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Solving the Optimal Trading Trajectory Problem
Using a Quantum Annealer

Gili Rosenberg, Poya Haghnegahdar, Phil Goddard, Peter Carr, Kesheng Wu, and Marcos Lépez de Prado

Abstract—We solve a multi-period portfolio optimization prob-
lem using D-Wave Systems’ quantum annealer. We derive a for-
mulation of the problem, discuss several possible integer encoding
schemes, and present numerical examples that show high success
rates. The formulation incorporates transaction costs (including
permanent and temporary market impact), and, significantly, the
solution does not require the inversion of a covariance matrix.
The discrete multi-period portfolio optimization problem we solve
is significantly harder than the continuous variable problem. We
present insight into how results may be improved using suitable
software enhancements and why current quantum annealing tech-
nology limits the size of problem that can be successfully solved
today. The formulation presented is specifically designed to be
scalable, with the expectation that as quantum annealing tech-
nology improves, larger problems will be solvable using the same
techniques.

Index Terms—Optimal trading trajectory, portfolio optimiza-
tion, quantum annealing.

I. THE PROBLEM

A. Introduction

ONSIDER an asset manager wishing to invest K dollars
C in a set of IV assets with an investment horizon divided
into 7' time steps. Given a forecast of future returns and the
risk of each asset at each time step, the asset manager must
decide how much to invest in each asset at each time step, while
taking into account transaction costs, including permanent and
temporary market impact costs.

One approach to this problem is to compute the portfolio that
maximizes the expected return subject to a level of risk at each
time step. This results in a series of “statically optimal” port-
folios. However, there is a cost to rebalancing from a portfolio
that is locally optimal at ¢ to a portfolio that is locally optimal

Manuscript received September 30, 2015; revised April 20, 2016; accepted
May 14,2016. Date of publication June 01, 2016; date of current version August
12,2016. This work was supported by 1QB Information Technologies (1QBit)
and Mitacs. The guest editor coordinating the review of this manuscript was
Daniel. P. Palomar.

G. Rosenberg and P. Goddard are with 1QBit, Vancouver, BC V6C 2BS,
Canada (e-mail: gili.rosenberg @ 1gbit.com; phil.goddard @ 1 gbit.com).

P. Haghnegahdar is with the Department of Physics and Astronomy Univer-
sity of British Columbia, Vancouver, BC V6T 1Z4, Canada (e-mail: phagh-
neg @phas.ubc.ca).

P. Carr is with the Courant Institute of Mathematical Sciences, New
York University (NYU), New York, NY 10012 USA (e-mail: Peter.P.Carr@
morganstanley.com).

K. Wu is with the Lawrence Berkeley National Laboratory, Berkeley, CA
94720 USA (e-mail: kwu@Ibl.gov).

M. Lépez de Prado is with the Guggenheim Partners LLC, New York, NY
10017 USA and also with the Computational Research Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720 USA (e-mail: Marcos.
LopezDePrado @ guggenheimpartners.com).

Digital Object Identifier 10.1109/JSTSP.2016.2574703

at ¢ + 1. This means that it is highly likely that there will be
a different series (or, a “trajectory”) of portfolios that will be
“globally optimal” in the sense that its risk-adjusted returns will
be jointly greater than the combined risk-adjusted returns from
the series of “statically optimal” portfolios.

Mean-variance portfolio optimization problems are tradition-
ally solved as continuous-variable problems. However, for as-
sets that can only be traded in large lots, or for asset managers
who are constrained to trading large blocks of assets, solving
the continuous problem yields an approximation, and a discrete
solution is expected to give better results. For example, institu-
tional investors are often limited to trading “even” lots (due to a
premium on “odd” lots), that is, lots that are an integer multiple
of a standard lot size, in which case the problem becomes inher-
ently more discrete as the trade size increases versus the lot size.
This could occur, for example, due to the trading of illiquid as-
sets. Two common examples of block trading are ETF-creation
and ETF-redemption baskets, which can only be traded in large
multiples, such as fund units of 100 000 shares each.

The discrete problem is non-convex due to the fragmented
nature of the domain, and is therefore much harder to solve than
a similar continuous problem. Furthermore, our formulation al-
lows the covariance matrix to be ill-conditioned or degenerate.
This complicates the finding of a solution using traditional opti-
mizers since a continuous relaxation would still be non-convex,
and therefore difficult to solve.

