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ABSTRACT
Working in a single-factor Markovian setting, this article derives a new,
static spanning relation between a given option and a continuum
of shorter-term options written on the same asset. Compared to
dynamic delta hedge, which breaks down in the presence of large
random jumps, the static hedge works well under both continuous
and discontinuous price dynamics. Simulation exercises show that
under purely continuous price dynamics, discretized static hedges
with as few as three to five options perform similarly to the dynamic
delta hedge with the underlying futures and daily updating, but the
static hedges strongly outperform the daily delta hedge when the
underlying price process contains random jumps. A historical analysis
using over 13 years of data on S&P 500 index options further validates
the superior performance of the static hedging strategy in practical
situations. ( JEL: G12, G13, C52)

KEYWORDS: Static hedging, jumps, option pricing, Monte Carlo, S&P 500
index options, stochastic volatility

Over the past two decades, the derivatives market has expanded dramatically.
Accompanying this expansion is an increased urgency in understanding and
managing the risks associated with derivative securities. In an ideal setting under
which the price of the underlying security moves continuously (such as in a
diffusion with known instantaneous volatility) or with fixed and known size steps
(such as in a binomial tree), derivatives pricing theory provides a framework in
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which the risks inherent in a derivatives position can be eliminated via frequent
trading in only a small number of securities.

In reality, however, large and random price movements happen much more
often than typically assumed in the above ideal setting. The past two decades
have repeatedly witnessed turmoil in the financial markets such as the 1987 stock
market crash, the 1997 Asian crisis, the 1998 Russian default and the ensuing hedge
fund crisis, the tragic event of September 11, 2001, and the most recent financial
market meltdown. Juxtaposed between these large crises are many more mini-
crises, during which prices move sufficiently fast so as to trigger circuit breakers
and trading halts. When these crises occur, a dynamic hedging strategy based on
small or fixed size movements often breaks down. Worse yet, strategies that involve
dynamic hedging in the underlying asset tend to fail precisely when liquidity dries
up or when the market experiences large moves. Unfortunately, it is during these
financial crises such as liquidity gaps or market crashes that investors need effective
hedging the most dearly.

Perhaps in response to the known deficiencies of dynamic hedging, Breeden
and Litzenberger (1978) (henceforth BL) pioneered an alternative approach, which
is foreshadowed in the work of Ross (1976) and elaborated on by Green and Jarrow
(1987) and Nachman (1988). These authors show that a path-independent payoff
can be hedged using a portfolio of standard options maturing with the claim. This
strategy is completely robust to model mis-specification and is effective even in the
presence of jumps of random size. Its only real drawback is that the class of claims
that this strategy can hedge is fairly narrow. First, the BL hedge of a standard option
reduces to a tautology. Second, the hedge can neither deal with standard options of
different maturities, nor can it deal with path-dependent options. Therefore, the BL
strategy is completely robust but has limited range. By contrast, dynamic hedging
works for a wide range of claims, but is not robust.

In this article, we propose a new approach for hedging derivative securities.
This approach lies between dynamic hedging and the BL static hedge in terms of
both range and robustness. Relative to BL, we place mild structure on the class
of allowed stochastic processes of the underlying asset in order to expand the
class of claims that can be robustly hedged. In particular, we work in a one-factor
Markovian setting, where the market price of a security is allowed not only to
move diffusively, but also to jump randomly to any nonnegative value. In this
setting, we can robustly hedge both vanilla options and more exotic, potentially
path-dependent options, such as discretely monitored Asian and barrier options,
Bermudan options, passport options, cliquets, ratchets, and many other structured
notes. In this article, we focus on a simple spanning relation between the value of
a given European option and the value of a continuum of shorter-term European
options. The required position in each of the shorter-term options is proportional to
the gamma (second price derivative) that the target option will have at the expiry
of the short-term option if the security price at that time is at the strike of this
short-term option. As this future gamma does not vary with the passage of time
or the change in the underlying price, the weights in the portfolio of shorter-term
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options are static over the life of these options. Given this static spanning result,
no arbitrage implies that the target option and the replicating portfolio have the
same value for all times until the shorter term options expire. As a result, one
can effectively hedge a long-term option even in the presence of large random
jumps in the underlying security price movement. Furthermore, given the static
nature of the strategy, portfolio rebalancing is not necessary until the shorter-term
options mature. Therefore, one does not need to worry about market shutdowns
and liquidity gaps in the intervening period. The strategy remains viable and can
become even more useful when the market is in stress.

As transaction costs and illiquidity render the formation of a portfolio with a
continuum of options physically impossible, we develop an approximation for the
static hedging strategy using only a finite number of options. This discretization
of the ideal trading strategy is analogous to the discretization of a continuous-
time dynamic trading strategy. To discretize the static hedge, we choose the strike
levels and the associated portfolio weights based on a Gauss–Hermite quadrature
method. We use Monte Carlo simulation to gauge the magnitude and distributional
characteristics of the hedging error introduced by the quadrature approximation.
We compare this hedging error to the hedging error from a delta-hedging strategy
based on daily rebalancing with the underlying futures. The simulation results
indicate that the two strategies have comparable hedging effectiveness when the
underlying price dynamics are continuous, but the performance of the delta
hedge deteriorates dramatically in the presence of random jumps. As a result, a
static strategy with merely three options can outperform delta hedging with daily
updating when the underlying security price can jump randomly.

To gauge the impact of model uncertainty and model misspecification, we
also perform the hedging exercise assuming that the hedger does not know the
true underlying price dynamics but simply computes the delta and the static
hedge portfolio weight using the Black and Scholes (1973) formula with the
observed option implied volatility on the target option as the volatility input. The
hedging performance shows no visible deterioration. Furthermore, we find that
increasing the rebalancing frequency in the delta-hedging strategy does not rescue
its performance as long as the underlying asset price can jump by a random amount.
By contrast, the static hedging performance can be improved further by increasing
the number of strikes used in the portfolio and by choosing maturities for the hedge
portfolio closer to the target option maturity. Taken together, we conclude that the
superior performance of static hedging over daily delta hedging in the jump model
simulation is not due to model misspecification, nor is it due to the approximation
error introduced via discrete rebalancing. Rather, this outperformance is due to the
fact that delta hedging is inherently incapable of dealing with jumps of random
size in the underlying security price movement. Our static spanning relation can
handle random jumps and our approximation of this spanning relation performs
equally well with and without jumps in the underlying security price process.

This article also examines the historical performance of the hedging strategies
in hedging S&P 500 index options over a 13-year period. The historical run shows
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that a static hedge using no more than five options outperforms daily delta hedging
with the underlying futures. The consistency of this result with our jump model
simulations lends empirical support for the existence of jumps of random size in
the movement of the S&P 500 index.

For clarity of exposition, this article focuses on hedging a standard European
option with a portfolio of shorter-term options; however, the underlying theoretical
framework extends readily to the hedging of more exotic, potentially path-
dependent options. We use a globally floored, locally capped, compounding cliquet
as an example to illustrate how this option contract with intricate path-dependence
can be hedged with a portfolio of European options. The hedging strategy is
semi-static in the sense that trades occur only at the discrete monitoring dates.

In related literature, the effective hedging of derivative securities has been
applied not only for risk management, but also for option valuation and model
verification (Bates, 2003). Bakshi, Cao, and Chen (1997), Bakshi and Kapadia (2003),
and Dumas, Fleming, and Whaley (1998) use hedging performance to test different
option pricing models. He et al. (2006) and Kennedy, Forsyth, and Vetzal (2009)
set up a dynamic programming problem in minimizing the hedging errors under
jump-diffusion frameworks and in the presence of transaction cost. Branger and
Mahayni (2006, 2011) propose robust dynamic hedging strategies in pure diffusion
models when the hedger knows only the range of the volatility levels but not
the exact volatility dynamics. Bakshi and Madan (2000) propose a general option-
valuation strategy based on effective spanning using basis characteristic securities.
Carr and Chou (1997) consider the static hedging of barrier options and Carr and
Madan (1998) propose a static spanning relation for a general payoff function by
a portfolio of bond, forward, European options maturing at the same maturity
with the payoff function. Starting with such a spanning relation, Takahashi and
Yamazaki (2009a,b) propose a static hedging relation for a target instrument that has
a known value function. Balder and Mahayni (2006) start with our spanning result
in this article and consider discretization strategies when the strikes of the hedging
options are pre-specified and the underlying price dynamics are unknown to the
hedger. In a recent working paper, Wu and Zhu (2011) propose a new, completely
model-free strategy of statically hedging options with nearby options, in which
the hedge portfolio is formed not based on the spanning of certain pre-specified
risks but rather based on the payoff characteristics of the target and hedging option
contracts.

The remainder of the article is organized as follows. Section 1 develops the
theoretical results underlying our static hedging strategy on a European option.
Section 2 uses Monte Carlo simulation to enact a wide variety of scenarios under
which the market not only moves diffusively, but also jumps randomly, with
or without stochastic volatility. Under each scenario, we analyze the hedging
performance of our static strategy and compare it with dynamic delta hedging
with the underlying futures. Section 3 applies both strategies to the S&P 500 index
options data. Section 4 shows how the theoretical framework can be applied to
hedge exotic options. Section 5 concludes.
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1 SPANNING OPTIONS WITH OPTIONS

Working in a continuous-time one-factor Markovian setting, we show how the risk
of a European option can be spanned by a continuum of shorter-term European
options. The weights in the portfolio are static as they are invariant to changes in
the underlying security price or the calendar time. We also illustrate how we can
use a quadrature rule to approximate the static hedge using a small number of
shorter-term options.

