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ABSTRACT 

This paper develops static hedges for several exotic options using standard options. 
The method relies on a relationship between European puts and calls with differ- 
ent strike prices. The analysis allows for constant volatility or for volatility smiles 
or frowns. 

THIS PAPER GENERALIZES A RELATIONSHIP due to Bates (1988) between European 
puts and calls with different strikes. We term the generalized result put-call 
symmetry (PCS) and use it to develop a method for valuation and s-tatic hedging 
of certain exotic options. We focus on path-dependent options that change char- 
acteristics at one or more critical price levels, for example, barrier and look- 
back options and their extensions. We do not examine American orAsian options. 

While these options may be valued and dynamically hedged in a lognor- 
mal model,1 we offer valuation and static he(iging in a slightly more general 
diffusion setting. As in Bowie and Carr (1994) and Derman, Ergener, and 
Kani (1994), we create static portfolios of standard options whose values match 
the payoffs of the path-dependent option at expiration and along the bound- 
aries. Since the path-dependent options we examine often have high gam- 
mas, static hedging using standard options will be considerably easier and 
cheaper than dynamic hedging. Furthermore, in contrast to dynamic hedg- 
ing, our static positions in standard options are invariant to volatility, in- 
terest rates, and dividends, bypassing the need to estimate them.2 Because 

*Carr is a VP in Equity Derivatives Research at Morgan Stanley. Ellis is a graduate student 
at the Johnson Graduate School of Management, Cornell University. Gupta is at Goldman Sachs; 
this work was completed while he was an MBA student at the Johnson Graduate School of 
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James Kuczmarski, Robert Merton, Alan Shapiro, and especially Jonathan Bowie for their com- 
ments. We would similarly like to thank participants of presentations at the Fields Institute 
and at Risk conferences on volatility, equity derivatives, and exotic options. Finally, we thank 
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J.P. Morgan, Morgan Stanley, NationsBank, Salomon Brothers, and the University of Southern 
California. We also acknowledge the outstanding research assistance of Cemn Inal. They are not 
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1 For example, barrier options are valued in the Black-Scholes (1973) model in Merton (1973). 
2 However, we assume a certain structure on the price process to achieve these invariance 

results. In particular, we assume that the cost of carrying the underlying is zero, and that its 
volatility satisfies a symmetry restriction. 
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the path-dependent options we examine are often highly sensitive to vola- 
tility, the hedging error due to volatility misspecification may be substantial 
with dynamic hedging. 

Our PCS relationship can be viewed as both an extension and a restriction 
of the widely known put-call parity (PCP) result. The generalization in- 
volves allowing the strikes of the put and the call to differ in a certain man- 
ner. The restrictions sufficient to achieve this result are essentially that the 
underlying price process has both zero drift and a symmetric volatility struc- 
ture, which is described below. 

The rest of the paper is organized as follows. Section I presents the as- 
sumptions and the intuition behind PCS, which is the foundation for our 
hedging strategy. Section II reviews the static replication of single barrier 
options. Section III focuses on exotic options involving multiple barriers, 
such as double knockouts, roll-down, ratchet, and lookback options. In Sec- 
tion IV, we relax the assumption of zero drift and provide tight bounds on 
the static hedges developed in the earlier sections. Section V concludes the 
paper and the Appendix contains the mathematical details supporting our 
results. 

I. Put-Call Symmetry 

Throughout this paper we assume that markets are frictionless and there 
are no arbitrage opportunities. Let P(K) and C(K) denote the time 0 price of 
an European put and call, respectively, with both options struck at K and 
maturing at T. Because maturity is the same for all instruments we consider 
in any given example, we suppress dependence on the time to maturity to 
ease notation. Let B denote the time 0 price of a pure discount bond paying 
one dollar at T. Then Put-Call Parity expressed in terms of the forward 
price F for time T delivery is 

C(K) = [F - K]B + P(K). (1) 

PCP implies that if the common strike of the put and call is the current 
forward price, then the options have the same value. Since put values in- 
crease with increasing strikes and call values decrease, we can write in- 
equalities for European puts and calls whose strikes are on the same side of 
the forward. By contrast, PCS is an equality between scaled puts and calls 
whose strikes are on opposite sides of the forward. 

To obtain PCS, certain restrictions are imposed on the stochastic process 
governing the underlying asset's price. In particular, we assume that the 
underlying price process is a diffusion, with zero drift under any risk- 
neutral measure, and where the volatility coefficient satisfies a certain sym- 
metry condition. Thus, we rule out jumps in the price process and assume 
that the process starts afresh at any stopping time, such as at a first pas- 
sage time to a barrier. 
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The assumption of zero risk-neutral drift is innocuous for optlions written 
on the forward or futures price of an underlying asset. For opt;ions written 
on the spot price, the assumption implies zero carrying costs.3 Thus, the 
no-drift restriction implies that options written on the spot price behave as 
if they were written on the forward price. We relax the assumption of zero 
drift in Section IV and obtain tight bounds on the value of options whose 
payoffs depend on the spot price path. 

Throughout this paper, we assume that the volatility of the forward price 
is a known function o-(Ft, t) of the forward price Ft and time t. We also as- 
sume the following symmetry condition: 

o-(Ft,t)= o-(F2/Ft,t), forallFt -Oandt E [O,T], (2) 

where F is the current forward price. Thus the volatility at any future date 
is assumed to be the same for any two levels whose geometric mean is the 
current forward. 

This symmetry condition is satisfied in Black (1976) model where volatil- 
ity is deterministic, i.e., o(Ft,t) = (t). The symmetry arises when the vol- 
atility is graphed as a function of Xt- ln(Ft/F). Letting v(Xt,t) 0-(Ft,t), 
the equivalent condition is: 

v (x, t) = v (-x, t), for all x E 91 and t E [0, T] . (3) 

Thus, the symmetry condition is also satisfied in models with a symmetric 
smile4 in the log of K/F. As a result, a graph of volatility against K/F will be 
asymmetric, with higher put volatility than call volatility for s3trikes equi- 
distant from the forward. Finally, the symmetry condition also allows for 
volatility frowns or even for more complex patterns. 

Given the above assumptions, the Appendix proves5: 

EUROPEAN PUT-CALL SYMMETRY: Given frictionless markets, no arbitrage, zero 
drift, and the symmetry condition, the following relationship holds: 

C (K)K- 1/2 = P(H)H- (4) 

where the geometric mean of the call strike K and the put strike H is the 
forward price F: 

(KH)1/2 =F. (5) 

3 Thus, for options written on a single stock or on a stock index, the no-drift assumption 
implies that the dividend yield always equals the risk-free rate. For options on spot FX, the 
no-drift assumption implies that the foreign interest rate always equals the domestic rate. For 
options on the spot price of a commodity, the assumption implies that the convenience yield is 
the riskless rate. 

