding the term to it as in (4.8). The second time change introduces stochastic volatility
by scaling the volatility with

√
V(z), and scaling the Lévy measure (4.25) and the killing

rate (4.26) with V (z).
As an alternative to composing the time changes, we can also consider combined

time changes Tt = T1
t + T2

t as discussed in Section 3.3. Theorem 4.5 carries through
verbatim to the combined time-change case. However, the Markov generator has a
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different structure. In the combined time-change case, equation (4.23) is replaced
with

G f (x, z) = Gφ f (x, z) + V(z)GX f (x, z) + GZ f (x, z)

= 1
2

(γ + V(z))σ 2(x)x2 ∂2 f
∂x2

(x, z) + b(x, z)
∂ f
∂x

(x, z) − k(x, z) f (x, z)

+
∫

(0,∞)

(
f (y, z) − f (x, z) − 1{|y−x|≤1}(y − x)

∂ f
∂x

(x, z)
)

× �(x; dy) + GZ f (x, z)

with the jump measure given by equations (4.6)–(4.7), killing rate

k(x, z) = (γ + V(z))h(x) +
∫

(0,∞)
Ps(x, {�})ν(ds),

and drift with respect to the truncation function 1{|y−x|≤1}

b(x, z) = (γ + V(z))h(x)x +
∫

(0,∞)

(∫
{y>0:|y−x|≤1}

(y − x)p(s; x, y) dy
)

ν(ds).

In contrast with the composite time change, the combined time change does not intro-
duce stochastic volatility into the jump component. Stochastic volatility only enters into
the diffusion component of the process. If one is interested in constructing a pure jump
process with stochastic volatility and killing, then the composite time change is more
suitable. In applications where one would like to have both diffusion and jump compo-
nents in the asset price process, whether to use combined or composite time changes is
an empirical question that depends on whether or not jumps should exhibit stochastic
volatility.

REMARK 4.1. The explicit expressions for the infinitesimal generators provide explicit
characterizations for local characteristics of the Markov processes: volatility, drift, killing
rate, and jump measure. These explicit expressions are also necessary in order to price
American-style and other derivatives numerically by solving the corresponding partial
differential equations (PDEs) (or partial integro-differential equations [PIDEs] in case of
processes with jumps). While in this paper we study European-style securities and pursue
analytical methods, American-style securities can be priced in these models by numer-
ically solving the corresponding pricing PDEs or PIDEs defined by these infinitesimal
generators.

5. UNIFIED VALUATION OF CORPORATE DEBT, CREDIT DERIVATIVES,
AND EQUITY DERIVATIVES

We assume that the stock price follows the process (2.1). We view the stock price as
the fundamental observable state variable and, within the framework of our reduced-
form model (2.1), view all securities related to a given firm, such as corporate debt, credit
derivatives, and equity derivatives, as contingent claims written on the stock price process
(2.1). Before proceeding with the valuation of contingent claims, we first consider the
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calculation of the (risk-neutral) survival probability—the probability of no default up to
time t > 0. Conditioning on the time change, we have

Q(τd > t) = Q(ζ > Tt) =
∫ ∞

0
Q(ζ > s)πt(ds) =

∫ ∞

0
Ps(x, (0, ∞))πt(ds),(5.1)

where Pt(x, (0, ∞)) = Q(ζ > t) is the survival probability for the Markov process X
with lifetime ζ (transition probability for the Markov process X with lifetime ζ from
the state x > 0 into (0, ∞), Pt(x, (0, ∞)) = 1 − Pt(x, {�})) and πt(ds) is the probability
distribution of the time change Tt. If the survival probability for the process X and the
probability distribution of the time change πt(ds) are known in closed form, then we can
obtain the survival probability for the stock price process (2.1) by integration (5.1).

Next, consider a European-style contingent claim with the payoff �(St) at maturity
t > 0 given no default by time t, and constant recovery payment R > 0 if default occurs
by t. Separating the claim into two building blocks, a claim with the payoff � and no
recovery and the recovery payment, the valuation is done by conditioning on the time
change similar to the calculation of the survival probability (5.1). For the European claim
with the payoff �(St) given no default by time t and with no recovery if default occurs
by t we have

e−rtE[1{τd>t}�(St)] = e−rtE[1{ζ>Tt}�(eρt XTt )] = e−rt
∫ ∞

0
E
[
1{ζ>s}�(eρt Xs)

]
πt(ds).

(5.2)

For the fixed recovery R paid at time t if default occurs by t we have

Re−rt[1 − Q(τd > t)],(5.3)

where the survival probability is given by equation (5.1).
From equations (5.1)–(5.3), we observe that, by conditioning on the time change, the

calculation of the survival probability and the valuation of contingent claims reduce to
computing expressions of the form

E[1{τd>t} f (XTt )] = E[1{ζ>Tt} f (XTt )] =
∫ ∞

0
E[1{ζ>s} f (Xs)]πt(ds),(5.4)

for some function f (to compute the survival probability set f = 1). This involves first
computing the expectation E[1{ζ>s} f (Xs)] for the background diffusion process X and
then integrating the result in time against the probability distribution of the time change
Tt, if the probability distribution of the time change is known in closed form (e.g., the
closed-form expressions for compound Poisson, Gamma, and inverse Gaussian subordi-
nators given in Appendix C from the companion appendix). In general, if the closed-form
expression for the distribution of the time change is not available, it can be recovered
by inverting the Laplace transform numerically, which involves numerical integration in
the complex plane by means of the Bromwich Laplace inversion formula. The second
step is to compute the integral from zero to infinity in equations (5.1) and (5.2). Thus,
if we can determine the expectation E[1{ζ>s} f (Xs)] for the original Markov process X
in closed form, we still need to perform double numerical integration to compute (5.4)
for the time-changed process. Fortunately, when the function f satisfies an additional
integrability condition, there is an alternative approach that avoids any need for Laplace
transform inversion to recover πt(ds) and for numerical integration in s in (5.4). In the
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next section, we will present a remarkably powerful Laplace transform approach that
will effectively evaluate both of these integrals in closed form.

The two building blocks (5.2) and (5.3) can be used to value corporate debt, credit
derivatives, and equity derivatives. In particular, a defaultable zero-coupon bond with unit
face value, maturity t > 0, and recovery R ∈ [0, 1] can be represented as the European
claim with �(St) = 1 and valued at time zero by

BR(x, t) = e−rtQ(τd > t) + Re−rt[1 − Q(τd > t)] = e−rt R + e−rt(1 − R)Q(τd > t),

(5.5)

where we indicate explicitly the dependence of the bond value function on the initial stock
price S0 = X0 = x. Our recovery assumption corresponds to the fractional recovery of
treasury assumption (see, e.g., Lando 2004, p. 120). Defaultable bonds with coupons can
be valued as portfolios of defaultable zeros.