B. Previous work

The single-period discrete portfolio optimization problem has
been shown to be NP-complete, regardless of the risk measure
used [1], [2]. Jobst et al. [3] showed that the efficient frontier of
the discrete problem is discontinuous and investigated heuristic
methods of speeding up an exact branch-and-bound algorithm
for finding it. Vielma et al. presented a branch-and-bound algo-
rithm and results for up to 200 assets [4]. Heuristic approaches,
including an evolutionary algorithm, were investigated by other
authors [1], [5], [6].

Bonami and Lejeune [7] solved a single-period problem with
integer trading constraints, minimizing the risk given a prob-
abilistic constraint on the returns (with no transaction costs),
and finding exact solutions via a branch-and-bound method for
problems with up to 200 assets. They considered four different
methods, of which one was able to solve the largest problems
to optimality in 83% of the cases, but the other three failed for
all problems (the average run time for the largest problems was
4800 seconds). They found that solving the integer problem was
harder than solving a continuous problem of the same size with
cardinality constraints or minimum buy-in thresholds.
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Garleanu and Pedersen [8] solved a continuous multi-period
problem via dynamic programming, deriving a closed-form so-
lution when the covariance matrix is positive definite, thereby
offering insight on the properties of the solutions to the multi-
period problem. A multi-period trade execution problem was
treated analytically by Almgren and Chriss [9], motivating our
inclusion of both temporary and permanent price-impact terms.

The connection between spin glasses and Markowitz portfolio
optimization was shown by Galluccio et al. [10]. The discrete
multi-period problem was suggested by Lépez de Prado [11]
as being amenable to solving using a quantum annealer. The
contribution of this paper is to investigate the implementation
and solution of a similar discrete multi-period problem on the
D-Wave quantum annealer.

C. Integer formulation

The portfolio optimization problem described above may be
written as a quadratic integer optimization problem. We seek to
maximize returns, taking into account the risk and transaction
costs, including temporary and permanent market impact (the
symbols are defined in the Appendix),

T
_ T
w = argmax,, g Wy

t=1

— %thEtwt — AthAfAIUt + AthA,twf)7 (])

subject to the constraints that the sum of holdings at each time
step be equal to K,

N
VY wy = K, )
n=1
and that the maximum allowed holdings of each asset be K’,
Y, Yn s wn < K. 3)

The first term in Eq. 1 is the sum of the returns at each time step,
which is given by the forecast returns p times the holdings w.
The second term is the risk, in which the forecast covariance ten-
sor is given by X2, and y is the risk aversion. The third and fourth
terms encapsulate transaction costs. Specifically, the third term
includes any fixed or relative direct transaction costs, as well
as the temporary market impact, while the fourth term captures
any permanent market impact caused by trading activity. The
transaction cost term is square in the change in the holdings, so
it penalizes changes in the holdings if the corresponding entry in
A, is positive [8]. The permanent market impact term allows for
the fact that increasing a large holding requires executing a large
buy order, which increases the price, and hence the returns [9].

D. Extensions

A straightforward extension can be made to solve optimal
trade execution problems. For example, in order to solve a prob-
lem in which the asset manager has K units invested and would
like to liquidate them over 7" time steps, the constraint in Eq. 2
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would change to

N
Ve wy < K )

n=1

and the sum in the transaction cost and permanent impact terms
would extend to time step 7'+ 1 with wr; = 0 (the zero
vector).

The risk term in Eq. 1 requires the estimation of a covariance
matrix for each time step. There are cases in which this is
problematic: for example, if not enough data exists for a good
estimate or if some of the assets were not traded due to low
liquidity. An alternative and more direct way to quantify risk is
via the variance of the returns stream of the proposed trajectory.
This avoids the issues in the estimation of covariance matrices.
An additional advantage of this method is that it does not assume
a normal distribution of returns. The disadvantage is that if
the number of time steps 7' is small, the estimate of the true
variance of the proposed trajectory will be poor. A high variance
of returns is penalized regardless of whether it occurs due to
positive or negative returns.