4 Note that the assumed smile is in the local volatility as opposed to the Black (1976) model 
implied volatility. 

5 Bates (1988) first proves this result for constant volatility. See Bates (1991) for an excellent 
exposition of the implications of asymmetry for implying out crash premia. 
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Figure 1. Illustration of Put-Call Symmetry (PCS). A call with strike 16 is equal to 4 puts 
with strike 9 when the forward price is 12. 

Consider a numerical illustration of the PCS result: When the current 
forward is $12, a call struck at $16 has the same value as 4 puts struck at 
$9. This example is depicted in Figure 1. The reason the call has much 
greater value, even though it is further out-of-the-money arithmetically, is 
that our diffusion process has greater absolute volatility6 when prices are 
high than when prices are low. Because call and put payoffs are determined 
by the arithmetic distance between terminal price and strike, the higher 
absolute volatility at higher prices leads to higher call values. 

One intuition for PCS arises from generalizing the following intuition for 
put-call parity. Imagine a graph of the "risk-neutral" density of terminal 
prices and suppose that the horizontal axis is placed on a wedge with the 
objective of finding the fulcrum. The fulcrum is found by balancing the prod- 
uct of density and distance from the wedge integrated across terminal prices. 
In other words, the fulcrum occurs at the expected value under the risk- 
neutral distribution, which is the current forward price. Summing the prod- 
uct of density and distance from the wedge on the right of the fulcrum gives 
the (forward) price of a European call struck at the forward. Similarly, sum- 
ming the product of density and absolute distance from the wedge on the left 
of the fulcrum gives the forward price of an at-the-money forward European 
put. Because the options' forward prices coincide, their spot prices also co- 
incide by a simple cost of carry argument. 

The PCS result (equation (4)) implies that a call struck at twice the cur- 
rent forward has twice the value of a put struck at half the current forward. 

6 Absolute volatility is defined as the standard deviation of price changes, i.e., Std(dF). In 
contrast, the usual volatility is defined as the standard deviation of relative price changes, i.e., 
Std(dF/F). 
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To extend the above balancing intuition to these "winger" options, we now 
imagine that the horizontal axis is placed on two wedges, one located at half 
the current forward price and the other at twice the current forward price. 
Then the summed product of density and distance above twice forward gives 
the winger call's (forward) value. Similarly, the summed product of density 
and absolute distance below half forward gives the winger put's (forward) 
value. If the density between wedges is removed, then the axis will tip right- 
side down because the call is more valuable than the put. However, doubling 
the density to the left of half forward will restore balance. In other words, 
two such puts have the same value as one call. 

Il. Single Barrier Options 

In this section we represent path-dependent options with a sinigle barrier7 
in terms of path-independent standard options. The key to providing this 
result is put-call symmetry, which is assumed to hold when the underlying 
first reaches the barrier price. Thus, the axis of symmetry for volatility is 
the barrier price. 

Without loss of generality, we concentrate on valuing and hedging knock- 
out calls. Such calls behave like regular calls except that they are knocked 
out the first time the underlying hits a prespecified barrier. In contrast, 
knock in calls become standard calls when the barrier is hit and otherwise 
expire worthless. Given a valuation result and hedging strategy for knock- 
out calls, the corresponding results for knock in calls can be recovered using 
the following parity relation8: 

OC(K,H) = C(K) - IC(K,H), (6) 

where IC (K, H) (OC (K, H)) is an in-call (out-call) with strike K and barrier H. 

A. Down-and-Out Calls 

By definition, a down-and-out call (DOC) with strike K and barrier H < K 
becomes worthless if H is hit at any time during its life. If the barrier has 
not been hit by the expiration date, the terminal payoff is that of a standard 
call struck at K. 

To hedge a down-and-out call we need to match the terminal payoff and 
the payoff along the barrier. Thus a first step in constructing a. hedge is to 
match the terminal payoff, which is done by purchasing a standard call, 
C(K). Now let us consider option values along the barrier. When F = H, the 
DOC is worthless, while our current hedge C(K) has positive value. Thus we 

7 We focus on call options, leaving analogous results for puts as an exercise to the reader. 
8 This result does not hold for American options. See Chriss (1996) for a lucid discussion. 
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Figure 2. Static hedge for a down-and-out call (K = 100, H = 95). Panel A shows the value 
of a European call struck at 100 for stock prices ranging from 95 to 105 and times to maturity 
up to a year. The axis labeled Time indicates time to maturity. Panel B shows the value of 
1.0526 puts struck at 90.25. Note that the graphs are identical along the barrier of 95. Panel C 
shows the difference between the first two graphs, indicating that the replicating portfolio 
value vanishes along the barrier. 

need to sell off an instrument that has the same value as the European call 
when the forward price is at the barrier. Using PCS when F = H, we obtain9 

C(K) = KH-1P(H2K-). 

Thus, we need to write KH-1 European puts struck at H2K-1 to complete 
the hedge. 

Thus the complete replicating portfolio for a DOC is a buy-and-hold strat- 
egy in standard options which is purchased at the initiation of the option 

DOC(K,H) = C(K) - KH-1P(H2K-1), H < K. (7) 

If the barrier is hit before expiration, the replicating portfolio should be 
liquidated with PCS guaranteeing that the proceeds from selling the call are 
exactly offset by the cost of buying back the puts. If the barrier is not hit 
before expiration, then the long call gives the desired terminal payoff and 
the written puts expire worthless, as H2K1 < H when H < K. 

Figure 2 illustrates the replication of a down-and-out call with strike K = 

$100, barrier H = $95, and an initial maturity of one year. Panel A is of a 

9 The required put strike is Kp = H2K-1, from equation (5), and substituting this into equa- 
tion (4) gives the result. 
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standard call with the same strike and maturity as the down-and-out. Along 
the barrier F = $95, the call has positive value. Panel B is of KH-1 = 1.0526 
puts struck at H2K-1 = $90.25. Notice that the value of these puts along the 
barrier F = $95 matches that of the standard call. When Panel B is sub- 
tracted from Panel A, the result is Panel C. Panel C shows that the repli- 
cating portfolio has zero value along the barrier F = $95 and the payoff of a 
standard call struck at $100 at expiration. 

B. Up-and-Out Calls 

An up-and-out call (UOC) has a knockout barrier set above the current 
forward price. When the barrier is at or below the strike (H c K), the UOC 
is worthless as it is always knocked out before it can have a positive payoff. 
Thus we need only consider barriers set above the strike (H > K), which 
implies that the UOC has intrinsic value before it knocks out. 