A European call option with strike K > 0 with the payoff (St − K)+ at expiration t has
no recovery if the firm defaults. A European put option with strike K > 0 with the payoff
(K − St)+ can be decomposed into two parts: the put payoff (K − St)+1{τd>t}, given no
default by time t, and a recovery payment equal to the strike K at expiration in the event
of default τd ≤ t. The pricing formulas for European-style call and put options take the
form

C(x; K, t) = e−rtE
[(

eρt XTt − K
)+

1{τd>t}
] = e−rt

∫ ∞

0
E
[(

eρt Xs − K
)+

1{ζ>s}
]
πt(ds),

(5.6)

and

P(x; K, t) = P0(x; K, t) + PD(x; K, t),(5.7)

where

P0(x; K, t) = e−rt
∫ ∞

0
E
[(

K − eρt Xs
)+

1{ζ>s}
]
πt(ds)(5.8)

and

PD(x; K, t) = Ke−rt[1 − Q(τd > t)],(5.9)

respectively. One notes that the put pricing formula (5.7) consists of two parts: the present
value P0(x; K, t) of the put payoff conditional on no default given by equation (5.8) (this
can be interpreted as the down-and-out put with the down-and-out barrier at zero), as
well as the present value PD(x; K, t) of the cash payment equal to the strike K in the
event of default given by equation (5.9). This recovery part of the put is a European-style
default claim, a credit derivative that pays a fixed cash amount K at maturity t if and
only if the underlying firm has defaulted by time t. Thus, the put option contains an
embedded credit derivative. Generally, we emphasize that, in our model, corporate debt,
credit derivatives, and equity options are all valued in an unified framework as contingent
claims written on the defaultable stock.

Although we will now focus on deriving explicit closed-form expressions for European-
style securities by probabilistic methods, the framework of this section can be extended to
the valuation of American-style options and more complicated securities with American
features, such as convertible bonds. The standard results imply that the value function
solves the appropriate PIDE with the integro-differential operator G (the infinitesimal
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generator of the time-changed Markov process; one-dimensional in the case of time
changes by Lévy subordinators or (n + 1)-dimensional in the case of absolutely contin-
uous or composite time changes) on the appropriate domain and subject to appropriate
terminal and boundary conditions. The solution can be derived via numerical methods.

6. VALUATION OF CONTINGENT CLAIMS ON TIME-CHANGED
MARKOV PROCESSES: A LAPLACE TRANSFORM APPROACH

We now present a powerful method to compute expectations of the form (5.4) needed to
value contingent claims in our model. We will tackle it in two steps. First, we show how
to use the Laplace transform to compute the expectation operator

Pt f (x) = Ex[1{ζ>t} f (Xt)],(6.1)

where X is a one-dimensional diffusion process with lifetime ζ started at x at time zero
and the function f satisfies some integrability conditions to be specified later. Second,
we show how the time change can be accomplished so that the integral with respect to
the time variable in the expectation (5.4) is evaluated in closed form from the knowledge
of the Laplace transform representation for the expectation (6.1) for the process X and
the Laplace transform of the time change T , without any need to recover the probability
distribution of the time change.

Taking the Laplace transform of the expectation operator, we define the resolvent
operator Rs (e.g., Ethier and Kurtz 1986):

Rs f (x) :=
∫ ∞

0
e−stPt f (x) dt = 1

s
Ex[1{ζ>τs } f (Xτs )],

where τs is an independent exponential time with mean 1/s. For one-dimensional diffu-
sions, it is well known (see Borodin and Salminen 2002) that resolvent operator can be
represented as an integral operator

Rs f (x) =
∫ r

�

f (y)Gs(x, y) dy

= φs(x)
ws

∫ x

�

f (y)ψs(y)m(y) dy + ψs(x)
ws

∫ r

x
f (y)φs(y)m(y) dy,

(6.2)

where the resolvent kernel or Green’s function Gs(x, y) is the Laplace transform of the
transition probability density, Gs(x, y) = ∫∞

0 e−st p(t; x, y) dt, that admits the following
explicit representation (Borodin and Salminen 2002, p. 19; note that we define the Green’s
function with respect to the Lebesgue measure, while Borodin and Salminen define it
with respect to the speed measure m(y)dy, where m(y) is the speed density, and so s(y)
does not appear in their expression)

Gs(x, y) = m(y)
ws

{
ψs(x)φs(y), x ≤ y,

ψs(y)φs(x), y ≤ x.
(6.3)

For s > 0, the functions ψs(x) and φs(x) can be characterized as the unique (up to
a multiplicative factor independent of x) solutions of the Sturm-Liouville equation
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associated with the infinitesimal generator G of the one-dimensional diffusion process,

Gu(x) = 1
2

a2(x)
d2u
dx2

(x) + b(x)
du
dx

(x) − c(x)u(x) = su(x),(6.4)

by first demanding that ψs(x) is increasing in x and φs(x) is decreasing and, second,
posing boundary conditions at accessible boundary points. For ψs(x), the boundary
condition is only imposed at � if � is an accessible boundary. Because in this paper we
assume that accessible boundaries are specified as killing boundaries, we have a Dirichlet
boundary condition at �, ψs(�) = 0. For φs(x) we have, similarly, φs(r ) = 0 if r is an
accessible boundary specified as a killing boundary. The functions ψs(x) and φs(x) are
called fundamental solutions of the Sturm–Liouville equation (6.4). They are linearly
independent and all solutions can be expressed as their linear combinations. Moreover,
the so-called Wronskian is independent of x

ws = 1
s(x)

(ψ ′
s(x)φs(x) − ψs(x)φ′

s(x)).(6.5)

In equation (6.3), the function m(x) is the so-called speed density of the diffusion process
X and is constructed from the diffusion and drift coefficients as follows (see Borodin and
Salminen 2002, p. 17)

m(x) = 2
a2(x)s(x)

, where s(x) = exp
(

−
∫ x

x0

2b(y)
a2(y)

dy
)

,(6.6)

where x0 ∈ (�, r ) is an arbitrary point in the state space. The function s(x) is called the
scale density of the diffusion process X .

In equation (6.2), we interchanged the Laplace transform integral in t and the expec-
tation integral in y. This interchange is allowed by Fubini’s theorem if and only if the
function f is such that

∫ r
�

| f (y)Gs(x, y)| dy < ∞ or

∫ x

�

| f (y)|ψs(y)m(y) dy < ∞ and
∫ r

x
| f (y)|φs(y)m(y) dy < ∞ ∀ x ∈ (�, r ), s > 0.

(6.7)

For f satisfying this integrability condition, we can then recover the expectation (6.1) by
first computing the resolvent operator (6.2) and then inverting the Laplace transform
via the Bromwich Laplace transform inversion formula (see Pazy 1983) for the Laplace
inversion formula for operator semigroups)

Pt f (x) = Ex[1{ζ>t} f (Xt)] = 1
2π i

∫ ε+i∞

ε−i∞
estRs f (x) ds.(6.8)

A crucial observation is that in the representation (6.8) time only enters through the
exponential est (the temporal and spatial variables are separated). We can thus write

E[1{ζ>Tt} f (XTt )] = 1
2π i

∫ ε+i∞

ε−i∞
E[esTt ]Rs f (x) ds = 1

2π i

∫ ε+i∞

ε−i∞
L(t, −s)Rs f (x) ds,(6.9)

where L(t, λ) = E[e−λTt ] is the Laplace transform of the time change (here we require that
E[eεTt ] = L(t, −ε) < ∞). This result has two significant advantages over the expression
(5.4). First, it does not require the knowledge of the transition probability measure of
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the time change, and only requires the knowledge of the Laplace transform of the time
change. Second, it does not require the knowledge of the expectation E[1{ζ>t} f (Xt)] for
the original process, and only requires the knowledge of the resolvent Rs f (x) given by
equation (6.2).