1.1 Assumptions and Notation

We assume frictionless markets and no arbitrage. To fix notation, let St denote the
spot price of an asset (say, a stock or stock index) at time t∈[0,T ], where T is some
arbitrarily distant horizon. For realism, we assume that the owners of this asset
enjoy limited liability, and hence St ≥0 at all times. For notational simplicity, we
further assume that the continuously compounded riskfree rate r and dividend
yield q are constant. No arbitrage implies that there exists a risk-neutral probability
measure Q defined on a probability space (�,F,Q) such that the instantaneous
expected rate of return on every asset equals the instantaneous riskfree rate r. We
also restrict our analysis to the class of models in which the risk-neutral evolution
of the stock price is Markov in the stock price S and the calendar time t. Our
class of models includes local volatility models, e.g., Dupire (1994), and models
based on Lévy processes, e.g., Barndorff-Nielsen (1997), Bates (1991), Carr et al.
(2002), Carr and Wu (2003), Eberlein, Keller, and Prause (1998), Madan and Seneta
(1990), Merton (1976), and Wu (2006), but does not include stochastic volatility
models such as Bates (1996, 2000), Bakshi, Cao, and Chen (1997), Carr and Wu
(2004, 2007), Heston (1993), Hull and White (1987), Huang and Wu (2004), and
Scott (1997).

We use Ct(K,T) to denote the time-t price of a European call with strike K
and maturity T. Our assumption implies that there exists a call pricing function
C(S,t;K,T;�) such that

Ct(K,T)=C(St,t;K,T;�), t∈[0,T],K ≥0,T ∈[t,T ]. (1)

The call pricing function relates the call price at t to the state variables (St,t), the
contract characteristics (K,T), and a vector of fixed model parameters �.

We use g(S,t;K,T;�) to denote the probability density function of the asset
price under the risk-neutral measure Q, evaluated at the future price level K and
the future time T and conditional on the stock price starting at level S at some earlier
time t. Breeden and Litzenberger (1978) show that this risk-neutral density relates
to the second strike derivative of the call pricing function by

g(S,t;K,T;�)=er(T−t) ∂
2C

∂K2 (S,t;K,T;�). (2)
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1.2 Spanning Vanilla Options with Vanilla Options

The main theoretical result of the article comes from the following theorem:

Theorem 1: Under no arbitrage and the Markovian assumption in (1), the time-t value
of a European call option maturing at a fixed time T ≥ t relates to the time-t value of a
continuum of European call options at a shorter maturity u∈[t,T] by

C(S,t;K,T;�)=
∞∫

0

w(K)C(S,t;K,u;�)dK, u∈[t,T], (3)

for all possible nonnegative values of S and at all times t≤u. The weighting function w(K)
does not vary with S or t, and is given by

w(K)= ∂2

∂K2 C(K,u;K,T;�). (4)

Proof. Under the Markovian assumption in (1), we can compute the initial value of
the target call option by discounting the expected value it will have at some future
date u,

C(S,t;K,T;�)=e−r(u−t)
∞∫

0

g(S,t;K,u;�)C(K,u;K,T;�)dK

=
∞∫

0

∂2

∂K2 C(S,t;K,u;�)C(K,u;K,T;�)dK. (5)

The first line follows from the Markovian property. The call option value at any
time u depends only on the underlying security’s price at that time. The second
line results from a substitution of Equation (2) for the risk-neutral density function.

We integrate Equation (5) by parts twice and observe the following boundary
conditions,

∂
∂K C(S,t;K,u;�)

∣∣
K→∞ =0, C(S,t;K,u;�)|K→∞ =0,

∂
∂S C(0,u;K,T;�)=0, C(0,u;K,T;�)=0.

(6)

The final result of these operations is Equation (3). �

A key feature of the spanning relation in (3) is that the weighting function
w(K) is independent of S and t. This property characterizes the static nature of
the spanning relation. Under no arbitrage, once we form the spanning portfolio,
no rebalancing is necessary until the maturity date of the options in the spanning
portfolio. The weight w(K) on a call option at maturity u and strike K is proportional
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to the gamma that the target call option will have at time u, should the underlying
price level be at K then. Since the gamma of a call option typically shows a bell-
shaped curve centered near the call option’s strike price, greater weights go to the
options with strikes that are closer to that of the target option. Furthermore, as
we let the common maturity u of the spanning portfolio approach the target call
option’s maturity T, the gamma becomes more concentrated around K. In the limit
when u=T, all of the weight is on the call option of strike K. Equation (3) reduces
to a tautology.

The spanning relation in (3) represents a constraint imposed by no-arbitrage
and the Markovian assumption on the relation between prices of options at two
different maturities. Given that the Markovian assumption is correct, a violation
of Equation (3) implies an arbitrage opportunity. For example, if at time t, the
market price of a call option with strike K and maturity T (left-hand side) exceeds
the price of a gamma-weighted portfolio of call options for some earlier maturity
u (right-hand side), conditional on the validity of the Markovian assumption (1),
the arbitrage is to sell the call option of strike K and maturity T, and to buy the
gamma-weighted portfolio of all call options maturing at the earlier date u. The
cash received from selling the T maturity call exceeds the cash spent buying the
portfolio of nearer dated calls. At time u, the portfolio of expiring calls pays off:

∫ ∞

0

∂2

∂K2 C(K,u;K,T;�)(Su −K)+dK.

Integrating by parts twice implies that this payoff reduces to C(Su,u;K,T;�), which
we can use to close the short call position.

To understand the implications of our theorem for risk management, suppose
that at time t there are no call options of maturity T available in the listed market.
However, it is known that such a call will be available in the listed market by the
future date u∈ (t,T). An options trading desk could consider writing such a call
option of strike K and maturity T to a customer in return for a (hopefully sizeable)
premium. Given the validity of the Markov assumption, the options trading desk
can hedge away the risk exposure arising from writing the call option over the time
period [t,u] using a static position in available shorter-term options. The maturity
of the shorter-term options should be equal to or longer than u and the portfolio
weight is determined by Equation (3). At date u, the assumed validity of the Markov
condition (1) implies that the desk can use the proceeds from the sale of the shorter-
term call options to purchase the T maturity call in the listed market. Thus, this
hedging strategy is semi-static in that it involves rolling over call options once. In
contrast to a purely static strategy, there is a risk that the Markov condition will not
hold at the rebalancing date u. We will continue to use the terser term “static” to
describe this semi-static strategy; however, we warn the practically minded reader
that our use of this term does not imply that there is no model risk.

The replication principle behind our static option hedge is different from
dynamic delta hedging with the underlying security. At initiation of the dynamic
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delta hedge, a position in the underlying security and bond can match the initial
level and initial slope of the target call option. However, it does not match the gamma
and higher security price derivatives. If left static, a small move in the security price
and time will preserve level matching, provided that the square of the small move
corresponds to the variance rate used in the delta hedge. This static position no
longer matches the slope. A self-financing trade is needed to rematch the slope.
Thus, the success of the dynamic delta hedging relies on continuous rebalancing
and the security price following a particular continuous process. If the size of
the security price movement is not as expected, even the level matching cannot
be achieved. As such, even continuous rebalancing cannot guarantee a successful
hedge.

By contrast, at initiation of our static hedge, the option portfolio matches the
level, slope, gamma, and all higher price derivatives of the target option. Thus, level
matching can be preserved under a much wider range of security price movements.
Furthermore, with the Markovian assumption, our options hedge matches all price
derivatives at all price levels and time, thus making the portfolio static.

Theorem 1 states the spanning relation in terms of call options. The spanning
relation also holds if we replace the call options on both sides of the Equation by
their corresponding put options of the same strike and maturity. The relation on
put options can either be proved analogously or via the application of the put–call
parity to the call option spanning relation in Equation (3).

More generally, for any twice-differentiable value function V(Su) at time u, we
can perform a Taylor expansion with remainder about any point F to obtain the
following generic spanning relation (Carr and Madan, 1998):

V(Su)=V(F)+V ′(F)(Su −F)+
∫ F

0
V ′′(K)(K−Su)+dK+

∫ ∞

F
V ′′(K)(Su −K)+dK. (7)

In words, the value function V(Su) can be replicated by a bond position V(F), a
forward position V ′(K) with strike F, and a continuum of call and put options
maturing at time u with the weights at each strike given by V ′′(K)dK. Under the
one-factor Markovian setting, we know the time-u value function V(Su) of any
European options maturing at a later date T >u. Accordingly, we can hedge these
options statically up until time u using options maturing at time u. To derive the
static hedging relation for the call option in (3), we choose F=0 so that C(0,u)=0
and C′(0,u)=0.

Equation (7) also highlights the key underlying assumption for the static
hedging relation: The value of the target option at the future time u must be
purely a deterministic function of the underlying stock price at that time Su. Any
other random sources (such as stochastic volatility) cannot influence the option
value at time u in order for the static hedging relation to hold. Thus, the hedging
effectiveness of this static strategy presents an indirect test for the presence of
additional risk sources such as stochastic volatility.
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1.3 Finite Approximation with Gaussian Quadrature Rules

In practice, investors can neither rebalance a portfolio continuously, nor can they
form a static portfolio involving a continuum of securities. Both strategies involve
an infinite number of transactions. In the presence of discrete transaction costs, both
would lead to financial ruin. As a result, dynamic strategies are only rebalanced
discretely in practice. The trading times are chosen to balance the costs arising from
the hedging error with the cost arising from transacting in the underlying. Similarly,
to implement our static hedging strategy in practice, we need to approximate it
using a finite number of call options. The number of call options used in the portfolio
is chosen to balance the cost from the hedging error with the cost from transacting
in these options.

We propose to approximate the spanning integral in Equation (3) by a weighted
sum of a finite number (N) of call options at strikes Kj,j=1,2,··· ,N,

∫ ∞

0
w(K)C(S,t;K,u;�)dK≈

N∑
j=1

WjC(S,t;Kj,u;�), (8)

where we choose the strike points Kj and their corresponding weights based
on the Gauss–Hermite quadrature rule. The Gauss–Hermite quadrature rule is
designed to approximate an integral of the form

∫ ∞
−∞ f (x)e−x2

dx, where f (x) is an
arbitrary smooth function. After some rescaling, the integral can be regarded as
an expectation of f (x) where x is a normally distributed random variable with
zero mean and variance of two. For a given target function f (x), the Gauss–
Hermite quadrature rule generates a set of weights wi and nodes xi, i=1,2,··· ,N,
that approximate the integral with the following error representation (Davis and
Rabinowitz, 1984),

∫ ∞

−∞
f (x)e−x2

dx=
N∑

j=1

wjf
(
xj

)+ N!√π

2N
f (2N) (ξ)

(2N)! (9)

for some ξ ∈(−∞,∞). The approximation error vanishes if the integrand f (x) is a
polynomial of degree equal or less than 2N−1.