We again start our replicating portfolio with an European call struck at K 
as this matches our payoff at expiration. To get zero value along the barrier 
H, we could sell KH-1 puts struck at H2K-1, but this would give us prob- 
lems at expiration if the barrier has not been hit. Instead, our replicating 
portfolio for an UOC uses equations (6) and (1) with up-and-in securities: 

UOC(K,H) = C(K) - UIP(K, H) - (H-K)UIB(H), H K,F, (8) 

where, by definition, the up-and-in bond UIB (H) pays $1 at expiration if the 
barrier H has been hit before then. 

To see that the portfolio matches the payoffs of the UOC, consider the payoff 
of the UOC if the barrier is never touched-the required payoff is t:hat of a stan- 
dard call struck at K. In the replicating portfolio, the up-and-in put and bonds 
expire worthless, while the standard call provides the desired payoff. Con- 
versely, at the first passage time to the barrier, the up-and-out call knocks out 
just as the up-and-in put and bonds knock in. Since the forward price is at H, 
put-call parity implies that the replicating portfolio can be liquidated at zero 
cost. The up-and-in put struck at K with barrier H matches the tIime value of 
the standard call C(K) at the barrier and the (H - K) up-and-in bonds match 
its intrinsic value. 

The advantage of representing an up-and-out call in terms of up-and-in 
puts and bonds is that equation (8) holds for any continuous process for the 
underlying's price. The disadvantage is that the up-and-in securities may 
not trade or may only trade with heavy frictions. We can apply PCS to show 
that the UIP(K,H) can be replicated with KH-1 calls struck at H2K-1. The 
Appendix shows that an UIB(H) can be replicated by buying two binary 
calls (BC) struck at H and H-1 European calls struck at H: 

UIB(H) - 2BC(H) + H-1C(H), H > F. (9) 

By definition, the binary calls pay $1 at expiry if the underlying finishes 
above H then. The intuition for the replication of the UIB is that when the 
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Table I 

Convergence of Vertical Spreads to Binary Call 
This table calculates the value of a vertical spread (VS) with parameter n, where n is the 
number of call spreads and its reciprocal is the spread between strikes. C is an European call. 
As n increases the vertical spread converges to a binary call (BC) with strike $105, with ana- 
lytical value $0.292384. 

n VS(n) n[C(105) - C( 05 + 1)1 

1 0.276446 - C(105) - C(106) 
2 0.284331 = 2[C(105) - C(105.50)] 
3 0.286997 = 3[C(105) - C(105.33)] 

forward is at the barrier, each binary call is valued at approximately the 
probability of finishing in-the-money. If this probability were exactly 0.5, 
then the two binary calls alone would suffice. The positive skew of the ter- 
minal price distribution implies that the probabilities are slightly less than 
0.5, entailing a minor correction using calls as in equation (9). 

Rewriting equation (8) in terms of standard and binary calls gives: 

UOC(K,H) - C(K) - KH-1C(H2K-1) - (H - K)[2BC(H) + H-1C(H)], 

H > K,F. (10) 

It is well known that binary calls can be synthesized using an infinite num- 
ber of vertical spreads of standard calls10 

BC(H) = limn[C(H) - C(H + n1)]. (11) 
nioo 

As a result, the up-and-out call can be replicated using standard calls alone. 
Clearly, the binary call replicating strategy in equation (11) is impractical. 

To remedy this, we use a technique called Richardson extrapolation which 
has been previously employed for option pricing (see, e.g., Geske and John- 
son (1984)). Given a set of approximations indexed by a parameter (e.g., step 
size), Richardson extrapolation is a technique for guessing the value when 
the parameter is infinitesimal. We illustrate the approach for binary calls 
with the following example for FX options assuming constant interest rates 
and volatility. Suppose F = S = $100, K = $105, r = rf = 4%, a- = 20%, and 
T = 0.25 years. Then the exact Black (1976) model value of the binary call is 
$0.292384. Define VS(n) as the value of n vertical call spreads involving 
strikes 105 and 105 + n-1, n = 1,2,3. Again using Black's model, Table I 
indicates the speed of convergence of VS(n) to the correct value. 

10 See Chriss and Ong (1995) for a discussion of this result. 
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Figure 3. Static hedge for an up-and-out call (K = 100, H = 105). Panel A shows a European 
call struck at 100. Panel B shows five up-and-in bonds with strike 105, which pay $1 each at 
expiration if the barrier 105 has been hit by then. Panel C shows 0.9524 call struck at 110.25. 
The total hedge is shown in Panel D, which has been scaled up. 

While the vertical spread values are slowly converging, five-decimal-place 
accuracy can be obtained by using the following three-point Richardson 
extrapolation11: 

Vs'-2-3 0.5 x VS(1) - 4 x VS(2) + 4.5 x VS(3). 

Thus the value of a binary call is well approximatedl2 by the following sim- 
ple portfolio of standard calls: 

BC(105) _VS-2-3 6C(105) - 0.5C(106) + 8C(105.50) - 13.5C(105.33). 

Figure 3 shows the value of the components of the static hedge for an 
up-and-out call with strike K = $100, barrier H = $105, and initial maturity 
of one year. The standard call struck at $100 shown in Panel A has both 
intrinsic and time value along the barrier (105). Panel B is the H - K = 5 
up-and-in bonds, which match the intrinsic value of the call along the bar- 
rier. Panel C is of K_H-' = 0.9524 calls struck at H2K` = $110.25, which 
match the time value of the call along the barrier. When Panels B and C are 
subtracted from Panel A, the result is shown in Panel D, indicating zero 
value along the barrier and the call payoff at maturity. 

" See Marchuk and Shaidurov (1983), p. 24, for a derivation of Richardson weights. 
12 The approximation deteriorates near expiration w:hen prices are near the strike. 
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III. Multiple Barrier Options 

In this section, we discuss complex barrier options involving multiple bar- 
riers.13 Although more complex specifications are possible, we simply as- 
sume that the volatility of the underlying is henceforth a deterministic function 
of time, as in Black's (1976) model; i.e., o(Ft) = (t) for all F > 0 and t E 
[0,T] . 

A. Double Knockout Calls 

Consider a call option that has two barriers,14 so that the call knocks out 
if either barrier is hit. We assume that the initial forward price and strike 
are both between the two barriers. There is a parity relation between this 
double knock-out call (02C) and a double knock in call (12C), which knocks 
in if either barrier is hit: 

02C(K,L,H) = C(K) - I2C(K,L,H), (12) 

where K is the strike, L is the lower barrier, and H is the higher barrier. We 
will again focus on replicating the payoffs of a double knock out call using 
static portfolios of standard options. 