The Laplace transform inversion in (6.9) can be performed by appealing to the Cauchy
Residue Theorem to calculate the Bromwich integral in the complex plane. To do this,
we need to analyze singularities of the function Rs f (x) in the complex plane s ∈ C (due
to our assumption E[eεTt ] = L(t, −ε) < ∞, the Laplace transform of the time change
L(t, −s) is analytic in the half-plane to the left of the integration contour in [6.9]).

REMARK 6.1. If the background process X is a Lévy process (in particular, Brownian
motion with drift), then the Laplace transform approach in this section can be shown
to be equivalent to the fast Fourier transform (FFT) approach of Carr et al. (2003). In
this case, we do not need to work with the resolvent and can work with the characteristic
functions instead as is done in Carr et al. (2003), leading to the Fourier inversion by
the FFT. For Lévy processes, the characteristic function/Fourier transform approach is
more straightforward to use in application. However, the Laplace transform approach
in this section is much more general, as it can be applied to time changing any Markov
process, not just a Lévy process.

REMARK 6.2. Carr et al. (2003) work with Lévy processes without killing. We note
that it is possible to introduce killing/default into the framework of time-changed Lévy
processes in Carr et al. (2003) as follows. Start with a Lévy process with killing. Recall
that the killing rate k has to be constant in order for the killed process to be a Lévy
process. That is, the Lévy process is killed at an independent exponential time. On time
changing the Lévy process with an integral of an activity rate process Vt (such as the
CIR), the time-changed process acquires a stochastic default intensity kVt. That is, the
default intensity is the old constant killing rate scaled with the stochastic activity rate
process that introduces stochastic volatility. To price contingent claims in this class of
models based on Lévy processes with stochastic volatility and killing, one can directly
follow the Fourier approach of Carr et al. (2003). However, the method developed here
is more general and is applicable to any Markov process with killing.

REMARK 6.3. If the background Markov process X is a one-dimensional diffusion
and the time-change process is a Lévy subordinator with the exponential Lévy mea-
sure ν(ds) = αηe−ηsds, then we note that the state-dependent Lévy density (4.7) of the
time-changed process is the Green’s function of the diffusion X evaluated at s = η and
scaled with αη. Indeed, from equation (4.7), we have π (x, y) = αη

∫∞
0 p(s; x, y)e−ηs ds =

αηGη(x, y).

7. VALUATION OF CONTINGENT CLAIMS ON TIME-CHANGED
MARKOV PROCESSES: A SPECTRAL EXPANSION APPROACH

Studying the Green’s function as a function of the complex variable s, one can in-
vert the Laplace transform and obtain a spectral representation of the transition den-
sity for one-dimensional diffusions originally due to McKean (1956) (see also Ito
and McKean 1974; Section 4.1, Wong 1964; Karlin and Taylor 1981). Indeed, con-
sidered as a linear operator in the Hilbert space of functions square-integrable with
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the speed density m(x), the expectation operator Pt is self-adjoint. Namely, define
the inner product ( f , g) := ∫ r

�
f (x)g(x)m(x) dx and let L2((�, r ),m) be the Hilbert

space of functions on (�, r ) square-integrable with the speed density, that is, with
‖ f ‖ < ∞, where ‖ f ‖2 = ( f , f ). Then the semigroup {Pt, t ≥ 0} of expectation oper-
ators indexed by time is self-adjoint in L2((�, r ),m), that is, (Pt f , g) = ( f ,Ptg) for every
f , g ∈ L2((�, r ),m) and t ≥ 0. This follows from the symmetry property of the transition
density, p(t; x, y)m(x) = p(t; y, x)m(y) (note that this symmetry property is apparent
from the structure of the Green’s function [6.3]). The infinitesimal generator G of a self-
adjoint semigroup, as well as the resolvent operators Rs , are also self-adjoint, and we can
appeal to the Spectral Theorem for self-adjoint operators in Hilbert space to obtain their
spectral representations. One-dimensional diffusions are examples of symmetric Markov
processes with symmetric transition semigroups and self-adjoint infinitesimal generators
(the standard reference is Fukushima, Oshima, and Takeda 1994).

In the important special case when the spectrum of G in L2((�, r ), m) is purely dis-
crete, the spectral representation has the following form. Let {λn}∞n=1, 0 ≤ λ1 < λ2 <

, . . . , limn↑∞ λn = ∞, be the eigenvalues of −G and let {ϕn}∞n=1 be the corresponding
eigenfunctions normalized so that ‖ϕn‖2 = 1. That is, (λn, ϕn) solve the Sturm-Liouville
eigenvalue-eigenfunction problem for the (negative of the) differential operator in (6.4):
−Gϕn = λnϕn (Dirichlet boundary condition is imposed at an endpoint if it is a killing
boundary). Then the spectral representations for the transition density p(t; x, y) and
the expectation operator Pt f (x) for f ∈ L2((�, r ),m) take the form of eigenfunction ex-
pansions (for t > 0 the eigenfunction expansion (7.1) converges uniformly on compact
squares in (�, r ) × (�, r )):

p(t; x, y) = m(y)
∞∑

n=1

e−λn tϕn(x)ϕn(y),(7.1)

Pt f (x) = Ex[1{ζ>t} f (Xt)] =
∞∑

n=1

cne−λn tϕn(x)(7.2)

with the expansion coefficients cn = ( f , ϕn) satisfying the Parseval equality ‖ f ‖2 =∑∞
n=1 c2

n < ∞. The eigenfunctions {ϕn(x)}∞n=1 form a complete orthonormal basis in the
Hilbert space L2((�, r ),m), that is, (ϕn, ϕn) = 1 and (ϕn, ϕm) = 0 for n 
= m. They are also
eigenfunctions of the expectation operator, Ptϕn(x) = e−λn tϕn(x), with eigenvalues e−λn t,
and of the resolvent operator, Rsϕn(x) = ϕn(x)/(s + λn), with eigenvalues 1/(s + λn).

More generally, the spectrum of the infinitesimal generator G in L2((�, r ), m) may be
continuous, in which case the sums in (7.1)–(7.2) are replaced with the integrals. We do
not reproduce general results on spectral expansions with continuous spectrum here and
instead refer the reader to the literature. For further details on the spectral representation
for one-dimensional diffusions and their applications in asset pricing we refer the reader
to Davydov and Linetsky (2003), Lewis (1998, 2000), and Linetsky (2004a,b,c, 2007). We
also refer the reader to Amrein, Hinz, and Pearson (2005) for a detailed mathematical
treatment of the Sturm–Liouville theory and numerous references.

A key feature of the spectral representation is that it separates the temporal and spatial
variables. Moreover, time enters the expression (7.2) only through the exponentials e−λn t,
thus setting the stage for time changes. We now turn to computing expectations of the
form (5.4). Let f ∈ L2((�, r ),m). Substituting the eigenfunction expansion (7.2) into
(5.4), we have
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E[1{ζ>Tt} f (XTt )] =
∞∑

n=1

cnE[e−λn Tt ]ϕn(x) =
∞∑

n=1

cnL(t, λn)ϕn(x),(7.3)

where L(t, λ) is the Laplace transform of the time change. In particular, for the eigen-
functions we have

Ex[1{ζ>Tt}ϕn(XTt )] = L(t, λn)ϕn(x).(7.4)

Due to the fact that time enters the spectral expansion only through the exponen-
tials e−λns , integrating this exponential against the distribution of the time change
πt(ds), the integral in s in (5.4) reduces to the Laplace transform of the time change,∫

[0,∞) e−λnsπt(ds) = L(t, λn). Thus, in one shot, we both compute the integral in s in (5.4)
and get rid of the necessity to invert the Laplace transform to recover the distribution
of the time change. In effect, the spectral expansion approach reduces the total required
number of integrations by two. In general, the spectral expansion approach is tailor-made
for time changes due to the exponential dependence on time (see also Chen and Song
2005, 2007; Linetsky 2007, for related results).