To apply the quadrature rules, we need to map the quadrature nodes and
weights {xi,wj}N

j=1 to our choice of option strikes Kj and the portfolio weights
Wj. One reasonable choice of a mapping function between the strikes and the
quadrature nodes is given by

K(x)=Kexσ
√

2(T−u)+(q−r−σ 2/2)(T−u), (10)

where σ 2 denotes the annualized variance of the log asset return. This choice is
motivated by the gamma weighting function under the Black–Scholes model, which
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is given by

w(K)= ∂2C(K,u;K,T;�)
∂K2 =e−q(T−u) n(d1)

Kσ
√

T−u
, (11)

where n(·) denotes the probability density of a standard normal and d1 is defined as

d1 ≡ ln(K/K)+(r−q+σ 2/2)(T−u)
σ
√

T−u
.

We can then obtain the mapping in (10) by replacing d1 with
√

2x.
Given the Gauss–Hermite quadrature {wj,xj}N

j=1, we choose the strike points as

Kj =Kexjσ
√

2(T−u)+(q−r−σ 2/2)(T−u), (12)

with the portfolio weights given by

Wj =
w(Kj)K′

j(xj)

e−x2
j

wj =
w(Kj)Kjσ

√
2(T−u)

e−x2
j

wj . (13)

Different practical situations call for different finite approximation methods.
The Gauss–Hermite quadrature method chooses both the strike levels and the
associated weights. In a market where options are available at many different
strikes, such as the S&P 500 index options market at the Chicago Board of Options
Exchange (CBOE), this quadrature approach provides guidance in choosing both
the appropriate strikes and the appropriate weights to approximate the static hedge.
On the other hand, in some over-the-counter options markets where only a few fixed
strikes are available, it would be more appropriate to use an approximation method
that takes the available strike points as fixed and solves for the corresponding
weights. The latter approach has been explored in Balder and Mahayni (2006), Carr
and Mayo (2007), and Wu and Zhu (2011).

2 MONTE CARLO ANALYSIS BASED ON POPULAR MODELS

Consider the problem faced by the writer of a call option on a certain stock. For
concreteness, suppose that the call option matures in 1 year and is written at-the-
money. The writer intends to hold this short position for a month, after which the
option position will be closed. During this month, the writer can hedge the risk
using various exchange traded liquid assets such as the underlying stock, futures,
and/or options on the same stock.

We compare the performance of two types of strategies: (i) a static hedging
strategy using 1-month vanilla options, and (ii) a dynamic delta-hedging strategy
using the underlying stock futures. The static strategy is based on the spanning
relation in Equation (3) and is approximated by a finite number of options, with the
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portfolio strikes and weights determined by the quadrature method. The dynamic
strategy is discretized by rebalancing the futures position daily. The choice of using
futures instead of the stock itself for the delta hedge is intended to be consistent with
our empirical study in the next section on S&P 500 index options. For these options,
direct trading in the 500 stocks comprising the index is impractical. Practically all
delta hedging is done in the very liquid index futures market.

We compare the performance of the above two strategies based on Monte Carlo
simulation. For the simulation, we consider four data-generating processes: the
Black–Scholes model (BS), the Merton (1976) jump-diffusion model (MJ), the Heston
(1993) stochastic volatility model (HV), and a special case of this model proposed
by Heston and Nandi (2000) (HN). Under the objective measure, P, the stock price
dynamics are governed by the following stochastic differential equations,

BS: dSt/St = μdt+σdWt,

MJ: dSt/St = (
μ−λg

)
dt+σdWt +dJ(λ),

HV: dSt/St = μdt+√
vtdWt,

dvt = κ (θ −vt)dt−σv
√

vtdZt, E[dZtdWt]=ρdt,
HN: HV with ρ =−1.

(14)

where W denotes a standard Brownian motion that drives the stock price movement
in all models. Under the MJ model, J(λ) denotes a compound Poisson jump process
with constant intensity λ. Conditional on a jump occurring, the MJ model assumes
that the log price relative is normally distributed with mean μj and variance σ 2

j ,

with the mean percentage price change induced by a jump being g=eμj+ 1
2 σ 2

j −1.
Under the Heston (HV) model, Zt denotes another standard Brownian motion that
governs the randomness of the instantaneous variance rate. The two Brownian
motions have an instantaneous correlation of ρ. Heston and Nandi derive a special
case of this model with ρ =−1 as a continuous time limit of a discrete-time GARCH
model. With perfect correlation, the stock price is essentially driven by one source
of uncertainty under the HN model.

The four data-generating processes cover four different scenarios. Under the
BS model, the stock price process is both purely continuous and Markovian.
Hence, both the dynamic hedging strategy and the static strategy work perfectly
in the theoretical limit when we ignore transaction costs and allow continuous
rebalancing of the futures and trading of a continuum of options. The hedging
errors from our simulation exercise come from discrete rebalancing in the dynamic
hedging case and from the choice of a discrete number of options in the static
hedging portfolio.

Under the MJ model, the static spanning relation in (3) remains valid because
the stock price process remains Markovian. Thus, we expect the static hedging
errors from the simulation to be of similar magnitude to those in the BS case, when
the hedging exercises are performed using comparable number of options in the
hedging portfolio. However, the presence of random jumps renders the dynamic
hedging strategy ineffective even in the theoretical limit of continuous rebalancing.
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Even within infinitesimal intervals, the stock price movement can have random
magnitudes due to the random jumps. Thus, two instruments (the underlying
stock and riskfree bonds) are not enough to span all the different movements.
From our simulation exercise, we gauge the degree to which the dynamic hedging
performance deteriorates.

The HN model represents the exact opposite of the MJ case. The stock price
process is purely continuous with one source of uncertainty. The dynamic hedging
strategy works perfectly in the theoretical limit of continuous rebalancing. Thus,
we expect the dynamic hedging error in our simulation exercise to be of similar
magnitude to that under the BS model. However, due to the historical dependence
of the volatility process, the evolution of the stock price is no longer Markovian in
the stock price and calendar time. Therefore, the static spanning relation in (3) no
longer holds. In particular, at time t, we do not know the variance rate level at time
u> t, vu. Hence, we do not know the gamma of the target call option at time u, which
determines the weighting function of the static hedging portfolio. We investigate
the degree to which this violation of the Markovian assumption degenerates the
static hedging performance.

Finally, neither hedging strategy works perfectly under the Heston model with
|ρ| �=1. The two instruments in the dynamic hedging strategy are not enough to span
the two sources of uncertainty under the HV model. The non-Markovian property
also invalidates the static spanning relation in (3). The presence of stochastic
volatility has been documented extensively. Our simulation exercise gauges the
degree of performance deterioration for both hedging strategies.

We specify the data-generating processes in Equation (14) under the objective
measure P. To price the relevant options and to compute the weights in the hedge
portfolios, we also need to specify their respective risk-neutral Q-dynamics,

BS: dSt/St = (r−q)dt+σdW∗
t ,

MJ: dSt/St = (r−q−λ∗g∗)dt+σdW∗
t +dJ∗(λ∗),

HV: dSt/St = (r−q)dt+√
vtdW∗

t , dvt =κ∗(θ∗−vt)dt−σv
√

vtdZ∗
t ,

(15)

where W∗ and Z∗ denote standard Brownian motions under the risk-neutral
measure Q, and (κ∗,θ∗,λ∗,μ∗

j ,σ
∗
j ) denote the corresponding parameters under this

measure. Option prices under the BS model can be readily computed using the
Black–Scholes option pricing formula. Under the MJ model, option prices can be
computed as a Poisson probability-weighted sum of the Black–Scholes formulae.
Under the Heston model and its HN special case, we can price options using
Heston’s (1993) Fourier transform method, Carr and Madan’s (1999) Fast Fourier
transform method, or the expansion formulae of Lewis (2000).

For the simulation and option pricing exercise, we benchmark the parameter
values of the three models to the S&P 500 index. We set μ=0.10, r=0.06, and q=0.02
for all three models. We further set σ =0.27 for the BS model, σ =0.14, λ=λ∗ =2.00,
μj =μ∗

j =−0.10, and σj =σ ∗
j =0.13 for the MJ model, and θ =θ∗ =0.272, κ =κ∗ =1,

and σv =0.1 for the HV and HN models. We set ρ =−.5 for the HV model.
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In each simulation, we generate a time series of daily stock prices according
to an Euler approximation of the respective data-generating process. The starting
value for the stock price is set to $100. Under the HV/HN model, we set the starting
value of the instantaneous variance rate to its long-run mean: v0 =θ .1 We consider
a hedging horizon of 1 month and simulate paths over this period. We assume that
there are 21 business days in a month. To be consistent with the empirical study on
S&P 500 index options in the next section, we think of the simulation as starting on
a Wednesday and ending on a Thursday 4 weeks later, spanning a total of 21 week
days and 29 actual days. The hedging performance is recorded and, when needed,
updated only on week days, but the interest earned on the money market account
is computed based on actual/360 day-count convention.

At each week day, we compute the relevant option prices based on the
realization of the security price and the specification of the risk-neutral dynamics.
For the dynamic delta hedge, we also compute the delta each day based on the risk-
neutral dynamics and rebalance the portfolio accordingly. For both strategies, we
monitor the hedging error (profit and loss) at each week day based on the simulated
security price and the option prices. The hedging error at each date t is defined as
the difference between the value of the hedge portfolio and the value of the target
call option being hedged,

eD
t =Bt−herh +�t−h

(
Ft −Ft−h

)−C(St,t;K,T);

eS
t =

N∑
j=1

WjC(St,t;Kj,u)+B0ert −C(St,t;K,T), (16)

where the superscripts D and S denote the dynamic and static strategies,
respectively, �t denotes the delta of the target call option with respect to the futures
price at time t, h denotes the time interval between stock trades, and Bt denotes the
time-t balance in the money market account. The balance includes the receipts from
selling the 1-year call option, less the cost of initiating and possibly changing the
hedge portfolio.