On its surface, a double knock out call 02C(K,L,H) appears to be a com- 
bination of a DOC(K,L) and an UOC(K,H). The payoff of the 02C(K,L,H) 
is zero if either barrier is hit and the standard call payoff at expiry if neither 
barrier is hit. A portfolio of a call knocking out at the lower barrier and a call 
knocking out at the higher barrier would give these payoffs, so long as the 
knock out of one option also knocked out the other. This additional specifi- 
cation is necessary as otherwise the surviving option contributes value at 
the other's barrier. 

To construct the replicating portfolio for the 02C(K,L,H), we begin as 
before by purchasing a standard call C(K) to provide the desired payoff at 
expiry. We will then attempt to zero out the value at each barrier separately. 
If we knew in advance that the forward price reaches the lower barrier L 
before it reaches the higher barrier H, then our previous analysis of a down- 
and-out call implies that the value of the call C(K) can be nullified along the 
barrier L by initially selling KL-1 puts struck at L2K-'. Thus, the replicat- 
ing portfolio under this assumption would be: 

02C(K,L,H) C(K) - KLU'P(L2K-1). (13) 

Alternatively, if we knew in advance that the forward price reaches the higher 
barrier H first, then from equation (10) the replicating portfolio would in- 
stead be: 

02C(K,L,H) C(K) - KH-1C(H2K-1) 

- (H - K)[2BC(H) + H-1C(H)]. (14) 

13 Partial barrier options may be statically hedged using a portfolio of standard and com- 
pound options. A discussion of this can be obtained from the authors. 

14 Double barrier calls and puts have been priced analytically in Kunitomo and Ikeda (1992). 
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Because we don't know in advance which barrier will be hit first, we try 
combining the two portfolios: 

02C(K,L,H) C(K) - DIC(K,L) - UIC(K,H) 

- C(K) - KL-'P(L2K-') - KH-'C(H2K-') 

- (H - K)[2BC(H) + H-1C(H)]. (15) 

The problem with this portfolio is that each written-in call contributes (neg- 
ative) value at the other's barrier. For example, if the forward price reaches 
H first, then the DIC(K,L) = KL-'P(L2K-1) contributes (negative) value 
along H. Thus, we need to add securities to the portfolio in an effort to zero 
out value along each barrier. Along the barrier H, the negative influence of 
the KL-1 puts struck at L2K-1 can be offset by buying LH-1 calls struck at 
H2KL-2. To cancel the negative influence of the UIC (K, H) along the barrier 
L, we will need to extend PCS to binary calls. 

Recall that a binary call (put) is a cash-or-nothing option that pays $51 if 
the stock price is above (below) a strike price K, and zero otherwise. Simi- 
larly, a gap call (put) is an asset-or-nothing option that pays the stock price 
S if it is above (below) a strike price K, and zero otherwise. I'he following 
parity relations are easily shown: 

GC(K) = K.BC(K) + C(K), GP(K) - K.BP(K) - P(K). 

Since binary options may be synthesized out of standard options, these par- 
ity relations imply that the same is true for gap options. The Appendix proves 
the following symmetry result, relating values of binary options to gap options. 

BINARY PUT-CALL SYMMETRY: Given frictionless markets, no arbitrage, zero 
drift, and deterministic volatility, the following relationships hold: 

K'12BC(K) = GP(H)H-'12 H1/2BP(H) = GC(K)K-1/2, (16) 

where the geometric mean of the binary call strike K and the binary put 
strike H is the forward price F: 

(KH)1'2 = F. 

Armed with this result, we can cancel the negative influence of the 
UIC(K, H) in equation (15) along the barrier L. Thus, our first layer approx- 
imation for the double knock out call value is: 

02C(K,L,H) = C(K) - L-'(KP(L2K-1) - HP(L2KH-2)) 

- H-'(KC(H2K-1) - LC(H2KL-2)) 

- (H - K)[2BC(H) + H-1C(H) - 2L-'GP(L2H) 

- L-1P(L2H`)]. (17) 
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Although equation (17) is a better approximation than equation (15), the 
added options still contribute value at the other's barrier. Thus, we need to 
continue to subtract or add options, noting that each additional layer of 
hedge at one barrier creates an error at the other barrier. As a result, the 
replicating portfolio for a double knock-out call can be written as an infinite 
sum: 

02C(K,L,H) = C(K) - E [L-1(HL-1)n(KP(L2K-1(LH-1)2n) 
n=O 

-)(+l) - HP(K(LH-l 2n1) 

+ H-'(LH-')n(KC(H2K-1(HL-1)2n) 

- LC(K(HL-1)2(n+l)) J 2(H -K)(HL-l)n 

x [BC(H(HL-1)2n) - L-'GP(L(LH-1)2n+l)] 

+ (H - K)[H-'(LH-1)nC(H(HL-1 )2n) 

- L-(HL-1)np(L(LH1-)2n+l)]. 

(18) 

Note that the options in the infinite sum are all initially out-of-the-money. 
Furthermore, as n increases, the number of options held and the options' 
moneyness both decrease exponentially. As a result, for large n, the options' 
contribution to the infinite sum becomes minimal. Thus we can get a good 
approximation to the option value with a small value of n. Table II shows a 
typical example. With F = K = 100, barriers at L = 95 and H = 105, r = rf = 
4 percent, o- = 20 percent, and T = 0.25, five-decimal-place accuracy has 
occurred by summing the values for n = 0, 1, 2. The value for n = 00 is 
obtained from the analytic solution by Kunitomo and Ikeda (1992). 

Figure 4 graphs the value of the second-layer hedge, i.e., n 1 in equation 
(18), for a double knock out call option. Notice that the value along both 
barriers is very close to zero. 

In general, bringing in the barriers of a double knock out call reduces both 
its value and the number of options needed to achieve a given accuracy. 

B. Roll-Down Calls 

A double knock out call involves two barriers that straddle the initial spot. 
In contrast, a roll-down call (RDC)15 involves two barriers, both below the 
initial spot and strike. If the nearer barrier is not hit prior to maturity, then 
a roll-down call has the same terminal payoff as a standard call struck at Ko. 
However, if the nearer barrier H1 is hit prior to maturity, then the strike is 
rolled down to it, and a new out-barrier becomes active at H2 < H1. For later 
use, we extend the definition of a RDC as follows. We assume that if the 
nearer barrier H1 is hit, then the strike rolls down to some level K1 E [H1, Ko], 

15 For a discussion of roll-down calls and roll-up puts, see Gastineau (1994). 
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Table II 

Convergence of Replicating Portfolio to Double Knock out Call 
(02C) Value 

The values are generated by using the static hedging portfolio for O2C(K,L,H) for increasing 
values of N. 