REMARK 7.1. We stress that the spectral expansion (7.2) is only valid for functions f
that are square-integrable with the speed density m. For those functions that are not in
L2((�, r ),m) but satisfy the integrability conditions (6.7) one needs to apply the Cauchy
Residue Theorem directly to the expression (6.9) because the resolvent Rs f (x) may have
singularities that do not coincide with the singularities of the Green’s function Gs(x, y),
and the evaluation of (6.9) has to be done case by case for each non-square-integrable f .

REMARK 7.2. If the process X is a Lévy process (e.g., Brownian motion with drift),
then the result of the spectral method can be shown to be equivalent to the Fourier
transform method based on the characteristic function. The Fourier method is more
straightforward in this case. However, the spectral method is much more general, as it is
applicable to any symmetric Markov process (and to any one-dimensional diffusion in
particular).

8. TIME CHANGING THE JDCEV PROCESS

8.1. The JDCEV Process

Carr and Linetsky (2006) recently proposed the following extension of the classical
CEV model of Cox (1975). Recall that, to be consistent with the leverage effect and
the implied volatility skew, the instantaneous volatility in the CEV model is specified
as a power function (see Cox 1975; Schroder 1989; Davydov and Linetsky 2001, 2003;
Linetsky 2004b, for background on the CEV process)

σ (x) = axβ,(8.1)

where β < 0 is the volatility elasticity parameter and a > 0 is the volatility scale param-
eter. The limiting case with β = 0 corresponds to the constant volatility assumption in
the BSM model. To be consistent with the empirical evidence linking corporate bond
yields and CDS spreads to equity volatility, Carr and Linetsky (2006) propose to specify
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the default intensity as an affine function of the instantaneous variance of the underlying
stock price process

h(x) = b + c σ 2(x) = b + c a2x2β,(8.2)

where b ≥ 0 is a constant parameter governing the state-independent part of the intensity
and c ≥ 0 is a constant parameter governing the sensitivity of the intensity to σ 2. In Carr
and Linetsky (2006), a and b are taken to be deterministic functions of time. In this paper,
we assume that a and b are constant. The infinitesimal generator of this diffusion process
on (0, ∞) with killing at the rate (8.2) has the form

G f (x) = 1
2

a2x2β+2 d2 f
dx2

(x) + (μ + b + c a2x2β)x
d f
dx

(x) − (b + c a2x2β) f (x).(8.3)

This model specification introduces the possibility of a jump to default from a positive
value for the CEV process and is referred to as the JDCEV process. This model nests the
standard CEV model as a limiting case with vanishing default intensity b = c = 0. In
the standard CEV model default can only occur when the stock price hits zero through
diffusion. When c = 0, the intensity is independent of the stock price, and the model is
that of the CEV process killed at an independent exponential time with mean 1/b (the
first jump time of a Poisson process with constant intensity b). In this case default can
occur either through hitting zero by diffusion or through a jump to zero from a positive
stock price value. When b = 0, the intensity does not have a state-independent term and
is entirely governed by the stock price process. When b > 0 and c > 0 the intensity has
two parts—a state-independent part and a state-dependent part. When c > 0, default can
only occur through a jump from a positive value, because the default intensity increases
so fast as the stock falls that the jump to default will almost surely arrive prior to the
diffusion process hitting zero.

In this section, we use the general theory developed in the previous sections to construct
far-reaching extensions of the original Carr–Linetsky JDCEV model. By assuming that
the process X in (2.1) follows a JDCEV process and time changing it as described in
Section 3, we introduce jumps and stochastic volatility into the JDCEV model. To be
able to value contingent claims in time-changed JDCEV models, we need to be able to
compute expectations of the form (6.1) for the JDCEV process as described in Sections
6 and 7. The scale and speed densities of the JDCEV process are

m(x) = 2
a2

x2c−2−2βeAx−2β

, s(x) = x−2ce−Ax−2β

, where A := μ + b
a2|β| .(8.4)

The following theorem presents the fundamental solutions ψs(x) and φs(x) entering the
expression for the Green’s function (6.3) and their Wronskian ws (6.5) for the JDCEV
process. Without loss of generality we assume that μ + b ≥ 0.2 There are two distinct
cases: μ + b > 0 and μ + b = 0.

THEOREM 8.1.

(i) For a JDCEV diffusion process with the infinitesimal generator (8.3) with pa-
rameters β < 0, a > 0, b ≥ 0, c ≥ 0 and such that μ + b > 0, the increasing and

2For absolutely continuous and composite time changes, μ = 0 by Theorems 4.4 and 4.5, while b ≥ 0.
For Lévy subordinators, by Theorem 4.1 μ ∈ Iν can always be selected so that μ + b ≥ 0. Thus, we do not
consider the case μ + b < 0.
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decreasing fundamental solutions ψs(x) and φs(x) are

ψs(x) = x
1
2 +β−ce− 1

2 Ax−2β

Mκ(s), ν
2
(Ax−2β ),(8.5)

φs(x) = x
1
2 +β−ce− 1

2 Ax−2β

Wκ(s), ν
2
(Ax−2β ),(8.6)

where Mk,m(z) and Wk,m(z) are the first and second Whittaker functions with
indexes

ν = 1 + 2c
2|β| , κ(s) = ν − 1

2
− s + ξ

ω
, where ω = 2|β|(μ + b), ξ = 2c(μ + b) + b,

(8.7)

and the constant A is defined in equation (8.4). The Wronskian ws defined by
equation (6.5) reads

ws = 2(μ + b)�(1 + ν)
a2�(ν/2 + 1/2 − κ(s))

.(8.8)

(ii) For a JDCEV diffusion process with the infinitesimal generator (8.3) with pa-
rameters β < 0, a > 0, b ≥ 0, c ≥ 0 and such that μ + b = 0, the increasing and
decreasing fundamental solutions ψs(x) and φs(x) are

ψs(x) = x
1
2 −c Iν

(
x−β
√

2(s + b)
a|β|

)
, φs(x) = x

1
2 −c Kν

(
x−β
√

2(s + b)
a|β|

)
,

(8.9)

where Iν(z) and Kν(z) are the modified Bessel functions with index ν given in
equation (8.7). The Wronskian ws defined by equation (6.5) reads

ws = |β|.(8.10)

Proof. The proof is by reduction of the Sturm–Liouville equation (6.4) for the JDCEV
operator (8.3) to the Whittaker equation when μ + b > 0 and to the Bessel equation when
μ + b = 0. See Appendix A. �

Theorem 8.1 generalizes Proposition 5 in Davydov and Linetsky (2001) that gives the
fundamental solutions for the standard CEV model. Their results are a special case of our
Theorem 8.1 for vanishing default intensity with b = c = 0. The Green’s function is given
by equation (6.3). Inverting the Laplace transform leads to the spectral representation of
the transition density (7.1).

THEOREM 8.2.