For the delta-hedging strategy, the hedge portfolio is self-financing and hence
the error eD would be zero if (i) the underlying dynamics follow the BS dynamics
or some other known one-factor diffusion process and (ii) the portfolio is updated
continuously without incurring any transaction cost. In practice, hedging errors can
come from (a) discreteness in the portfolio rebalancing frequency and (b) deviation
of the underlying dynamics from a known one-factor diffusion process. The
simulation exercise reveals the behavior of the hedging errors from these sources.

For the static hedging strategy, under no arbitrage, the value of the portfolio
of the continuum of shorter-term options is equal to the value of the long-term
target option. As a result, B0 is zero and there will be no hedge error at any time

1We have also experimented with different starting values for the variance rate. The hedging results are
very similar and hence not reported.
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(eS
t =0). However, since we use a finite number of call options in the static hedge

to approximate the continuum, the initial money market account B0 captures the
value difference due to the approximation error, which is normally very small. No
rebalancing is needed in the static strategy. Over time, hedging error can occur when
the value of target option deviates from the discrete hedge portfolio. The simulation
exercise reveals the behavior of this discretization–approximation error.

Under each model, the delta is given by the partial derivative
∂C(S,t;K,T;�)/∂F, with F=Se(r−q)(T−t) denoting the forward/futures price.
If an investor could trade continuously, this delta hedge removes all of the risk in
the BS model and the HN model. The hedge does not remove all risks in the MJ
model because of the random jumps, nor in the HV model because of a second
source of diffusion risk. The hedge portfolio for the static strategy is formed
based on the weighting function w(K) in Equation (4) implied by each model, the
Gauss–Hermite quadrature nodes and weights {xi,wi}, and the mapping from
the quadrature nodes and weights to the option strikes and weights, as given in
Equations (12) and (13).

Under the HV/HN model, since the stock price is non-Markovian, the static
spanning relation in (3) is no longer valid. Furthermore, when we use the spanning
relation to form an approximate hedging portfolio, the weighting function in (4) is
no longer known at time t because option price at time u> t is also a function of the
instantaneous variance rate at time u, which is not known at time t. To implement
the static strategy under these two models, we replace C(K,u;K,T;�) in Equation
(4) by its conditional expected value at time t under the risk-neutral measure Q,

C(K,u;K,T;�)≡Et [ C(Su,vu;K,T)|Su =K]. (17)

In computing the strike points for the quadrature approximation of the
spanning relation, the annualized variance is v=σ 2 for the BS model, v=θ for

the HV/HN model, and v=σ 2 +λ
(
μ2

j +σ 2
j

)
for the MJ model. Given the chosen

model parameters, we have
√

v .=27% for all models.

2.1 Hedging Comparison under the Diffusive Black–Scholes World

Table 1 reports the summary statistics of the simulated hedging errors, from 1000
simulated sample paths. Panel A in Table 1 summarizes the results based on the BS
model. Entries are the summary statistics of the hedging errors at the last step (at
the end of the 21 business days) based on both strategies. For the dynamic strategy
(the last column), we perform daily updating. For the static strategy, we consider
hedge portfolios with N =3,5,9,15,21 1-month options.

If the transaction cost for a single option is comparable to the transaction cost for
revising a position in the underlying security, we would expect that the transaction
cost induced by buying 21 options at one time is close to the cost of rebalancing a
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Table 1 Simulated hedge performance comparisons of static and dynamic strategies

Hedge error
No. of assets

Static with options Dynamic with
underlying3 5 9 15 21

Panel A. The Black–Scholes model
Mean −0.00 0.01 0.02 0.02 0.01 0.10
Std Deviation 1.00 0.66 0.36 0.20 0.14 0.10
RMSE 1.00 0.66 0.36 0.20 0.14 0.14
Minimum −1.62 −1.13 −0.67 −0.38 −0.25 −0.43
Maximum 1.86 0.93 0.43 0.24 0.17 0.32
Skewness 0.01 −0.26 −0.59 −0.61 −0.48 −0.84
Kurtosis 1.87 1.79 2.01 1.96 1.78 4.68
Call value 11.72 12.20 12.36 12.37 12.36 12.35

Panel B. The Merton jump-diffusion model
Mean −0.01 0.00 0.02 0.02 0.02 0.07
Std Deviation 0.72 0.47 0.28 0.16 0.12 1.05
RMSE 0.72 0.47 0.28 0.16 0.12 1.05
Minimum −1.73 −1.28 −0.90 −0.58 −0.41 −12.12
Maximum 2.84 1.48 0.48 0.20 0.14 0.37
Skewness 0.56 −0.16 −1.26 −1.77 −1.65 −6.82
Kurtosis 5.23 4.07 4.30 5.74 5.15 59.79
Call value 9.52 11.14 12.02 12.09 12.06 11.99

Panel C. The HN non-Markvian diffusion model
Mean −0.02 −0.00 0.01 0.01 0.00 0.09
Std Deviation 0.79 0.52 0.29 0.19 0.15 0.15
RMSE 0.79 0.52 0.29 0.19 0.15 0.18
Minimum −1.38 −0.97 −0.80 −0.49 −0.32 −0.50
Maximum 1.21 0.65 0.35 0.23 0.18 0.38
Skewness −0.17 −0.44 −0.68 −0.71 −0.51 −0.83
Kurtosis 1.81 1.87 2.12 2.24 1.92 3.70
Call value 11.39 11.94 12.17 12.23 12.24 12.33

Panel D. The Heston stochastic volatility model
Mean −0.03 −0.01 −0.00 −0.01 −0.01 0.07
Std Deviation 0.84 0.57 0.38 0.31 0.29 0.27
RMSE 0.84 0.57 0.38 0.31 0.29 0.28
Minimum −2.13 −1.71 −1.32 −1.07 −0.97 −0.81
Maximum 1.74 1.30 0.96 0.91 0.86 0.94
Skewness −0.14 −0.33 −0.28 −0.16 −0.09 −0.07
Kurtosis 1.94 2.18 2.69 2.84 2.87 3.07
Call value 11.31 11.87 12.10 12.15 12.16 12.33

Entries report the summary statistics from 1000 simulated paths on the hedging errors of a 1-year call
option. The hedging error is defined as the difference between the value of the hedge portfolio and the
value of the target call at the closing of the month-long exercise. The hedging portfolios are formed
assuming that the hedger knows the exact model. The last row of each panel reports the value of the
target call approximated by the quadrature method, with the theoretical value given under the dynamic
hedging column.
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position in the underlying stock 21 times. Hence, it is interesting to compare the
performance of daily delta hedging with the performance of the static hedge with
21 options. The results in Panel A of Table 1 show that the daily updating strategy
and the static strategy with 21 options have comparable hedging performance in
terms of the root mean squared error (RMSE). Since the stock market is much more
liquid than the stock options market, the simulation results favor the dynamic
delta strategy over the static strategy, if indeed stock prices move as in the BS
world.

The hedging errors from the two strategies show different distributional
properties. The kurtosis of the hedging errors from the dynamic strategy is larger
than that from all the static strategies. The kurtosis is 4.68 for the dynamic hedging
errors, but is below two for errors from all the static hedges. Even for the static
hedge with three strikes, the maximum absolute error is less than twice as big
as the RMSE whereas the maximum absolute error from the delta hedge is more
than three times larger than the corresponding RMSE, thus leading to the larger
kurtosis for the delta-hedging error. The maximum profit and loss from the static
strategy with 21 options are also smaller in absolute magnitudes. Therefore, when
an investor is particularly concerned about avoiding large losses, the investor may
prefer the static strategy.

The last row shows the accuracy of the Gauss–Hermite quadrature approxima-
tion of the integral in pricing the target options. Under the BS model, the theoretical
value of the target call option is $12.35, which we put under the dynamic hedging
column. The approximation error is about one cent when applying a 21-node
quadrature. The approximation error increases as the number of quadrature nodes
declines in the approximation.

2.2 Hedging Comparison in the Presence of Random Jumps

Panel B of Table 1 shows the hedging performance under the Merton (1976) jump-
diffusion model. For ease of comparison, we present the results in the same format
as in Panel A for the BS model. The performance of all the static strategies are
comparable to their corresponding cases under the BS world. If anything, most of
the performance measures for the static strategies become slightly better under the
Merton jump-diffusion case. By contrast, the performance of the dynamic strategy
deteriorates dramatically as we move from the diffusion-based BS model to the
jump-diffusion Merton model. The RMSE is increased by a factor of seven for the
dynamic strategy. As a result, the performance of the dynamic strategy is worse
than the static strategy with only three options.

The distributional differences between the hedging errors of the two strategies
become even more pronounced under the Merton model. The kurtosis of the static
hedge errors remains small (below six), but the kurtosis of the dynamic hedge
errors explodes from 4.68 in the BS model to 59.79 in the MJ model. The maximum
loss from the dynamically hedged portfolio is $12.12, even larger than the initial
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revenue from writing the call option ($11.99). By contrast, the maximum loss is less
than two dollars from the static hedge with merely three options.

2.3 Hedging Comparison under the Non-Markovian Diffusive
HN/HV Models

Panel C of Table 1 shows the hedging performance under the non-Markovian but
purely diffusive HN model. In theory, the dynamic delta strategy works perfectly
under this model, the same as under the BS model. The last column in Panel C shows
that the root mean squared hedging error from the daily delta hedging under the
HN model is only slightly larger than that under the BS model in Panel A, consistent
with the theory prediction.

The static spanning relation is no longer valid under the HN model given
the non-Markovian property. Nevertheless, since the instantaneous variance does
not have any independent movements, over short horizons the deviation from
the Markovian assumption is small. As a result, the hedging performances of
the static strategies under the HN model are comparable to those under the BS
model.

Panel D of Table 1 shows the hedging performance under the Heston stochastic
volatility model, where neither strategy works in theory. We observe performance
deteriorations across all strategies. For the dynamic delta-hedging strategy, the
RMSE increases from 0.18 under the HN model to 0.28 under the Heston model.
For the static strategies, the performance deterioration becomes more pronounced
when more options are used to approximate the continuum. The RMSE difference
is 0.14 when 21 options are used for the hedge and it reduces to 0.05 when three
to five options are used. With only three to five options, the discretization error
becomes the dominating source of the hedging error.