N 

02C(K,L,H) = C(K) - E [L- 1(HL-1)n(KP(L2K-1(LH1-1)2n) -HP(K(LH-1)2(n+l))) 
n =O 

+ H-1(LH-1)n(KC(H2K-1(HL-1)2n) -LC(K(HL-)2(n+l))) 

+ 2(H - K)(HL-l )n [BC(H(HL-1 )2n) -L-GP(L(LH-1)2n+1)i 

+ (H -K)[H- (LH- 1 )nC (H(HL- 1)2n) 

- L-1(HL-1)nP(L(LH-1)2n+l)]]. 

C and P are European calls and puts, respectively; K is the strike price; L and H are lower and 
upper barriers, respectively; BC is a binary call; GP is a gap put; rf is the foreign interest; rate 
and r is the domestic interest rate; o- is the volatility of the underlying asset; and T is the time 
to maturity of the option. The parameters for the option are initial forward price F = 100, K = 
100, barriers at L = 95 and H = 105, r = rf = 4%, o- = 20%, and T = 0.25. The value for N = oo 
is given by the analytic solution of Kunitomo and Ikeda (1992). 

N Value of Replicating Portfolio 

0 0.074763 
1 0.007781 
2 0.007746 
3 0.007746 

x0 0.007744 

which need not equal H1. We also assume that if the farther barrier H72 is 
hit, then the strike rolls down to some level K2 E [H2, K1] and a new out- 
barrier becomes active further down at H3 < H2. This process repeats an 
arbitrary number of times. 

Let H1,... ,Hn be a decreasing sequence of positive barrier levels set below 
the initial forward price, F > H1. Similarly, let Ko,..., Kn be a decreasing 
sequence of strikes, with Ki ' Hi, i = 1,.., n. Then at initiation, the ex- 
tended roll-down call can be decomposed into down-and-out calls as 

n 

ERDC(Ki,Hi) = DOC (KoB ,H) + 
E [DOC(Ki,Hi+1) - DOC(Ki,Hi)]. (19) 

This representation is model-independent. To obtain a standard roll-down 
call, we set n = 1 and K1 = H1. For any n, t:he hedge works as follows. If the 
underlying never hits the barrier H1, then the DOC(K0,Hj) provides the 
desired payoff (FT - Ko)+, and the knock out calls in the sum cancel each 
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Figure 4. Second layer static hedge for a double knockout call option with barriers at 
95 and 105 and strike at 100. 

other. If the barrier H1 is hit, then the DOC(K0,Hj) vanishes, as does the 
written DOC(K1,H1). Thus the position when F = H1 may be rewritten as 

n 

ERDC (Ki, Hi) = DOC(K1, H2) + E [DOC (Ki 7HI+1) - DOC (Ki, Hi)]. (20) 
i=2 

This is analogous to our initial position. In between any two barriers Hi and 
Hi+1, the DOC(Ki,Hi+1) provides the desired payoff if the next barrier is 
never hit, but the DOCs in the sum roll down the strike to Kj+j if this bar- 
rier is hit. 

When PCS holds at each barrier, the extended roll-down call value at ini- 
tiation, for F > H1, is given by 

ERDC(K,,Hi) = C(Ko) - KoH1lP(H 2Ko 1) 
n 

+ [KiHi-1P(H2 Ki 1) - Ki Hi-+', P (Hi2 1 K1)]. (21) 
i=l1 

The replicating strategy is as follows. At any time, we are always holding a call 
struck at or above the highest untouched barrier and puts struck at or below 
this barrier. Thus, if the forward price never reaches this barrier, the call pro- 
vides the desired payoff at expiry, and the puts expire worthless. Each time 
the forward price touches a barrier Hi for the first time, we sell the call struck 
at Ki -1 and buy back Ki- 1 Hi- 1 puts struck at H2 K7-91; sell Ki H1 puts struck 
at H?2 Ki-1 and buy the call struck at Ki. PCS guarantees that both transitions 
are self-financing. 

As previously mentioned, the standard roll-down call is the special case of 
equation (21) with n = 1 and K1 = H1. Figure 5 illustrates the replication 
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Figure 5. The two part static hedge for a roll-down call (K0 = 100, K1 = H1 = 95, H2 = 90). 
Panel A shows the replicating portfolio when the price is above the first barrier, 95. Panel B 
shows the replicating portfolio after the barrier 95 has been hit. The two portfolios are ide:ntical 
along the barrier of 95, and the second is worth zero along the lower barrier 90. Panel C is a 
different perspective of Panel B, showing more clearly value of the portfolio at 95. 

procedure for a standard roll-down call with initial strike Ko0 $100, rolled- 
down strike K1 =H1 -$95, and final out-barrier H2 = $90. Panel A shows 
the value of the replicating portfolio before the first barrier is hit. If the 
forward hits the first barrier H1, then the portfolio is costlessly revised to 
C(H1) - H1 H2 'P(H2 Hj'). Panel B shows t:he value of this new portfolio for 
prices below $95. The revised portfolio has zero value along the knockz out 
barrier H2 =90 as required. Panel C is just Panel B with a different orien- 
tation, showing that the value of the two portfolios match along the first 
barrier H1 = 95 

C. Ratchet Calls 

A ratchet call is an extended roll-down call, with strikes set at the barri- 
ers, which never knocks out completely. This is accomplished by having the 
only purpose of the lowest barrier be to ratchet down the strike. This sug- 
gests that we can create a static hedge for a ratchet call once we account for 
this difference. 