(i) When μ + b > 0, the spectrum of the negative of the infinitesimal generator (8.3)
is purely discrete with the eigenvalues and eigenfunctions

λn = ωn + ξ, ϕn(x) = A
ν
2

√
(n − 1)!(μ + b)

�(ν + n)
xe−Ax−2β

L(ν)
n−1(Ax−2β ), n = 1, 2, . . . ,

(8.11)
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where L(ν)
n (x) are the generalized Laguerre polynomials and ξ and ω are defined in

(8.7). The spectral representation (eigenfunction expansion) of the JDCEV tran-
sition density is given by equation (7.1) with these eigenvalues and eigenfunctions
and the speed density (8.4).

(ii) When μ + b = 0, the spectrum of the infinitesimal generator (8.3) is purely abso-
lutely continuous and the spectral representation for the transition density reads

p(t; x, y) = 1
2|β|m(y)

∫ ∞

0
e−(λ+b)t(xy)1/2−c Jν

(
x−β

√
2λ

a|β|

)
Jν

(
y−β

√
2λ

a|β|

)
dλ,

(8.12)

where Jν(x) is the Bessel function of the first kind with index ν given in (8.7).

Proof. The proof is based on applying the Cauchy Residue Theorem to calculate the
Bromwich Laplace inversion integral. See Appendix A. �

Theorem 8.2 generalizes Proposition 8(i) in Davydov and Linetsky (2003) that gives the
eigenvalues and eigenfunctions for the standard CEV model. Their results are a special
case of our Theorem 8.2 for vanishing default intensity with b = c = 0.

Carr and Linetsky (2006) present closed-form solutions for the survival probability
and call and put options in the JDCEV model (Proposition 5.5, pp. 319–320). However,
those expressions are not suitable for time changes because they depend on time in a
complicated fashion. Here, based on the theory in Sections 6 and 7 and Theorems 8.1
and 8.2, we obtain alternative closed-form expressions for the survival probability and
call and put options in the JDCEV model with time entering only through exponentials.
We first present the result for the survival probability.

THEOREM 8.3.

(i) For a JDCEV diffusion process with the infinitesimal generator (8.3) with pa-
rameters β < 0, a > 0, b ≥ 0, c ≥ 0, μ + b > 0 and started at x > 0, the survival
probability Q(ζ > t) is given by

Q(ζ > t) =
∞∑

n=0

e−(b+ωn)t
�

(
1 + c

|β|
)(

1
2|β|

)
n

�(ν + 1)n!
A

1
2|β| xe−Ax−2β

1 F1

(
1 − n + c

|β| ; ν + 1; Ax−2β

)
,

(8.13)

where 1 F1(a; b; x) is the confluent hypergeometric function; (a)n := �(a +
n)/�(a) = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol; and the constants
A, ν, and ω are as defined in Theorem 8.1.

(ii) For μ + b = 0, the JDCEV survival probability Q(ζ > t) is given by

Q(ζ > t) = x1/2−c(
√

2a|β|) 2c−1
2|β|

�

(
1 + c

|β|
)

�

(
1

2|β|
)

×
∫ ∞

0
e−(b+λ)tλ

− 2c−1
4|β| −1 Jν

(
x−β

√
2λ

a|β|

)
dλ,

(8.14)

where Jν(x) is the Bessel Function of the first kind.
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Proof. The proof is based on first computing the resolvent (6.2) with f (x) = 1 and
then inverting the Laplace transform (6.8) analytically. Because constants are not square-
integrable on (0, ∞) with the speed density (8.4), we cannot use the spectral expansion
approach of Section 7 and instead follow the Laplace transform approach of Section 6.
See Appendix A. �

We now present the result for the put option. The put option price in our model
(2.1) is given by equations (5.7)–(5.9). In particular, to compute the price of the put
payoff conditional on no default before expiration, P0(x; K, t), we need to compute the
expectation E[(K − eρt Xs)+1{ζ>s}] = eρtE[(e−ρt K − Xs)+1{ζ>s}] for the JDCEV process
(8.3). The survival probability entering the put pricing formula is already computed in
Theorem 8.3. The pricing formula for the call option is obtained via the put-call parity.

THEOREM 8.4.

(i) For a JDCEV diffusion process with the infinitesimal generator (8.3) with pa-
rameters β < 0, a > 0, b ≥ 0, c ≥ 0 and such that μ + b > 0, the expectation
E[(k − Xt)+1{ζ>t}] is given by the eigenfunction expansion (7.2) with the eigenval-
ues λn and eigenfunctions ϕn(x) given in Theorem 8.2 and expansion coefficients

cn = Aν/2+1k2c+1−2β
√

�(ν + n)

�(ν + 1)
√

(μ + b)(n − 1)!

×

⎧⎪⎪⎨
⎪⎪⎩

|β|
c + |β| 2 F2

⎛
⎜⎜⎝

1 − n,
c

|β| + 1

ν + 1,
c

|β| + 2
; Ak−2β

⎞
⎟⎟⎠

− �(ν + 1)(n − 1)!
�(ν + n + 1)

L(ν+1)
n−1

(
Ak−2β

)
⎫⎪⎪⎬
⎪⎪⎭ ,

(8.15)

where 2 F2 is the generalized hypergeometric function.
(ii) For μ + b = 0, the expectation has a spectral expansion with absolutely continuous

spectrum

E
[
(k − Xt)+1{ζ>t}

] =
∫ ∞

0
e−(λ+b)tc(λ)x1/2−c Jν

(
x−β

√
2λ

a|β|

)
dλ,(8.16)

with the expansion coefficients

c(λ) = λν/2k2c+1−2β

2ν/2+1�(ν + 1)(c + |β|)|β|ν+1aν+2 1 F2

⎛
⎜⎜⎝

c
|β| + 1,

ν + 1,
c

|β| + 2
; − k−2βλ

2a2|β|2

⎞
⎟⎟⎠

− kc+1/2−β

√
2λ|β|a Jν+1

(
k−β

√
2λ

a|β|

)
,

(8.17)

where 1 F2 is the generalized hypergeometric function.
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Proof. The put payoff f (x) = (k − x)+ is in the Hilbert space L2((0, ∞),m) of func-
tions square-integrable with the speed density (8.4) and, hence, the expectation has a
spectral expansion. The proof follows by applying the spectral expansion approach. See
Appendix A. �

REMARK 8.1. When b = c = 0, all results in this section reduce to the corresponding
results for the standard CEV model (without jump to default) in Davydov and Linetsky
(2001, 2003). In the standard CEV model default can only occur through the stock price
hitting zero via diffusion. In this case, the survival probability in Theorem 8.3 is equal to
the probability of the CEV diffusion not hitting zero by time t.

REMARK 8.2. The series representation (8.14) for the survival probability is equivalent
to the expression (5.14) in Carr and Linetsky (2006). To prove this one needs to apply the
multiplication identity for the Whittaker functions given in equation (B.10) in Appendix
B. Due to this identity, the series of hypergeometric functions in (8.13) collapses to the
closed-form expression (5.14) in Carr and Linetsky (2006). For μ + b = 0, one needs
to use the integral (B.13) in Appendix B. Similarly, the eigenfunction expansion for
the put in Theorem 8.4 is equivalent to the closed-form expression (5.18) in Carr and
Linetsky (2006). To prove this, one needs to apply the Hille–Hardy formula for Laguerre
polynomials (Erdelyi 1953, p. 189; valid for all |t| < 1, ν > −1, a, b > 0)

∞∑
n=0

tnn!
� (n + ν + 1)

Lν
n (a) Lν

n (b) = (abt)−ν/2

1 − t
exp

{
− (a + b) t

1 − t

}
Iν

(
2
√

abt
1 − t

)
.