Figure 1 plots the simulated sample paths and the corresponding hedging
errors under the four data-generating processes, from top to bottom, BS, MJ, HN,
and HV. The four panels in the first (left) column plot the simulated sample paths of
the underlying security price under the four models. The daily movements under
the BS, HN, and HV models are usually small, but the MJ model (second row)
generates both small and large movements.

Panels in the second (middle) column in Figure 1 compare the sample paths
of the hedging errors from the static hedging strategy using nine options. We
apply the same scale for ease of comparison. Consistent with theory, the Heston
stochastic volatility model generates moderately larger hedging errors due to its
non-Markovian nature.

Panels in the third (right) column show the sample paths of the dynamic
hedging errors under the four models. We use the same scale for the three pure
diffusion models (BS, HN, and HV). The dynamic hedging errors from the BS and
HN models are similar. The hedging errors from the HV model are moderately
larger due to the presence of a second source of randomness. By contrast, under
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Figure 1 Hedging performance under different price dynamics. The four rows represents the four
data-generating processes: BS, MJ, HN, and HV. Panels in the first column depict the simulated
sample paths of the underlying security price. Panels in the second column depict the sample
paths of the hedging errors from the static hedging strategy with nine option contracts. Panels in
the third column depict the corresponding sample paths of the hedging errors from the dynamic
delta strategy with the underlying futures and daily updating.

the MJ jump-diffusion model (second row), the dynamic hedging errors become so
much larger that we have to adopt a much larger scale in plotting the error paths.
The large hedging errors from the dynamic strategy correspond to the large moves
in the underlying security price.
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Another interesting feature is that, under the MJ model, most of the large
dynamic hedging errors are negative, irrespective of the direction of the large moves
in the underlying security price. The reason is that the option price function exhibits
positive convexity with the underlying futures price. Under a large movement,
the value of the delta-neutral portfolio is always below the value of the option
contract. Therefore, most of the large hedging errors for selling an option contract
are losses.

Overall, the daily delta-hedging strategy performs reasonably well under one-
factor diffusion models such as the BS model and the HN model. The performance
deteriorates moderately in the presence of a second source of diffusion uncertainty
in return volatility. However, the strategy fails miserably when the underlying
price can jump randomly. By contrast, the performance of the static hedging
strategy with a few shorter-term options is much less sensitive to the nature of the
underlying price processes. The static strategy takes random jumps in stride and
experiences only small performance deterioration when the Markovian assumption
is violated.

2.4 Effects of Model Uncertainty and Misspecification

We perform the above simulation under the assumption that the hedger knows
exactly the underlying data-generating process and the model under which the
options are priced. In practice, however, we can only use different models to fit
the market option prices approximately. Model uncertainty is an inherent part of
both pricing and hedging. To investigate the sensitivity of the hedging performance
to model misspecification, we compare the performance of the hedging strategies
when the hedger does not know the data-generating process and must develop a
hedging approach in the absence of this information. We assume that the actual
underlying asset prices and the option prices are generated from the MJ, HN, and
HV models, but the hedger forms the hedge portfolios using the Black–Scholes
model, using the observed option implied volatility as the model input. Specifically,
for the dynamic strategy, the hedger computes the daily delta based on the Black–
Scholes formula using the observed implied volatility of the target call option as the
volatility input. For the static strategy, the hedger computes the weighting function
w(K) based on the Black–Scholes model, also using the observed implied volatility
of the target option as the volatility input.

We summarize the hedging performance in Table 2. In all cases, we find
that the impact of model misspecification is small. As in the case when the
data-generating processes are known, the performance of the dynamic strategy
deteriorates dramatically in the presence of random jumps, but violating the non-
Markovian assumption only deteriorates the performance of the static strategy
moderately. These remarkable results show that, in hedging, being able to span the
right space is much more important than specifying the right parametric model.
Even if an investor has perfect knowledge of the stochastic process governing the
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underlying asset price, and hence can compute the perfectly correct delta, a dynamic
strategy in the underlying asset still fails miserably when the underlying asset price
can jump by a random amount. By contrast, as long as the investor uses a few
short-term call options of different strikes in the hedge portfolio, the hedging error
is about the same regardless of whether jumps can occur or not. This result holds
even if the investor does not know which model to use to pick the appropriate
strikes and portfolio weights.

In practice, the hedger never really knows the true underlying process and thus
must resort to some assumptions in coming up with the dynamic hedging ratios
and the static portfolio weights. At one extreme, one specify a model (such as MJ,
HN, or HV as in our simulation), estimate the model parameters based on market
data, and derive the hedging ratios and portfolio weights based on the estimated
dynamics. The success of this approach depends crucially on (i) the validity of
model assumptions and (ii) the quality and quantity of the available market data,
which determine the quality of the parameter estimates.

At the other extreme, one can use the Black–Scholes formula, with one volatility
input, to derive the hedging ratios and portfolio weights. We take this simple
approach and use the observed implied volatility of the target option as the volatility
input for the Black–Scholes formula. Under this approach, the hedging ratio and
portfolio weights calculation only relies on the availability of a known value for
the target option. Its demand for data availability is at the minimum, and the
hedging ratios are readily comparable across different counterparties, as long as
they agree on the value of the target option. This approach is widely adopted
in the industry and it is the standard approach in the over-the-counter currency
options markets when the counterparties not only exchange the options but also
the associated delta hedge (Carr and Wu, 2007). Under a pure diffusion stochastic
volatility environment, Renault and Touzi (1996) show that the Black–Scholes delta
with the implied volatility as the input can either under- or over-hedge options at
different strikes and they propose a method to filter out the stochastic volatility
from the option observations. However, several empirical studies, e.g., Engle and
Rosenberg (2002), Jackwerth and Rubinstein (1996), and Bollen and Raisel (2003),
have generally found that under practical situations when the true underlying price
dynamics are unknown to the hedger, the approach of using the Black–Scholes delta
with the running implied volatility works as well or better than the alternative
approach of estimating a sophisticated model and delta-hedging with it.

In between the two extremes, some practitioners also try to adjust the Black–
Scholes delta to accommodate the co-movements between the implied volatility
and the underlying security price. The adjusted delta is often referred to as the
“total delta (TD),”

TD= ∂B(St,IVt;K,T)
∂St

+ ∂B(St,IVt;K,T)
∂IVt

Et

[
∂IVt

∂St

]
, (18)

where B(St,IVt;K,T) denotes the Black–Scholes value of a call option at strike T and
expiry T with the current security price at St and the observed implied volatility
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Table 2 Effect of model uncertainty on hedge performance comparisons

Hedge error
No. of assets

Static with options Dynamic with
underlying3 5 9 15 21

Panel A. Black–Scholes hedge under the Merton environment
Mean −0.00 0.01 0.01 0.02 0.01 0.06
Std Deviation 0.61 0.38 0.20 0.18 0.21 0.92
RMSE 0.61 0.38 0.21 0.18 0.21 0.92
Minimum −1.60 −1.34 −1.28 −0.95 −0.88 −10.90
Maximum 1.57 1.06 0.76 0.66 0.63 0.68
Skewness −0.31 −0.52 −0.39 −0.74 −0.82 −7.04
Kurtosis 3.10 4.00 8.75 9.78 5.79 64.67
Call value 11.66 12.11 12.24 12.22 12.18 11.99

Panel B. Black–Scholes hedge under the HN environment
Mean −0.02 −0.00 0.01 0.01 0.00 0.09
Std Deviation 1.08 0.74 0.44 0.26 0.18 0.15
RMSE 1.08 0.74 0.44 0.26 0.18 0.17
Minimum −1.77 −1.28 −0.82 −0.52 −0.39 −0.42
Maximum 2.08 1.09 0.53 0.31 0.36 0.42
Skewness 0.02 −0.21 −0.52 −0.67 −0.70 −0.50
Kurtosis 1.87 1.78 1.91 2.13 2.26 3.06
Call value 11.73 12.20 12.36 12.35 12.34 12.33

Panel C. Black–Scholes hedge under the HV environment
Mean −0.03 −0.01 0.00 −0.00 −0.01 0.08
Std Deviation 1.08 0.75 0.47 0.34 0.29 0.27
RMSE 1.08 0.75 0.47 0.34 0.29 0.28
Minimum −2.46 −1.99 −1.54 −1.25 −1.12 −0.90
Maximum 2.31 1.52 1.11 0.90 0.84 0.89
Skewness 0.00 −0.20 −0.32 −0.13 −0.02 −0.10
Kurtosis 1.91 1.96 2.40 2.83 2.96 3.17
Call value 11.71 12.19 12.35 12.35 12.34 12.33

Entries report the summary statistics of the hedging errors of a 1-year call option based on both static
and dynamic strategies. The hedging error is defined as the difference between the value of the hedge
portfolio and the value of the target call option being hedged at the closing of the month-long hedging
exercise. The statistics are computed based on 1000 simulated paths of the MJ model (Panel A), the HN
model (Panel B) and the HV model (Panel C). The hedging portfolios are formed assuming that the hedger
does not know the true data-generating process and form the hedge portfolios based on the Black–Scholes
formula with the observed implied volatility of the target option as the volatility input. The last row of
each panel reports the value of the target call option approximated by the quadrature method, with the
theoretical value given under the dynamic hedging column.

for this option at IVt. The first term denotes the Black–Scholes delta evaluated at its
implied volatility level. The second term captures the contribution of expected co-
movements between the implied volatility of this option and the security price. One

often tries to infer the expected co-movement Et

[
∂IVt
∂St

]
from the observed implied
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volatility smile as a function of the option strike. Unfortunately, different types of
models can generate the same shape for the implied volatility smile but different
implied volatility-price co-movements (Schoutens, Simons, and Tistaert, 2004). As a
result, one cannot robustly infer the co-movement from the smile without knowing
the type of the underlying process. Take a negatively sloped implied volatility smile
as an example. If the underlying process is pure diffusion with local or stochastic
volatility as in Dupire (1994) or Heston (1993), the negative skew would indicate that
the expected implied volatility-price co-movement has a negative sign and hence
the second term would lower the total delta. On the other hand, if the underlying
process is a Lévy jump-diffusion process with constant volatility as in Merton (1976),
the negative skew would indicate the presence of a negative jump on average and
the expected co-movement between the implied volatility and the security price
would be positive: The implied volatility smile as a function of relative strike over
spot does not vary over time under the Merton model. As the spot price moves
down, the relative strike (the moneyness) of the option contract increases and the
implied volatility declines. In this case, the second term in (18) would raise the total
delta. What this example tells us is that without knowing the type of the underlying
process, it remains difficult to adjust the Black–Scholes delta based on the shape
of the implied volatility smile. The same argument applies to the gamma weight
calculation for our static portfolio.