To synthesize a ratchet call with initial strike Ko, we set the strikes Ki in 
the ERDC(Kz,H1) equal to the barriers Hz, i 1,... ,n - 1. To deal with the 
fact that an extended roll-down call knocks out completely if the forward 
reaches Hn, while the ratchet call rolls down the strike to Hn, we replace the 
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last spread of down-and-out calls [DOC(Hn ,Hn?+l) - DOC(Hn,Hn)] in equa- 
tion (19) with a down-and-in call DIC(Hn,Hn). Thus, a model-independent 
valuation of a ratchet call, using barrier calls, is 

n-1 

RC(KO,Hi) = DOC(K0,Hj) + E [DOC(Hi,Hi+) - DOC(Hi,Hi)] 
i=1 

+ DIC (Hn,7Hn ), F > Hl. (22) 

Substituting in the model-free results, DOC(K,H) = C(K) - DIC(K,H) and 
DIC(H,H) = P(H) simplifies the result to: 

n-1 

RC(KO,Hi) = DOC(Ko,H,) + E [P(Hi) - DIC(Hi,Hi+1)] 

+ P(Hn), F > Hl. (23) 

When PCS holds at each barrier, a ratchet call can be represented in terms 
of standard options as 

n-1 

RC(KO,Hi) = C(KO) - KoHi 'P(Hi Kr7') + E [P(Hi) - HiHi-+',P(Hi+ 1Hi)] 
i=l 

+ P(Hn), F > H1. (24) 

Hedging with this replicating portfolio is analogous to the extended roll-down 
call hedge: the position held is changed at every barrier, and the transitions 
are self-financing. Comparing equation (24) with its counterpart for an ex- 
tended roll-down call allows us to capture the value of removing an out-barrier 
at Hn+ 1. Setting Ki = Hi in equation (21) and comparing with equation (24) im- 
plies that the value of removing this barrier is given by Hn Hn-+1 puts struck at 

+ln 

D. Lookback Calls 

A floating strike lookback call (LC) is similar to a ratchet call, except that 
there is a continuum of rolldown barriers extending from the initial forward 
price to the origin, so that the strike price is the minimum price over the 
option's life. A ratchet call with Ko = F, Hn = 0, undervalues a lookback 
because the active strike is always at or above that of a lookback. Thus, a 
model-free lower bound for a lookback call is 

n-1 

LC -RC (F, Hi) = DOC (F, H1) + , [P (Hi) -DIC (Hi, Hi + 1)] + P (Hn). 
i=i 

(25) 
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When PCS holds at each barrier, this lower bound can be expressed in terms 
of standard options: 

n-1 

LC - C(F) - FH-'P(H F-) + , [P(Hi) - HHi+' P(Hi1 Hz ) + P(HH) 
i=l 

(26) 

The portfolio of standard options undervalues the lookback because the call 
held is always struck at or above the lookback. By adding more strikes, we 
obtain a tighter bound. Since the underlying's prices are actually discrete, 
one possibility is to set the barriers at each possible level. 

To obtain an upper bound on the value of a lookback call, we may use an 
extended ratchet call, which ratchets the strike down to the next barrier 
each time a new barrier is crossed. When the last positive barrier is touched, 
the strike is ratcheted down to zero. Thus, a model-free upper bound in 
terms of down-and-in bonds is 

n-1 

LC ? C(H1) - P(H1) + E [(Hi - Hi+ 1)DIB (Hi)] + HnDIB (Hn). (27) 
i=l 

Intuitively, when each barrier Hi is reached for the first time, the down- 
and-in bonds ratchet down the delivery price of the synthetic forward 
C(H1) - P(H1) by Hi - Hi+, dollars. 

When PCS holds at each barrier, it can be used to represent the down- 
and-in bonds in terms of standard options. In particular, using an argument 
analogous to that in the Appendix for an up-and-in bond, a down-and-in 
bond can be replicated using the following static portfolio of binary and stan- 
dard puts: DIB(H) = 2BP(H) - H-1P(H). Richardson extrapolation may 
again be used to efficiently represent the binary puts in terms of standard 
puts. 16 

We can modify the above bounds for both a forward-start and a backward- 
start lookback call. Let 0 be the valuation date and let T1 be the start date 
of the lookback period. In the backward-sta:rt case (T1 < 0), the underlying 
has some minimum-to-date, m, which is in between two barriers Hi and Hi,1 
for some z. The lower bound is thus a ratchet call with initial strike Hi and 
barriers Hi where i = ? + 1, ... ,n - 1. Similarly, the upper bound is an ex- 
tended ratchet call with initial strike Hi,1 and barriers Hi, i = z + 1...... 
n - 1. Because ratchet calls and extended ratchet calls can be replicated 
with standard options, we have bounded the lookback call in terms of static 
portfolios of standard options. 

16 Richardson extrapolation may also be used to enhance convergence of the lower and upper 
bounds of a lookback call by extrapolating down the distance between barriers. A discussion of 
this can be obtained from the authors. 
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In the forward-start case (T1 > 0), we use the fact that the formula for a 
backward-start lookback call is linearly homogeneous in the current spot/ 
forward price and the minimum to date. At T1, the minimum is ST1 so the 
lookback call value at T1 may be written as c (.)ST1, for some function c (.) 
independent of ST1. Thus, for a forward-start LC, we should initially hold 
ce-6Tl units of the underlying. Moving forward through time, the dividends 
received are reinvested back into the security, bringing the number of units 
held up to c by time T1. At T1, the c shares can be sold for proceeds just 
sufficient to initiate the approximating strategy described above. 

IV. Nonzero Carrying Costs 

The previous results were derived assuming that the drift of the under- 
lying was zero (under the martingale measure). This assumption is natural 
for options on futures, but strained somewhat for options on the spot. In this 
section, we relax the assumption of zero drift. Although we are no longer 
able to obtain exact static hedges for options on the spot, we can develop 
tight bounds on option values using static hedges. Bowie and Carr (1994) 
give the bounds for single barrier options, so we concentrate on multiple 
barrier calls. For concreteness, we deal with options on spot foreign ex- 
change (FX), assuming constant interest rates for simplicity. Then, interest 
rate parity links forward prices (F(t)) and spot prices (S(t)) of FX by 

F(t) = S(t)e(r-rf)(T-t) t E [0, TI, (28) 

where r is the domestic rate and rf is the foreign rate. Thus, when the spot 
hits a flat barrier H, the forward hits a time-dependent barrier H(t)- 
He (r-rf)(T-t). 

A. Double Knock out Calls 

When the drift of the underlying is not zero, a double knock out call on the 
spot with flat barriers L and H is equivalent to a double knock out call on the 
forward price with time-dependent barriers L(t) = Le(r-rf)(T-t) and H(t) = 
He(r-rf)(T-t) with t E [0, T]. We can give flat upper and lower bounds on these 
time-dependent barriers. If r > rf17: 

L ? L(t) < L Le(rrf)T H ? H(t) < H -He(rrf)T 

Double knock out options increase in value as the out-barriers are moved 
farther apart. Thus for the double knock out call on the forward,18 we can 
write 

O2Cf(K,L,H) 02Cf (K,L(t),H(t)) 02f (K,L,H). (29) 

17 The details for hedging multiple barrier calls when r < rf are left as an exercise for the 
reader. 

18 Since interest rates are constant, results for options on forwards also hold for options on 
futures. 
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Figure 6. Synthesizing a double knockout call with cost of carry. Value of the upper 
(dashed line) and lower (dotted line) bound static hedges for a double knock-out call (K = 100, 
lower barrier 95, and upper barrier 105) compared with the analytical value (solid line). The 
foreign interest rate (rf) is fixed at 4 percent and the domestic interest rate (r) varies from 
1 percent to 7 percent. For r < rf the lower bound is the upper bound and vice versa. 