(8.18)

The closed-form formulas in Carr and Linetsky (2006) are more suitable for pric-
ing under the original JDCEV model without time changes than the series expansions
developed in this paper, as they are easier to compute. However, they are generally
not suitable for time-changed models because they have complicated functional depen-
dence on time. In contrast, the expansions in this paper explicitly depend on time only
through the exponentials and are thus ideally suited for time changes with known Laplace
transforms.

8.2. Introducing Jumps and Stochastic Volatility into the JDCEV Process via Time
Changes: Numerical Examples

In this section, we illustrate our approach with numerical examples. We take the
background diffusion process X to be a JDCEV process with μ = 0 and time change
it with the composite time-change process Tt = T1

T2
t
, where T1 is the Inverse Gaussian

(IG) subordinator with the Lévy measure ν(ds) = Cs−3/2e−ηs and the Laplace exponent
φ(s) = γ s + 2C

√
π (

√
s + η − √

η) and T2 is the time integral of the activity rate follow-
ing the CIR process. That is, the time-change process is an IG process with stochastic
volatility in the terminology of Carr et al. (2003). To satisfy the martingale condition, ac-
cording to Theorem 4.5 we set μ = 0 and ρ = r − q. The time-changed process Yt := XTt

is a martingale and the process (Yt, Vt) is a two-dimensional Markov process with the
infinitesimal generator
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G f (x, v) = 1
2
γ va2x2β+2 ∂2 f

∂x2
(x, v) + γ v(b + c a2x2β )x

∂ f
∂x

(x, v) − k (x, v) f (x, v)

+
∫

(0,∞)
( f (y, v) − f (x, v))vπ (x, y) dy + σ 2

V

2
v
∂2 f
∂v2

(x, v) + κ(θ − v)
∂ f
∂v

(x, v),

(8.19)

where the killing rate k(x) and the state-dependent Lévy density π (x, y) are

k (x, v) = γ v(b + c a2x2β )

+ vC
∫

(0,∞)

⎛
⎜⎜⎝1 −

�

(
c

|β| + 1
)

(τ (s))
1

2|β| e−τ (s)−b s

� (ν + 1) 1 F1

⎛
⎝

c
|β| + 1

ν + 1
; τ (s)

⎞
⎠
⎞
⎟⎟⎠

× s−3/2e−η s ds,(8.20)

where

τ (s) := ω x−2β

2|β|2a2 (1 − e−ω s)
(8.21)

and

π (x, y) = 2|β|AC
( y

x

)c− 1
2

y−(2β+1)

×
∫

(0,∞)

s−3/2e

(
ων

2
− ξ − η

)
s

eωs − 1
exp

{
−A

(
x−2βeωs + y−2β

eωs − 1

)}

×Iν

(
A(xy)−β

sinh (ωs/2)

)
ds.

(8.22)

The stock price process in this model is a pure jump process with a jump to default that
sends the process to zero, an absorbing state.

REMARK 8.3. In equations (8.20) and (8.22) it is convenient to use the closed form
expressions for the survival probability and the transition density of the JDCEV process
obtained in Carr and Linetsky (2006). The spectral expansion of the JDCEV transition
probability of the form (7.1) with the eigenfunctions and eigenvalues given in Theorem
8.2 collapses to the closed-form expression in terms of the Bessel function on applying
the Hille–Hardy formula (8.18).

The parameter values in our numerical example are listed in Table 8.1. The JDCEV
process parameter a entering into the local volatility function σ (x) = a xβ is selected so
that the local volatility is equal to 20% when the stock price is equal to fifty dollars,
that is, a = 0.2 × 50−β = 10 for the case of β = −1 considered here. In this example,
we select γ = 0, so the time-changed process is a pure jump process with no diffusion
component (recall that the diffusion component vanishes for time changes with γ = 0).
For this particular choice of parameters of the IG time change and the CIR activity rate
process the time change has the mean and variance E[T1] = 1 and Var[T1] = 1/16 at t = 1.
If we replace the background JDCEV process with Brownian motion with drift, then
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TABLE 8.1
Parameter Values

JDCEV S 50 CIR V 1
a 10 θ 1
β −1 σV 1
c 0.5 κ 4

b 0.01 IG γ 0
r 0.05 η 8
q 0 C 2

√
2/π

Implied Volatility 

13%

25%

37%

49%

61%

30 35 40 45 50 55 60 65

Strike

Im
p
lie

d
 V

o
la

til
ity

1/4

1/2

1

2

3

FIGURE 8.1. Implied volatility smile/skew curves as functions of the strike price for
times to maturity from 0.25 to 3 years. Current stock price level is 50.

the time-changed process is a Normal Inverse Gaussian (NIG) process with stochastic
volatility following the CIR process as in Carr et al. (2003). Our model extends Carr
et al. (2003) in two important respects. By taking the background process to be a diffusion
process with state-dependent volatility and drift, the resulting Lévy density after time
change is state dependent, in contrast to the space homogeneous Lévy jumps. Second,
the time-changed process has a state-dependent killing rate (default intensity) in contrast
to the absence of default in Carr et al. (2003). By extending the framework of Carr
et al. (2003) to state-dependent jumps and default intensity, we gain the flexibility of
being able to calibrate the model jointly to options prices and CDS spreads. Moreover, the
state dependence of jumps allows for more flexibility in fitting implied volatility surfaces
observed in the equity options market than is available under space homogeneous Lévy
models.

Figure 8.1 plots the implied volatility smile/skew curves of options priced under
this model for several different maturities. The implied volatility values are shown in
Table 8.2. We compute options prices in this model using Theorem 8.4 and then compute
implied volatilities of these options by inverting the Black–Scholes formula. We observe
that in this model shorter maturity skews are steeper and flatten out as maturity increases,
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TABLE 8.2
Implied Volatilities (in %) for Different Strike Prices and Times to Maturity (Years)

Time/strike 30 35 40 45 50 55 60 65

1/4 62.04 47.94 35.52 26.19 21.41 20.09 20.28 20.88
1/2 51.94 41.47 32.72 26.39 22.64 20.72 19.84 19.46
1 45.74 38.24 32.14 27.53 24.30 22.12 20.65 19.64
2 43.03 37.68 33.23 29.61 26.72 24.45 22.66 21.25
3 42.80 38.34 34.55 31.34 28.64 26.39 24.52 22.96

Note: Current stock price level is 50.

consistent with empirical observations in options markets. We also observe that the short
maturity skew exhibits a true volatility smile with the increase in implied volatilities both
to the right and to the left of the at-the-money strike. This behavior cannot be captured
in the pure diffusion JDCEV model. In JDCEV, the implied volatility skew results from
the leverage effect (the local volatility is a decreasing function of stock price) and the
possibility of default (the default intensity is a decreasing function of stock price). The
resulting implied volatility skew is a decreasing function of strike. After the time change
with jumps, the resulting jump process has both positive and negative jumps. This results
in the implied volatility smile pattern with volatility “smiling” on both sides of the at-the-
money level. Table 8.3 presents sample put prices for several strike and maturity combi-
nations. The prices are computed to the accuracy of 10−4 (all of the decimals presented
in the table are correct) by computing the corresponding eigenfunction expansions. All
computations in this paper were performed in Mathematica. All the special functions ap-
pearing in the JDCEV model solution are available as built-in functions in Mathematica.