Our choice of using the Black–Scholes model with the observed implied volatil-
ity of the target option as input remains the simplest and the most stable solution
when one does not have any knowledge of the type of the underlying security
price process. The advantage of such a simple solution becomes even more obvious
when the data quality is bad and interpolating/extrapolating the implied volatility
surface becomes unstable. Furthermore, our simulation analysis shows that even
with this simple choice, the hedging performance deteriorates little from knowing
the true model. Although one can experiment with many different methods in
approximating the true hedging ratios, our analysis suggests that the room for
improvement from these experiments is small. The much larger improvement
comes from the switch from the delta hedge to our proposed static hedge.

2.5 Effects of Rebalancing Frequency in Delta Hedging

In the above simulations, we approximate the sample paths of the underlying stock
price process using an Euler approximation with daily time steps and consider
dynamic delta strategies with daily updating. We are interested in knowing how
much of the failure of the delta-hedging strategy under the Merton jump-diffusion
model is due to this somewhat arbitrary choice of discretization step.

Under the Black–Scholes environment, the dependence of the delta-hedging
error on the discretization step has been studied extensively in, for example, Black
and Scholes (1972), Boyle and Emanuel (1980), Bhattacharya (1980), Figlewski (1989),
Galai (1983), Leland (1985), and Toft (1996). Several of these authors show that,
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under the Black–Scholes environment, the standard deviation of the hedging error
arising from discrete rebalancing over a time step of length h declines to zero slowly
like O(

√
h). Thus, doubling the trading frequency reduces the standard deviation by

about 30%. By contrast, the discretization error in the Gaussian quadrature method
is (N!√π )/(2N)(f (2N) (ξ))/((2N)!). This error drops by much more when the number
of strikes N is doubled. Indeed, our simulations indicate that the standard deviation
of the hedging error drops rapidly as the number of strikes increases.

This subsection focuses on relating the delta-hedging error to the rebalancing
frequency under the Merton-jump diffusion model. We also simulate the Black–
Scholes model as a benchmark reference. Table 3 shows the impacts of the
rebalancing frequency on the hedging performance under three different cases:
(A) the Black–Scholes model, (B) the Merton jump-diffusion model, assuming that
the hedger knows the underlying data-generating process, and (C) Black–Scholes
delta-hedging under the Merton world, assuming that the hedger does not have
knowledge of the data-generating process. We consider rebalancing frequencies
from once per day, to twice, five times, and ten times per day. To ease comparison,
we perform all the hedging exercises on the same simulated sample paths. To
accommodate the more frequent rebalancing, we now simulate the sample paths
based on the Euler approximation with a time interval of one-tenth of a business
day. The slight differences between the dynamic hedging with daily updating in
this table and in Table 1 reflects this difference in the simulation of the sample
paths.

Our simulation of the Black–Scholes model is consistent with the results in
previous studies. As the updating frequency increases from once to two, five, and
ten times per day, the standard error of the hedging error reduces from 0.10 to 0.07,
0.04 and to 0.03, adhering fairly closely to the

√
h rule.

However, this speed of improvement in hedging performance is no longer valid
when the underlying data-generating process follows the Merton jump-diffusion
model, irrespective of whether the hedger knows the model or not. In the case when
the process is known (Panel B), the standard error of the hedging errors remains
around 1.02−1.03 as we increase the rebalancing frequency. When the process is
not known to the hedger (Panel C), the standard error hovers around 0.88−0.93
and exhibits no obvious dependence on the rebalancing frequency. Therefore, we
conclude that the failure of the delta-hedging strategy under the Merton model is
neither due to model misspecification, nor due to infrequent updating, but due to
its inherent incapability in spanning risks associated with jumps of random size.

The Achilles heel of delta hedging in jump models is not the large size of the
movement per se, but rather the randomness of the jump size. For example, Cox
and Ross (1976) and Dritschel and Protter (1999) show that dynamic delta hedging
can span all risks arising in their pure jump models. Under these jump models,
the jump size is known just prior to any jump. This is analogous to the binomial
model where only two subsequent asset prices are possible. Under both cases, delta
hedging can remove all risks. Therefore, it is the a priori randomness in the jump
size that creates the difficulty in dynamic delta hedging.
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Table 3 Effect of rebalancing frequencies on dynamic delta hedge

Statistics Number of rebalancing per day

1 2 5 10

Panel A. The Black–Scholes model
Mean 0.11 0.11 0.11 0.11
Std Deviation 0.10 0.07 0.04 0.03
RMSE 0.15 0.13 0.12 0.12
Minimum −0.36 −0.15 −0.03 0.02
Maximum 0.32 0.28 0.22 0.19
Skewness −0.77 −0.41 −0.34 −0.16
Kurtosis 4.21 3.23 3.12 2.86

Panel B. The Merton jump-diffusion model
Mean 0.09 0.09 0.09 0.09
Std Deviation 1.02 1.03 1.03 1.02
RMSE 1.02 1.03 1.03 1.03
Minimum −11.78 −11.84 −11.72 −11.72
Maximum 0.38 0.37 0.35 0.35
Skewness −6.27 −6.30 −6.24 −6.20
Kurtosis 50.97 51.40 50.34 49.79

Panel C. Black–Scholes hedge under the Merton environment
Mean 0.08 0.09 0.09 0.07
Std Deviation 0.88 0.92 0.93 0.88
RMSE 0.88 0.93 0.93 0.88
Minimum −10.13 −10.19 −10.08 −10.07
Maximum 1.21 8.97 9.43 0.76
Skewness −6.31 −4.74 −4.43 −6.25
Kurtosis 52.66 54.10 53.41 51.59

Entries report the summary statistics of the hedging error of a 1-year call option based on a dynamic delta
hedge with different rebalancing frequencies. The hedging error is defined as the difference between the
value of the hedge portfolio and the value of the target call option at the closing time of the month-long
exercise. The statistics are computed based on 1000 simulated paths of the Black–Scholes model (Panel
A) and the Merton jump-diffusion model (Panel B) assuming that the hedger knows the exact model in
forming the portfolios. In Panel C, the sample paths and option prices are simulated based on the Merton
model, but we assume that the hedger does not know this information and form the hedge portfolios
based on the Black–Scholes formula with the implied volatility of the target option as the volatility input.

2.6 Effects of Target and Hedging Instrument Choice

So far, the simulation exercise focuses on hedging a 1-year at-the-money call option
with 1-month options in the static portfolio. This subsection examines the hedging
performance when the target options are at different maturities and moneyness
and when the static hedge portfolios are formed with options from different
maturities. In theory, if we use a continuum of options at a certain maturity, the
spanning is perfect in Markovian environments regardless of the exact maturity
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choice for the hedge portfolio. In practice, when we use the quadrature rule to
discretize the integral in Equation (9), the discretization error depends on the
higher-order derivatives of the integrant function. Choosing different target and
hedging options lead to different integrant functions and hence different magnitude
of approximation errors. Furthermore, the violation of the Markovian assumption
under the HN and HV models may have different impacts for different target and
hedging instruments. Through the simulation exercise, this subsection analyzes
how the hedging errors introduced by the quadrature approximation and by
the violation of the Markovian assumption vary over different choices of target
and hedging options. Along the same lines, we also analyze how the dynamic
delta-hedging error varies with the choice of the target option.

Table 4 summarizes the results of hedging at-the-money options at different
maturities. To save space, we only report static hedges with three and five options
and compare their performance with that of delta hedging with daily updating.
All hedging errors are over a 1-month horizon. For the dynamic delta-hedging
strategies, we consider target option maturities of 2, 4, and 12 months. For the
static strategies, we consider five target-hedge option maturity combinations. The
first three combinations hold the hedging option maturity fixed at 1-month while
increasing the target option maturity from 2, to 4, and then to 12 months. The last
three combinations have the same target option maturity at 12 months while having
the hedge option maturity increasing from 1, to 2, and then to 4 months.

For the three dynamic strategies, the hedging errors are larger for hedging
shorter-term options than for hedging longer-term options under all simulated
environments. This deteriorating performance with declining maturity is probably
linked to the gamma of the target option. The shorter the maturity, the larger
is the gamma of the target option. Since the delta strategy represents a linear
approximation, the hedging error increases with increasing gamma, especially in
the presence of large moves.

For the static strategies, as we fix the hedging options maturity at 1 month and
vary the maturity of the target option from 2, to 4 and 12 months, the hedging errors
increases under the three pure diffusion models BS, HN, and HV, but they do not
vary as much with the target option maturity under the MJ jump-diffusion model.
As the target option maturity and hence the maturity gap between the target and the
hedge options increase, the portfolio puts more weights on far out-of-the-money
options. These options may not provide much hedge unless there are large price
movements. The MJ model has more of such large movements and thus obtains
better performance or less deterioration from using far out-of-the-money options
in the hedge portfolio.

Our static spanning relation allows the use of different maturities in forming
the static hedge portfolio. Thus, holding the same 1-year option as the target
option, Table 4 also compares the hedging performances of static portfolios formed
with options at different maturities. Under all model environments, the hedging
performance improves quite significantly when the maturity of the hedging options
increases. Under the Black–Scholes environment, the root mean squared hedging
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error is 0.66 when five 1-month options are used to form the static hedge. This
performance is much worse than daily delta hedging, which generates a root mean
squared hedging error of 0.10. However, as the hedging option maturity increases
from 1 month to 2 months and then to 4 months, the performance of the static hedge
improves quite dramatically, with the root mean squared hedging error of the five-
option portfolio declining from 0.66 to 0.25 and then to 0.04. The performance
improvement is just as pronounced under other model environments. Under all
four models, the static hedging errors using five 4-month options are all smaller
than the corresponding dynamic-hedging errors with daily updating.