Furthermore, by definition, the double knock out on the forward with time- 
dependent barriers is the same as the double knock out on the spot with flat 
barriers: 

02Cf (K,L(t),H(t)) = 02Cs(K,L,H). (30) 

Combining equations (29) and (30) allows us to bound the value for a double 
knock-out call on the spot between the values of two double knock out calls 
on the forward: 

O2Cf(K,L,H) 2CS(K, L, H) O2Cf(K,L,fH). (31) 

As we know how to replicate each of the two bounds with a static portfolio, 
we have upper and lower bounds on the double knock out call on the spot. 
Figure 6 indicates how the bounds vary with the interest rate differential. 

B. Roll-Down Calls 

Recall that under zero drift and with PCS holding at every barrier, an 
extended roll-down call (ERDC) was synthesized out of standard call and put 
options in equation (21). 
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When the drift of the underlying is not zero, an ERDC on the spot with 
flat strikes Ki, i = O,...,n and barriers Hi, i 1,...,n is equivalent to an 
ERDC on the forward with time-dependent strikes Kit Ki e(rer)(T-t) and 
barriers Hit Hie(rrf)(Tt) 

ERDCs (Ki 7 Hi ) = ERDCf (Kit, Hit). 

We can give flat upper and lower bounds on these time-dependent quanti- 
ties. If r > rf, 

K, Kit -< K,--Kie 9rf t E [O, T],i =O,. .. .n 

Hi Hit -< Hi--Hie (rr)7 t E [0, T ],i - 
17 .. * n. 

The ERDCf value is decreasing in the level of the strikes and increasing in 
the level of the barriers. Thus, we can place bounds on ERDCf(Kit,Hit): 

ERDCf (Ki, Hi) ? ERDCf (Kit, Hit) ? ERDCf (Ki 7 Hi). (32) 

From Section III.B we can create static hedge portfolios for the upper and 
lower bounds, and the tightness of these bounds for a standard roll-down 
call (n = 1, K1 = H1) is shown in Figure 7. 

C. Ratchet Calls 

A ratchet call on the spot is a special case of an extended roll-down call on 
the spot created by setting the strikes Ki equal to the barriers Hi and re- 
moving the last knock-out barrier. As a result, the bounds for a ratchet call 
on the spot are determined similarly to an extended roll-down call. The lower 
bound is a ratchet call that ratchets every time the flat barrier Hi is hit to 
a strike of Hi. The higher bound is an extended ratchet call on the forward 
that ratchets every time the barrier Hi is hit to a strike of Hi: 

RCf (Hi, Hi) ' RCs (Hi ' RCf (Hi, Hi). (33) 

D. Lookback Calls 

Consider a ratchet call on spot with the initial strike Ko set at the initial 
spot price and the final rung Hn set at the origin. As in the case of zero 
carrying costs, this ratchet call undervalues a lookback due to the discrete- 
ness of the rungs. As a result, the lower bound for a ratchet call on spot is 
also a lower bound for a lookback call on spot. An upper bound for a lookback 
call on spot can be obtained from an extended ratchet call on spot, which 
ratchets the strike to the next lower barrier. However, an extended ratchet 
call on the spot with flat barriers is equivalent to an extended ratchet call on 
forward with time-dependent barriers. A lower bound can be obtained from 
a generalization of equation (27). For each time-dependent barrier, Hit, each 
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Figure 7. Synthesizing a roll-down call with cost of carry. Value of the upper (dashed line) 
and lower (dotted line) bound static hedges for a roll-down call (Ko = 100, K1 = H1 = 95, H2 = 90) 
compared with the analytical value (dotted line). The foreign interest rate is fixed at 4 percent 
and the domestic interest rate varies between 1 percent and 7 percent. When the domestic rate is 
below the foreign rate, the lower bound becomes the upper bound and vice versa. 

time the forward reaches the flat upper bound Hi, we ratchet the strike to 
the flat lower bound Hi. The resulting bounds for a lookback call on spot at 
issuance are: 

n-i 

C(F) - FH1 l P(HiH&') + E [IiHi-H P(HjH7') - HiH7X P(Hi2Hil)] 
i=l1 

+ HnHn 'P(HnH I) 

LCs 

n-1 

? C(H1) - P(H1) + E [(Hi - Hji+)DIBI(Hi )] + HnDIB(I1n). 
i=l1 

Using this approach, bounds for forward and backward start lookback calls 

can also be obtained. 

V. Conclusion 

The concept of hedging exotic options with a static portfolio of standard 

instruments simplifies the risk management of exotic options in several ways. 

First, when compared with dynamically rebalancing with the underlying, 
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the static portfolio is easier to construct initially and to maintain over time. 
Instead of continuously monitoring the underlying and trading with every 
significant price change, the hedger can place contingent buy and sell orders 
with start/stop prices at the barriers. Second, when compared with offset- 
ting the risk using another path-dependent option, the investor uses instru- 
ments with which he is familiar, the risks are better understood, and the 
markets are more liquid. 

A static hedge can exactly replicate the payoffs of the path-dependent op- 
tion when carrying costs are zero; and a pair of static hedges can bracket the 
payoffs when nonzero carrying costs are introduced. These techniques apply 
to many path-dependent options, which are related in that their payoffs de- 
pend on whether one or more barriers are crossed. 

The fundamental result underpinning the creation of our replicating port- 
folios is put-call symmetry. By using this simple formula, we can engineer 
simple portfolios to mimic the values of standard options along barriers. The 
result is an extension of put-call parity to different strike prices which pro- 
vides further insight into the relation between put and call options. 

The main extension to this line of research would involve relaxation of the 
zero drift and symmetry conditions. Just as bounds are developed when drift 
is nonzero, perhaps tight bounds can be developed when volatility structures 
display asymmetry with sufficient stationarity. In the interests of brevity, 
this extension is left for future research. 