The variance is quadratic in the returns, so it is a suitable term
to include in a quadratic integer formulation. We use the identity
Var(r) = (r?) — (r)?, and note that the returns stream is given
by the vector r[w] = diag(u” w). We find the alternative risk
term

T T
1
risk[w % E: ,ut wt - E ,ut wt ut,wtr) . (5

t’:l

II. SOLUTION USING A QUANTUM ANNEALER
A. Quantum Annealing

Quantum annealing is a process which can be used to find the
optimal solution to optimization problems, if these problems
can be encoded as a Hamiltonian [12], [13]. To this end, the
quantum system is first prepared such that it represents a trivial
problem, and is in the ground state of that problem, which is an
equally weighted superposition of all possible states. The system
is then transformed continuously to the point that it represents
the optimization problem that we want to solve. If this process
is done slowly enough, the adiabatic theorem guarantees that
the system will remain in the ground state, as long as external
disturbances are absent. The state of the system is then read, and
in the ideal case it would correspond to the optimal solution of
the optimization problem we wish to solve [14]. This process is
referred to as “adiabatic quantum computation.” In a real device,
external interference always exists to some degree, so the result
is probabilistic, and annealing the same problem multiple times
increases the probability of finding the optimum. Therefore,
quantum annealers are effectively heuristic solvers.

It has been argued that quantum annealing has an advantage
over classical optimizers due to quantum tunnelling. Quantum
tunnelling allows an optimizer to more easily search the solution
space of the optimization problem, thereby having a higher
probability of finding the optimal solution. This might provide a
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Fig. 1. An example hardware graph, showing the connectivity of the qubits
for a Chimera graph with s = 4 unit cells in each row/column, giving a total of
q = 128 qubits.

speed improvement over classical optimizers, at least for certain
problem classes [12], [13], [15]-[17].

D-Wave Systems has developed a scalable quantum annealer.
Mathematically, this is a device which minimizes unconstrained
binary quadratic functions,

minz! Qx (6)
sit.x € {0, 1}V,

where @ € RV>*Y [18]-[20]. In order to keep external distur-
bances to a minimum, D-Wave’s quantum annealer is cooled
to 15 mK (about 180 times colder than interstellar space), is
shielded from RF signals due to its being housed inside a metal
enclosure, is shielded from external magnetic fields larger than
1 nT (about 50 000 times less than Earth’s magnetic field), and
operates in a high-vacuum environment in which the pressure is
10 billion times lower than atmospheric pressure [21].

There is strong evidence that the D-Wave machine is indeed
quantum [22], [23]. Recently, there has been significant interest
in benchmarking the D-Wave machines using different metrics,
and often against classical solvers [24]-[29]. There is an ongo-
ing debate on how to define quantum speedup, and on which
problems a noisy quantum annealer would be expected to show
such a speedup [30]-[32]. Recently, Denchev et al. claimed a
10® speedup over simulated annealing when solving a specially
constructed class of problems on a single-core machine [33]. It
is still an open question whether D-Wave’s quantum annealer
shows a quantum speedup. We expect new results to shed light
on this in the near future.

The connectivity of the qubits in D-Wave’s quantum annealer
is currently described by a square Chimera graph [34]. This
hardware graph is composed of a lattice of bipartite unit cells
containing eight qubits. Qubits in adjacent unit cells are con-
nected if they are in the same position in the unit cell (see Fig. 1
for an example).

If we label the number of unit cells along an edge s, then
the total number of qubits is ¢ = 8s>. The hardware graph is
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TABLE I
ENCODINGS: f(d) 1S THE ENCODING FUNCTION AND D IS THE BIT DEPTH

Encoding f(d) D

Binary 2d-1 log, (K’ + 1)
Unary 1 K’
Sequential (VI+B8K"-1)/2

sparse and in general does not match the problem graph, which
is defined by the adjacency matrix of the problem matrix . In
order to solve problems that are denser than the hardware graph,
we identify multiple physical qubits with a single logical qubit (a
problem known as “minor embedding” [35], [36]), at the cost of
using many more physical qubits. For square Chimera hardware
graphs, the size V' of the largest fully dense problem that can be
embedded on a chip with ¢ qubits is V = /2¢+1=4s+ 1,
assuming no faulty qubits or couplers. For example, the latest
chip is the D-Wave 2X,' which has s = 12 unit cells along each
side, giving ¢ = 1152 qubits, for which we get V' = 49. Lower-
density problems of significantly larger size can be embedded.
For example, on one of the annealers used in this study, which
has 1100 qubits, problems with V}, ~ 140 and a density of ~ 0.1
were able to be embedded.