Intuitively, when we use 1-month options to hedge a 12-month option, we are
using a piece-wise linear function to approximate the smooth convex value function
of an 11-month option a month later. On the other hand, if the hedge is composed
of 4-month options, we are using smooth, convex 3-month option value functions
to approximate the 11-month option value function. The latter tends to do a much
better job in the approximation as the shapes of the curve match better in between
the approximation points.

Tables 5 and 6 report the correpsonding hedging results on in-the-money and
out-of-the-money call options, respectively. Table 5 sets the target option strike at
90% of the initial spot level, whereas Table 6 sets the target option strike at 110%
of the spot level. The maturity choices for the target and hedging options are the
same as in Table 4. Overall, the hedging errors for in-the-money, out-of-the-money,
and at-the-money options are similar in magnitudes for each strategy and under
each model environment, despite the fact that the target option values vary greatly
with moneyness.

More careful comparison shows that under the dynamic delta-hedging
strategy, the hedging errors are smaller for hedging 110% and 90% strike than for
hedging the at-the-money options, especially at shorter maturities. We contribute
this hedging error difference again to the different gamma of the target options.
At the same maturity, an at-the-money option has larger gamma than an in-the-
money or out-of-the-money option. The hedging error is larger as a result for the
at-the-money option.

For the static strategies, the hedging errors for in-the-money and out-of-the-
money options are similar to those for the at-the-money options. Furthermore,
the observation remains that for each target option, the hedging errors decline
markedly as the hedging option maturity increases. Under all model environments
and for target options of all strikes and maturities, the static hedging errors from
using five 4-month options are smaller than the corresponding dynamic delta hedge
with daily updating with the underlying futures.

The fact that a static hedging strategy with merely three to five options can
outperform a dynamic strategy with daily updating is remarkable. In addition to its
superior performance, the static hedge also enjoys several other advantages. First,
the much fewer transactions for the static hedge may incur smaller transaction
costs. Second, the strategy is very flexible as one can choose options at different
maturities to form the static hedge. The particular choice can be made based on a
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joint consideration of contract availability, transaction cost, order flow, and relative
hedging performance. Third, since the static hedge employs neither short stock
positions nor substantial borrowing, it is not subject to either short sales restrictions
or leverage constraints. By contrast, delta hedges of options always involve a short
position in either the risky asset or a riskfree bond, and hence always face one of
these restrictions. Finally, the use of a static hedge also allows one to economize on
the monitoring costs (e.g., paying for traders and real-time data feeds) associated
with dynamic rebalancing. These costs are much larger in practice than typically
assumed in theory and potentially explain the current situation that dynamic
hedging is usually only performed by specialized institutions.

3 HEDGING S&P 500 INDEX OPTIONS: AN APPLIED EXAMPLE

The simulation study in the previous section compares the performance of the two
different types of hedging strategies under controlled environments. In this section,
we investigate the historical performance of the strategies in hedging the sale of S&P
500 index options. While simulation allows us to benchmark the magnitude of the
approximation error in various models, the empirical study measures the likely
effectiveness of the hedging strategies in practice.

3.1 Data and Estimation

The data on S&P 500 index options are obtained from OptionMetrics. The data
sample is from January 1996 to March 2009. The S&P 500 index options are standard
European options on the spot index and are listed at the CBOE. The data set
includes, among other information, the closing quotes on each options contract
(bid and ask) and implied volatilities based on the mid quote. Also included in
the data set is a unique option contract identifier to facilitate the tracking of an
option contract over time. The underlying index level at close, the interest rate
curve, and the projected dividend yield for the calculation of implied volatility are
also supplied by OptionMetrics. Our hedging exercises are based on the mid option
price quotes.

In parallel with the hedging exercises in the simulation studies, we perform
month-long hedging exercises on the index options. The S&P 500 index options
expire on the Saturday following the third Friday. Since the terminal payoff is
computed based on the opening price on that Friday morning, trades and quotes
on the expiring options effectively stop on the preceding Thursday. Hence, we
start the hedging exercise each month 30 days prior to the expiring Friday, which
is a Wednesday. From these starting dates, we can perform month-long hedging
exercises for 158 nonoverlapping months from January 17, 1996 to February 18, 2009.
Sampling properties of the hedging errors are computed from the 158 hedging
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experiments. To be comparable with the simulations, we normalize the option
prices and hedging errors as percentages of the underlying index level at the starting
date of each hedging exercise.

At each starting date, we classify options into four maturity groups, matching
those used in the simulation exercise: (i) 1-month options (31 days), (ii) 2-month
options (59–66 days), (iii) options with maturities 4–6 months (115–185 days),
and (iv) options with maturities 12–17 months (360–521 days). The variations in
maturities in the last two maturity groups are necessary to obtain a monthly series
because we do not have 4- and 12-month options in all months. As in the simulation,
we use the first three maturity groups (1-, 2-, and 4-month options) to form the static
hedge portfolios and the last three maturity groups (2-, 4-, and 12-month options)
as the target option being hedged. For each target option maturity, we choose
three strikes that are closest to 90, 100, and 110% of the spot level, respectively.
The available number of option contracts at each of the starting dates ranges from
48 to 372 at 1-month maturity, from 30 to 342 at 2-month maturity, from 33 to 132 at
4 to 6-month maturity, and from 12 to 98 at the 12–17 month maturity. About half
of these options are calls and the other half are puts. We report our results on call
options to match the simulation exercise. Hedging put options generates similar
results.

Since we do not know the true data-generating process nor the option pricing
model underlying the market prices, we resort to the simple method of computing
the hedging ratios and static portfolio weights based on the Black–Scholes model
using the observed implied volatility of the target option as the volatility input.
We use the quadrature rule to generate the appropriate strikes and weights for the
static hedge. Since the quadrature-generated strikes do not necessarily match the
strikes of the available option contracts, we use the available strikes closest to the
quadrature-generated strikes to form the static portfolio.

We follow all strategies for 29 actual days, running from the starting date to
the Thursday of the fourth following week, the last day of trading for the 1-month
options used in the static hedge. For the static strategy, we only need to track the
price of the options at each date and record the difference between the price of the
hedge portfolio and the price of the target call option. When there is a discrepancy
between the price of the target call option and the cost of the hedge portfolio at the
starting date, we also monitor the typically small money market account balance.
For the dynamic strategy, we need to compute a new delta at each date based on the
newly observed underlying price level and option implied volatility, and perform
the appropriate delta rebalancing.

3.2 Static versus Dynamic Hedging in Practice

Table 7 presents the summary statistics of the hedging errors for the various hedging
exercises on S&P 500 index options. To ease comparison, we present the results in
a similar format to those from the simulation exercises summarized in Tables 4–6.
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The three panels are for the three sets of relative strikes for the target options. As
in the simulation exercise, we represent the option prices and hedging errors as
percentages of the underlying index level at the starting date of each exercise.

Panel A reports the hedging results on at-the-money options. For a 2-month at-
the-money call option, daily delta hedging with the underlying futures generates
a root mean squared hedging error of 0.63. The corresponding statistic for the
static strategy with three 1-month options is 0.33, about half of the RMSE from
the dynamic strategy. Using five 1-month options makes the hedging errors
even smaller at 0.30. Therefore, a static hedge with just three 1-month options
significantly outperforms daily delta hedging in reducing the risks associated with
writing 2-month call options.

In hedging the sale of a 4 to 6-month call option, the dynamic hedging strategy
generates a root mean squared error of 0.63, compared to 0.57 from the static strategy
with three 1-month call options. Hence, the performances from the two strategies
are on par in hedging the sale of a 4 to 6-month call option.

When hedging the sale of a call option with a time-to-maturity of 12 months or
longer, the dynamic strategy generates a RMSE of 0.70. This performance is better
than the static strategy with three 1-month call options, but on par with the static
strategy with five 1-month call options. Consistent with the results observed in the
simulation exercise, the performance of the static strategy improves if we increase
the time-to-maturity of the options in the hedge. In hedging the sale of a 12-month
or longer call option, the RMSE from the static strategy with three call options
declines from 0.97 to 0.65 and then to 0.39, as the time-to-maturity of the three call
options in the hedge portfolio increases from 1 month to 2 months, and then to 4–6
months. We also observe a similar reduction when using five call options in the
static hedge portfolio.

The results from Panels B and C on hedging in-the-money and out-of-the-
money options are similar. In all cases, the performance of static hedging with
three to five call options is on par with or better than the performance of daily
delta hedging. In addition, the performance of our static strategy can be further
improved by choosing slightly longer maturities for the options in the hedge
portfolio. Therefore, the static strategy not only works in theory and in simulation,
but it also works on historical data.

Comparing the hedging results in Table 7 on the S&P 500 index options to that
from the simulation in Tables 4–6, we observe several differences. For the dynamic
strategies, the performance on the index options is worse than that from the three
pure diffusion models (BS, HN, and MJ) but better than that from the MJ jump-
diffusion model, suggesting that during our sample period, the S&P 500 index did
not move purely continuously, nor had it generated jumps as large as those in the
MJ model simulation. Furthermore, ranking of the dynamic hedging errors for the
three target options is opposite to that from the simulation. The hedging errors are
the largest on the 12-month options on the S&P 500 index, but they are the smallest
under the simulation. On the exchange, options transactions are concentrated at
short maturities. The option quotes at longer maturities can be more susceptible to
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data error. We conjecture that part of the larger hedging errors on the long-term
options are due to data noise.

For the static strategies, the hedging errors on 2-month and 4-month S&P 500
index options are comparable or smaller than that from the simulation under all
model environments, but the hedging errors on 12-month options are in general
larger than those from the simulation. This larger error again may be contributed
by data noise on long-term options.