Appendix 

Put-Call Symmetry 

Let F(t) be the forward price at t E [0, T] of the underlying for delivery in 
T years. Let a(F(t),t) be the local volatility rate of the forward price as a 
function of the forward price F(t) and time t. Under the martingale mea- 
sure,19 the forward price process is 

dF(t) 
F(t) = af (F(t), t)d W(t). (Al) 

Let B (0) be the price at time 0 of a bond paying one dollar in T years and let 
C(O,K,T) and P(O,K,T) be the initial value of an European call and put 
struck at K and maturing in T years. Let GC(K,T) B(O)-'C(O,K,T) and 
Gp(K,T) B(O)-'P(O,K,T) be the respective forward values quoted at 0 of 
these options for delivery in T years. We now show that both forward values 
satisfy the following forward partial differential equation (pde): 

a2 (K,T)K2 (32G A 
2 aK2 (K,T) = aG (K,T), K> O,T> 0, (A2) 

19 We use a pure discount bond maturing at T as the numeraire. 
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In contrast to Black (1976) backward pde, this pde indicates how (forward) 
option values change with the strike and maturity, holding the initial time 
and underlying forward price fixed. The above result and its proof below are 
essentially due to Dupire (1994). 

To prove the forward pde for a call, we begin with the standard result that 
the forward price of a call is given by its expected payoff under the equiva- 
lent martingale measure: 

Gc(K,T) = f(F(T) - K)p (F(T),T;F(O),0)dF(T), (A3) 

where p (F(T),T;F(O),O) is the transition density of the forward price, indi- 
cating the probability density of the forward price being at F(T) at time T, 
given that it is at F(O) at time 0. The Kolmogorov forward equation govern- 
ing this density is 

2 aK2 [a2(K,T)K2p (K,T;F(0),0)] aT p (K,T;F(0),O), K> 0,T> 0. 

(A4) 

Differentiating (A3) twice with respect to K gives 

(32GC(Kf,T) -p(K,T;F(0),0). (A5) 
(3K2 

Substituting into the Kolmogorov equation gives 

!(32F2KT\ 2a2G(K,T) 1 a (32G(K,T) 
2 a(K,T)KL - K2 J ] =3K2 K-> O,T > 0. (A6) 

Integrating twice with respect to K gives the desired result. The same proof 
applies to European puts. It is easily verified that Black (1976) formulas for 
calls and puts satisfy the above equation with a 2(K,T) = 0-2. 

The forward call value GC(K,T) is the unique solution of equation (A2) 
subject to the following boundary conditions: 

(a) GJ(K,0) = max[F(O) - K,O], K > 0; 

(b) lim Gc (K, T) =, OT > O; 
KToo 

(c) lim Gc (K, T) = F (O), T > 0. 
KItO 

Similarly, the forward put value Gp(K,T) is the unique solution of equation 
(A2) subject to the following boundary conditions: 
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(a) Gp(K,O) = max[K - F(O),O], K > 0; 

(b) lir Gp(K,T) - K,T > 0; 

(c) lim Gp (K, T ) = 0, T > 0 . 
KItO 

Let u,(x,T) G,(K,T)(KF(O))-"I2 and up(x,T) Gp(K,T)(KF(O))-"I2 be 
normalized call and put forward values, respectively, written as functions of 
x ln(K/F(0)) and maturity T. Then, the normalized values both solve the 
following pde: 

v2(x, T) a2u v2(x,T) au 
2 3x2 (x,T) - 8 u(x,T) - (x,T), x E (-oo,oo), T > 0, 

(A7) 

where v(x,T) = (F(O)ex,T) is the volatility expressed as a function of x and T. 
The normalized forward call value u,(x,T) is the unique solution of equa- 

tion (A7) subject to the following boundary conditions: 

(a) u,(x,O) = max[ex/2 - ex/20], x E N; 

(b) limu,(x,T)= 0, T> 0; 
xtoo 

(c) lim u (x,T) = e-x/2, T > 0. 
x't-oo 

Similarly, the normalized forward put value up(x, t) is the unique solution of 
equation (A7) subject to the following boundary conditions: 

(a) up(x,O) = max[ex/2 - e-X/2,O], x E 

(b) lim up (x, T)-e x/2 , T > 0; 

(c) lim up(x,T) = 0, T > 0. 
xI-oo 

Our symmetry condition is that v2(x,T) = v2(-x,T) for all x E t and for 
all T > 0. Given this condition, it is easy to see that uc(x,T) and up(-x,T) 
satisfy the same boundary value problems and are therefore equal: 

uc(x,T) = up(-x,T), for all x E T} and for all T > 0. 

Reverting to forward prices gives 

Gc (Kc T) (Kc F ())-/= Gp(Kp,T)(KpF(O))-l, 

where (KcKp)"/2 = F(O). Multiplying both sides by F(O) 1/2B (0) gives the de- 
sired result: 

C(O,Kc,T)Kc -l= P(O,Kp,T)K;"2. 

Q.E.D. 
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Binary Put-Call Symmetry 

Assuming that volatility is a function of time alone, the payoff and values 
for binary calls and puts, and gap calls and puts with time T until maturity, 
and strike H can be written as: 

Payoff at time T Value at time 0 

BC = 1(F(T) > H) BC = B(O)N(d2) 
GC = F(T) 1 (F(T) > H) GC = B(O)F(O)N(dj) 

BP = 1 (F(T) < H) BP = B(O)N(-d2) 
GP = F(T)1(F(T) < H) GP = B(O)F(O)N(-dj), 

where 

rd e -z 2/2 

N(d) fde 72d 

is the standard normal distribution function, 

(F(O)) + 2 

In 
H - 2T 

d, ~ T d2= d -J 5_T, 

and 

2_ r2(t) dt. 

It may be verified by direct substitution that: 

K1"2BC(K) = GP(H)H-1"2 H1"2BP(H) = GC(K)K-12, (A8) 

where the geometric mean of the bianry (gap) call strike K and the gap 
(binary) put strike H is the forward price F: (KH)1"2 = F. 

Up-and-In Bond 

We can rewrite an up-and-in bond as a combination of an up-and-in binary 
call and an up-and-in binary put: 

UIB(H) = UIBC(H) + UIBP(H). (A9) 

However, an UIBC(H) is the same as a standard BC(H), as it has to knock 
in to have positive value. We can expand the UIBP(H) into its components: 

UIB(H) - BC(H) + limn[UIP(H,H) - UIP(H - n-1, H)]. (A10) 
nToo 
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We can apply PCS: 

UIB (H) = BC(H) + lim n [C(H) - (H - n'- )H-'C(H2(H - n- )-l)], 
nToo 

(All) 

or equivalently: 

UIB (H) BC(H) + H'- lim C(H2(H - n- )-l ) 
nToo 

+ limn[C(H) - C(H+ n-)]. (A12) 
nToo 

The approximation error is 0(n-2). The final term can now be rewritten as 
a binary call and so 

UIB(H) - 2BC(H) + H-1C(H). (A13) 

Q.E.D. 
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