Figure 8.2 plots the default probability and the credit spread (assuming zero recovery
in default) as functions of time to maturity for several different levels of the stock price.
As the stock price decreases, the credit spreads of all maturities increase, but the shorter
and intermediate maturities increase the fastest. In particular intermediate maturities of
between two and seven years increase the fastest. This results in a pronounced hump in
the term structure of credit spreads around these intermediate maturities. As the stock
price falls, the hump becomes more pronounced and shifts toward shorter maturities.
This increase in credit spreads with the decrease in the stock price is accounted for both
the leverage effect through the increase in the local volatility of the original diffusion
and, hence, more jump volatility for the jump process after the time change, as well as
the increase in the default intensity of both the original diffusion process and the jump
process after the time change. Figure 8.3 plots the default intensity (killing rate) in this
model after the time change as a function of the stock price given by equation (8.20).
The default intensity is a decreasing function of the stock price.

REMARK 8.4. We note the following interesting feature of our model. If we take the
standard Cox’s CEV diffusion process (without the jump to default introduced in Carr
and Linetsky 2006) to serve as the background Markov process and time change it with
a Lévy subordinator, the resulting process acquires a default intensity, even though the
original CEV process does not have any killing rate. Indeed, the default event in the CEV
process can only occur via hitting zero by diffusing down to the zero stock price. The
default time in the original CEV process is predictable with an announcing sequence of
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hitting times of stock price levels decreasing toward zero. However, after a pure jump time
change, the default time in the time-changed jump process becomes totally inaccessible
with the intensity given by the integral of the default probability of the original CEV
process with the Lévy measure of the subordinator in equation (8.20) (in this case b = 0
because the standard CEV process does not have any default intensity). This default
intensity is plotted in Figure 8.3 as a dashed line. Intuitively, one can understand this as
follows. Suppose one observes a sample path of a diffusion process that hits zero. Because
the process is continuous, one observes the announcing sequence of the default event.
When the diffusion is subjected to a pure jump time change, one can no longer observe
the announcing sequence, as the hitting times of the intermediate stock price levels are
left unobservable when the time jumps through them. As a result, the default event in the
time-changed process looks like an unpredictable jump to default from a positive value
governed by the default intensity induced by the time change.

9. CONCLUSION

This paper develops a novel class of hybrid credit-equity models with state-dependent
jumps, local-stochastic volatility, and default intensity based on time changes of Markov
processes with killing. We model the defaultable stock price process as a time-changed
Markov diffusion process with state-dependent local volatility and killing rate (default
intensity). When the time change is a Lévy subordinator, the stock price process exhibits
jumps with state-dependent Lévy measure. When the time change is a time integral
of an activity rate process, the stock price process has local-stochastic volatility and
default intensity. When the time-change process is a Lévy subordinator in turn time
changed with a time integral of an activity rate process, the stock price process has state-
dependent jumps, local-stochastic volatility, and default intensity. This framework offers
far-reaching extensions of the framework of time-changed Lévy processes with stochastic
volatility of Carr et al. (2003). By time-changing Markov processes we relax the space
homogeneity assumption inherent in Lévy models. Moreover, the mechanism of killing
a Markov process at a state-dependent rate is well suited to modeling the default event.

This paper develops two analytical approaches to the pricing of credit and equity
derivatives in this class of models. The two approaches are based on the Laplace transform
inversion and the spectral expansion approach, respectively. If the resolvent (the Laplace
transform of the transition semigroup) of the diffusion process and the Laplace transform
of the time change are both available in closed form, the expectation operator of the time-
changed process is expressed in closed form as a single integral in the complex plane.
If the payoff is square-integrable, the complex integral is further reduced to a spectral
expansion. To illustrate our general framework, we time change the JDCEV model of
Carr and Linetsky (2006) and obtain a rich class of analytically tractable models with
jumps, local-stochastic volatility, and default intensity. These models can be used to
jointly price equity and credit derivatives. In particular, we compute implied volatility
surfaces, default probabilities, and credit spreads under the JDCEV process subject to
the time change that is an inverse Gaussian subordinator that is itself subject to a time
change with a CIR activity rate process. This process is a pure jump process with state-
dependent jumps and killing (jump to default) in contrast to the pure diffusion JDCEV
model of Carr and Linetsky (2006).

The contribution of this paper is in the development of a flexible modeling framework,
as well as in the development of the analytical methods to solve this class of models.



564 R. MENDOZA-ARRIAGA, P. CARR, AND V. LINETSKY

A wide range of models can be constructed within this model architecture by pairing
background diffusion processes with different time changes. We hope that this paper
will stimulate empirical research into the joint credit-equity dynamics and the interplay
between credit and equity derivatives markets.

APPENDIX A: PROOFS

A.1. Proof of Theorem 4.1

Because by Theorem 4.3, the process e−ρt St = 1{t<τd } XTt is a time-homogeneous
Markov process, it is enough to prove that

E[1{t<τd } XTt ] = e(r−q−ρ)tx for all t > 0,(A.1)

where S0 = X0 = x > 0. Let F X
t = σ {Xs, s ≤ t} and FT

t = σ {Ts, s ≤ t} be the filtrations
generated by the background diffusion process X and the time change T . Observ-
ing that 1{t<τd } = 1{Tt<ζ } = 1{Tt<H0}1{Tt<ζ } and E[1{t<H0}1{t<ζ }|F X

t ] = 1{t<H0}e
− ∫ t

0 h(Xu ) du,

we can write

E[1{t<τd } XTt ] = E
[
1{Tt<H0}e

− ∫ Tt
0 h(Xu ) du XTt

]
= xE

[
1{Tt<H0}e

− ∫ Tt
0 h(Xu ) due

∫ Tt
0 [μ+h(Xu )]du+∫ Tt

0 σ (Xu ) dBu− 1
2

∫ Tt
0 σ 2(Xu ) du]

= xE
[
eμTt 1{Tt<H0}e

∫ Tt
0 σ (Xu ) dBu− 1

2

∫ Tt
0 σ 2(Xu ) du],

where in the second equality we used the SDE (2.2). Because the volatility σ (x) re-
mains bounded as x → ∞, the process 1{t<H0}e

∫ t
0 σ (Xu ) dBu− 1

2

∫ t
0 σ 2(Xu ) du stopped at H0 is an

exponential martingale starting at one (e.g., Delbaen and Shirakawa 2002).
Now suppose μ ∈ Iν . Then, conditioning on the time change, we have

xE[eμTt E]1{Tt<H0}e
∫ Tt

0 σ (Xu ) dBu− 1
2

∫ Tt
0 σ 2(Xu ) du |FT

t ]] = xE[eμTt ] = xe−tφ(−μ).