Compared to the simulation, our hedging exercise on the S&P 500 index options
contains one important difference. The simulation exercise chooses strikes for the
hedge portfolio based exactly on the quadrature rule, but the hedging exercise on
the S&P 500 index options can only use available strikes, with the quadrature rule
used only as an approximation. The similar magnitudes for the hedging errors from
the two types of exercises suggest that the available option strikes from the options
exchange are dense enough for the approximation to be reasonably accurate. The
average adjacent strike spacing on the S&P 500 index options is about 1% of the
spot level at short maturities and about 3% of the spot level at long maturities.

4 SEMI-STATIC HEDGING OF PATH-DEPENDENT OPTIONS

For ease of exposition, the focus of this article thus far has been on static hedging
of standard European options. In this section, we show that we can also form
semi-static hedges of path-dependent options with European options, provided
that the path is discretely monitored. Hedging path-dependent options is not
possible under the BL framework. Dynamically delta-hedging path-dependent
options is plausible in theory, but for many path-dependent claims, the reality of
jumps often destroys the effectiveness of these hedges in practice. Our semi-static
hedging theory takes jumps in stride.

We consider the wide class of contingent claims whose single payoff at the
fixed time T depends on a finite number (n<∞) of points of the price path of a
single underlying asset

VT = f (St0 ,St1 ,...,Stn ), (19)

where t0 =0 and tn =T. We label the times t0,t1,...,tn as monitoring times. The
payoff structure in Equation (19) excludes various continuously monitored Asian
and barrier options, or American claims. Although we can always discretize a
continuous problem, the analysis of this section assumes that we can trade at each
fixed monitoring time ti in options maturing at ti+1.

To simplify the discretely monitored payoff function in Equation (19), we note
that for many claims, we can capture the path-dependence by one or more summary
statistics. In what follows, we will work with a single summary statistic, but it should
be clear how to extend the analysis to multiple such statistics. A single summary
statistic captures the path-dependence of a claim if we can write the final payoff of
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the claim recursively as follows,

VT =φ(HT), (20)

where
Hti =gi(Hti−1 ,Sti−1 ,Sti ), i=1,...,n, (21)

where φ(·) and gi(·) are known functions, H is the single summary statistic, and H0
and S0 are known constants. Examples in this class include discretely monitored
Asian and barrier options, Bermudan, passport, and cliquet options, and many
structured notes. A concrete example which we will focus on is a globally floored,
locally capped, compounding cliquet with discrete monitoring,

VT =S0max[L,HT], (22)

with

Hti =Hti−1

[(
Sti

Sti−1

)
∧U

]
, i=1,...,n, (23)

where L is the global floor, U >1 is the local cap, and n denotes the number of
monitoring periods. Here, H0 =1, and S0 is known. In practice, L is typically chosen
to be one so that the annualized return is always positive. A typical value of the local
cap U is 1.35 so that the maximum return for any year cannot exceed 35 percent.

We assume the same one-factor Markovian setting as in Equation (1). To hedge
the discretely monitored options as described by the payoff function in (20) and (21),
we assume that at each discrete time ti, we can take static positions in European
options of all strikes and maturing at ti+1, for i=0,1,...,n−1. Given this access to
markets, the algorithm for valuing a path-dependent option of the specified type
is as follows.

At time tn−1, conditioning on the history to that time Htn−1 and the
contemporaneous stock price Stn−1 , and from (20) and (21) with i=n, the final payoff
becomes a known function of only the final stock price,

VT =φ(HT)=φ(gn(Htn−1 ,Stn−1 ,ST))≡ fn(ST;Htn−1 ,Stn−1 ), (24)

where the last two arguments of fn are known due to the conditioning. We can span
the final payoff using options maturing at time T,

fn(ST;Htn−1 ,Stn−1 )= fn(κn;Htn−1 ,Stn−1 )+f ′
n(κn;Htn−1 ,Stn−1 ) (25)

[(ST −κn)+−(κn −ST)+]+
∫ κn

0
f ′′
n (K;Htn−1 ,Stn−1 )(K−ST)+dK

+
∫ ∞

κn

f ′′
n (K;Htn−1 ,Stn−1 )(ST −K)+dK,

where the expansion point κn ≥0 can be any convenient constant separating the put
options from the call options. A common choice is the forward price κn =F0(T).

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article-abstract/12/1/3/815302 by N

YU
 School of M

edicine Library user on 05 M
arch 2019



[10:15 27/11/2013 nbs014.tex] JFINEC: Journal of Financial Econometrics Page: 42 3–46

42 Journal of Financial Econometrics

We can value this contingent-claim at time tn−1 by taking conditional
expectations on both sides of Equation (25) under the risk-neutral measure Q and
then discounting the expectation by the constant risk-free rate. We can represent
the value of this claim in terms of the risk-free rate and the contemporaneous option
prices,

Vfn
tn−1

=e−r(T−tn−1)fn(κn;Htn−1 ,Stn−1 )+f ′
n(κn;Htn−1 ,Stn−1 )[Ctn−1 (κn,T)−Ptn−1 (κn,T)]

+
∫ κn

0
f ′′
n (K;Htn−1 ,Stn−1 )Ptn−1 (K,T)dK

+
∫ ∞

κn

f ′′
n (K;Htn−1 ,Stn−1 )Ctn−1 (K,T)dK. (26)

Therefore, at the last time step tn−1, we can replicate the contingent claim using a
portfolio of standard European options maturing at the same time. This result is
the same as in Breeden and Litzenberger (1978) and does not need the Markovian
assumption.

However, to be able to replicate the claim at any other time steps, we need the
one-factor Markovian assumption. Substitution of the Markovian property (1) into
Equation (26) implies that the time-tn−1 value of this contingent claim is a known
function of Htn−1 and Stn−1 ,

Vfn
tn−1

=e−r(T−tn−1)fn(κn;Htn−1 ,Stn−1 )+f ′
n(κn;Htn−1 ,Stn−1 )[C(Stn−1 ,tn−1;κn,T;�)

−P(Stn−1 ,tn−1;κn,T;�)]+
∫ κn

0
f ′′
n (K;Htn−1 ,Stn−1 )P(Stn−1 ,tn−1;K,T;�)dK

+
∫ ∞

κn

f ′′
n (K;Htn−1 ,Stn−1 )C(Stn−1 ,tn−1;K,T;�)dK

≡V(Htn−1 ,Stn−1 ,tn−1). (27)

Now, we step back to time tn−2 and condition on the history to that time Htn−2

and the contemporaneous stock price Stn−2 . From the Markovian representation
in (27) and the definition of the history summary statistic in (21) with i=n−1,
we can write the time-tn−1 value of this claim as a known function of only the
contemporaneous stock price at tn−1,

Vfn
tn−1

=V(Htn−1 ,Stn−1 ,tn−1)=V(gn−1(Htn−2 ,Stn−2 ,Stn−1 ),Stn−1 ,tn−1)

≡ fn−1(Stn−1;Htn−2 ,Stn−2 ), (28)

where Htn−2 and Stn−2 are known through the conditioning. Therefore, at time
tn−2, we can simply regard fn−1(Stn−1;Htn−2 ,Stn−2 ) as the terminal payoff of a one-
step claim, expressed as a function of the terminal stock price Stn−1 . We can
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again replicate this payoff using options maturing at tn−1, analogous to the steps
in Equations (25) and (26). Furthermore, we can again exploit the Markovian
assumption in (1) and derive the new value function V(Htn−2 ,Stn−2 ,tn−2) and the new
target payoff function fn−2(Stn−2;Htn−3 ,Stn−3 ) by performing operations analogous
to (27) and (28). We repeat the procedure until we obtain the value function at
time 0. For this final iteration, we only need to condition on the known values of
H0 and S0.

Therefore, the semi-static hedging of this path-dependent claim goes as follows.
At time 0, we use a portfolio of European options maturing at time t1 to span the
value function of the claim. At time t1, we collect the receipts from the expiring
options in the hedge portfolio and form another hedge portfolio maturing at time
t2. This procedure continues until time T = tn, when the payoff from the hedge
portfolio formed at time tn−1 matches the payoff from the path-dependent claim.
The hedging is static and no portfolio rebalancing is needed in between monitoring
times. At each monitoring step, the options in the hedge portfolio expire and a new
hedge portfolio needs to be formed. Thus, the rebalancing frequency matches the
monitoring frequency, reflecting the semi-static nature of the strategy.

5 CONCLUSION

Dynamic hedging has been widely used due to its flexibility in hedging a wide
class of contingent claims. However, the performance of this strategy deteriorates
dramatically in the presence of jumps of random size. The static hedging strategy
introduced by Breeden and Litzenberger (1978) addresses this model risk, but can
only be applied to a narrow range of payoffs. In this article, we propose a new
approach that is more robust than dynamic hedging and covers a much wider
class of claims than BL. For simplicity, we illustrate our theory when the target
claim is a European option. Since a perfect static hedge requires a continuum of
options in the hedge portfolio, we develop a discrete approximation of the static
hedge and test its effectiveness using Monte Carlo simulation and historical data.

The simulation results indicate that the static hedge approximation has about
the same effectiveness as delta hedging with daily rebalancing in the Black–Scholes
environment. When the simulated underlying price process can also experience
jumps of random size, the performance of the delta hedge deteriorates dramatically,
but the performance of our static option hedge is relatively insensitive to the change
from a purely diffusive process to a jump diffusion. The conclusions are unchanged
when the hedger does not know the driving process and must resort to the Black–
Scholes model with the observed implied volatility as input for computing hedging
ratios and hedge portfolio weights. Further simulation indicates that increasing
the rebalancing frequency cannot improve the inferior performance of the delta
hedge in the presence of random jumps, but the superior performance of the static
hedging strategy can be further enhanced by using more strikes or by optimizing
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on the common maturity in the hedge portfolio. As a result, the static hedge can
achieve superior risk reduction with as few as three options in the hedge portfolio.

To investigate how our static strategy performs in a realistic setting, we analyze
its effectiveness in hedging S&P 500 index options and compare its performance
with daily delta hedging with the index futures. We find that the superior
performance of our static hedge found in the simulations of the Merton model
also extends to the index options data. This finding lends indirect support to the
existence of jumps of random size as part of the S&P 500 index dynamics.
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