Comparing the right-hand side with that of equation (A.1), we conclude that equation
(A.1) holds if and only if ρ = r − q + φ(−μ). If μ /∈ Iν , then E[eμTt ] is infinite and (A.1)
cannot be satisfied and, hence, the process (2.1) does not satisfy the martingale condition
(2.5)–(2.6). �

A.2. Proof of Theorem 4.2

Define f (μ) := −φ(−μ). If γ > 0 or γ = 0 and the subordinator is of infinite activity
(
∫

(0,∞) ν(ds) = ∞), then f (μ) tends to −∞ as μ → −∞. If γ = 0 and the subordinator is
of finite activity (

∫
(0,∞) ν(ds) = α < ∞), then f (μ) tends to −α. If μ̄ is not included in Iν ,

then f (μ) tends to +∞ as μ → μ̄. If μ̄ is included in Iν , then f (μ̄) = γ μ̄ + ∫(0,∞)(e
μ̄s −

1)ν(ds) < ∞. We thus have the following alternatives for the existence of solutions of the
equation f (μ) = r − q. If r < q, then there is a unique solution μ0 for all subordinators
except for subordinators with zero drift and finite activity Lévy measure with Poisson
intensity α such that −α > r − q. If r > q, then there is a unique solution if either μ̄ is
not included in Iν or μ̄ is included in Iν and r − q ≤ f (μ̄). Otherwise, if μ̄ is included
in Iν and r − q > f (μ̄), Equation (4.3) has no solution in Iν . The statement for the case
r = q is immediate from the fact that φ(0) = 0. �
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A.3. Proof of Theorem 4.3

The idea of time changing a Markov process with a Lévy subordinator is originally due
to Bochner (1949, 1955). The following fundamental theorem due to Phillips (1952) (see
Sato 1999, Theorem 32.1, p. 212) characterizes the time-changed transition semigroup
and its infinitesimal generator.

THEOREM A.1 (Phillip’s Theorem; Sato 1999, p. 212). Let {Tt, t ≥ 0} be a subordinator
with Lévy measure ν, drift γ , Laplace exponent φ(λ), and transition kernel πt(ds). Let
{Pt, t ≥ 0} be a strongly continuous contraction semigroup of linear operators in the Banach
space B with infinitesimal generator G. Define (the superscript φ refers to the subordinated
quantities with the subordinator with the Laplace exponent φ)

Pφ
t f =

∫
[0,∞)

(Ps f )πt(ds), f ∈ B.(A.2)

Then {Pφ
t , t ≥ 0} is a strongly continuous contraction semigroup of linear operators on B.

Denote its infinitesimal generator by Gφ . Then Dom(G) ⊂ Dom(Gφ), Dom(G) is a core of
Gφ , and

Gφ f = γG f +
∫

(0,∞)
(Ps f − f )ν(ds), f ∈ Dom(G).(A.3)

In our case, the Banach space B is C0(0, ∞) (the space of continuous bounded func-
tions on (0, ∞) vanishing at infinity) and the semigroup {Pt, t ≥ 0} is the Feller transition
semigroup of the diffusion process X with lifetime ζ . Given our assumptions, the one-
dimensional diffusion X always has a transition density p(t; x, y) with respect to the
Lebesgue measure, so that Pt f (x) = ∫(0,∞) f (y)p(t; s, y) dy, and, moreover, p(t; x, y) is
continuous in all its variables. Then from equation (A.2) we obtain the density (4.11)
of the subordinate process Xφ = XTt . From equation (A.3) we can identify the infinites-
imal generator of Xφ in equations (4.5)–(4.6) (see the online companion to this paper
for the explicit calculation; for mathematical references on the Lévy characteristics of
subordinate Markov processes, see Okura 2002; Theorem 2.1; Chen and Song 2005;
Section 2). �

A.4. Proof of Theorem 4.4

The proof is similar to the proof of Theorem 4.1. Because the process (e−ρt St, Zt) =
(1{t<τd } XTt , Zt) is an (n + 1)-dimensional time-homogeneous Markov process, it is enough
to prove that equation (A.1) holds. Suppose μ ∈ R is such that E[eμTt ] = L(t, −μ) < ∞.

Proceeding as in the proof of Theorem 4.1 and conditioning on the time change, the
left-hand side of equation (A.1) reduces to

xE
[
eμTt E

[
1{Tt<H0}e

∫ Tt
0 σ (Xu ) dBu− 1

2

∫ Tt
0 σ 2(Xu ) du |FT

t

]] = xE[eμTt ] = xL(t, −μ).

We conclude that equation (A.1) holds if and only if L(t, −μ) = e(r−q−ρ)t. However,
for μ 
= 0, the Laplace transform L(t, −μ) is an exponential function of time if and
only if the time change process has stationary and independent increments, that is,
is a Lévy subordinator. The only absolutely continuous time change that is a Lévy
subordinator is a trivial time change with constant activity rate Vt = γ so that Tt = γ t.
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Hence we conclude thatL(t, −μ) = e(r−q−ρ)t cannot hold for any μ 
= 0 for any nontrivial
absolutely continuous time change. For μ = 0, we have thatL(t, 0) = 1, and e(r−q−ρ)t = 1
is satisfied if and only if ρ = r − q. �

A.5. Proof of Theorem 4.5

The proof is completely analogous to that of Theorem 4.4. Suppose that μ ∈ Iν and
such that E[eμTt ] = L(t, φ(−μ)) < ∞. Then arguing as in the proof of Theorem 4.4 we
arrive at the following necessary and sufficient condition for the process S to satisfy
the martingale condition (2.5)–(2.6): L(t, φ(−μ)) = e(r−q−ρ)t. The only solution for a
composite time change (3.6) with T2 having a nonconstant activity rate process V is
μ = 0 and ρ = r − q. �

A.6. Proof of Theorem 8.1

(i) Consider the Sturm–Liouville equation (6.4) with the operator (8.3) with μ + b >

0. Substitute u(x) = x
1
2 −c+βe− A

2 x−2β

v(y) with y = Ax−2β , where A is defined in
(8.4). The Sturm–Liouville equation for the function u(x) reduces to the Whittaker
equation for the function v(y)

d2v
dy2

(y) +
(

−1
4

+ κ(s)
y

+ 1 − ν2

4y2

)
v(y) = 0,(A.4)

with ν, κ(s), ξ , and ω as defined in (8.7). The increasing and decreasing solutions
of the Whittaker equation are given by the Whittaker functions v1(y) = Mκ(s), ν

2
(y)

and v2(y) = Wκ(s), ν
2

(y), respectively. Their Wronskian is given by W (v1, v2) (y) :=
v1(y)v ′

2(y) − v ′
1(y)v2(y) = −�(1 + ν)/�

( 1+ν
2 − κ(s)

)
. Thus, the increasing and de-

creasing solutions of the original Sturm–Liouville equation are given by (8.5) and
(8.6), and the Wronskian ws with respect to the scale density is given by (8.8).

(ii) When μ + b = 0, the substitution u(x) = x
1
2 −cv(y) with y = x−β

a|β| reduces the
Sturm–Liouville equation (6.4) with the operator (8.3) to the modified Bessel equa-
tion of order ν (with ν as in (8.7))

y2 d2v
dy2

(y) + y
dv
dy

(y) − (ν2 + 2(s + b)y2)v(y) = 0.(A.5)

The increasing and decreasing solutions of the modified Bessel equation are
given by the modified Bessel functions v1(y) = Iν

(
y
√

2 (s + b)
)

and v2(y) =
Kν

(
y
√

2 (s + b)
)

, respectively. Their Wronskian is given by W (v1, v2) (y) = −1/y.

Thus, the increasing and decreasing solutions of the original Sturm–Liouville equa-
tion are given by (8.9), and the Wronskian ws with respect to the scale density is
given by (8.10). �

A.7. Proofs of Theorems 8.2, 8.3, and 8.4

Proofs of Theorems 8.2, 8.3, and 8.4 are included in the companion appendix available
from the authors upon request.
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