B. From Integer to Binary

To solve this problem using the D-Wave quantum annealer,
the integer variables of Eq. 1 must be recast as binary vari-
ables, and the constraints must be incorporated into the objec-
tive function. We have investigated four different encodings:
binary, unary, sequential, and partitioning. The first three can be
described by writing the integer holdings as a linear function of
the binary variables,

D
Whnt [{L‘] = Z f(d)-rdnh (7)
d=1

where 24, € {0, 1} and the encoding function f(d) and the bit
depth D for each encoding are given in Table I.

The fourth encoding involves finding all partitions of K into
N assets with K’ or less units in each asset, and assigning a
binary variable to each encoding at each time step.

We summarize the properties of each of the four encodings
described above in Table II. Which encoding is preferred will
depend on the problem being solved and the quantum annealer
being used. Table III presents the number of variables required
for some example multi-period portfolio optimization problems
for each of these encodings.

For binary, unary, and sequential encodings, there is a trade-
off between the efficiency of the encoding (the number of binary
variables needed to represent a given problem) and the largest
integer that can be represented. The reason is that for an encod-
ing to be efficient, large coefficients will typically be introduced,
limiting the largest integer representable (due to the noise level
in the quantum annealer). For example, the binary encoding is

las of June 2016.
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TABLE II
COMPARISON OF THE FOUR ENCODINGS DESCRIBED IN SECTION II-B

Encoding Variables Largest integer Notes

Binary TN logy (K'+1) 2n] -1 Most efficient in number of variables; allows representing of the second-lowest
integer.

Unary TNK' No limit Biases the quantum annealer due to differing redundancy of code words for each
value; encoding coefficients are even, giving no dependence on noise, so it allows
representing of the largest integer.

Sequential $TN (VI+8K'—1) Lnl(ln]+1) Biases the quantum annealer (but less than unary encoding);
second-most-efficient in number of variables; allows representing of the
second-largest integer.

Partition <T (K J{ i 1’1) |n| Can incorporate complicated constraints easily; least efficient in number of

variables; only applicable for problems in which groups of variables are required
to sum to a constant; allows representing the lowest integer.

The column “Variables” refers to the number of binary variables required to represent a particular problem. The column “Largest integer” refers to a worst-case estimate of the largest
integer that could be represented based on the limitation imposed by the noise level ¢ and the ratio between the largest and smallest problem coefficients § and n = 1/Ved.

TABLE III
DEPENDENCE OF THE NUMBER OF BINARY VARIABLES REQUIRED ON THE
NUMBER OF UNITS K, NUMBER OF ASSETS /N, AND THE NUMBER OF TIME
STEPS T' FOR SOME EXAMPLE VALUES (HERE WE ASSUMED K’ = K/3)

N T K K’ Vi Vu Vs

5 5 15 5 75 125 75

10 10 15 5 300 500 300
10 15 15 5 450 750 450
20 10 15 5 600 1000 600
50 5 15 5 750 1250 750
20 15 15 5 900 1500 900
50 10 15 5 1500 2500 1500
50 15 15 5 2250 3750 2250

The number of variables is given for the three linear encodings: binary Vj, , unary
V. , and sequential V.

the most efficient of the three (that is, it requires the fewest
binary variables); however, it is the most sensitive to noise, and
hence can represent the smallest integer of the three, given some
number of qubits. Conversely, the unary encoding is the worst
of the three in efficiency, but can represent the largest integer.
An additional consideration is that some encodings introduce
a redundancy that biases the quantum annealer towards certain
solutions. Briefly, each integer can be encoded in multiple ways,
the number of which is (in general) different for each integer. In
this scenario, the quantum annealer is biased towards integers
that have a high redundancy.

The partition encoding is different in that it requires an expo-
nential number of variables; however, it allows a straightforward
formulation of complicated constraints, like cardinality, by ex-
cluding partitions that break the constraints, which also lowers
the number of variables required. For the other three encodings,
constraints can be modelled through the encoding (for example,
a minimum or maximum holdings constraint), or through linear
or quadratic penalty functions. We note that the actual number
of physical qubits required could be much larger than the num-
ber of variables indicated in Table III due to the embedding (see
Section II-A).

In many cases, the maximum holdings K’, which is also the
largest integer to be represented, will not be exactly encodable
using the binary and sequential encodings. For example, using
a binary encoding one can encode the values 0 to 7 using three
bits, and 0 to 15 using four bits, but integers with a maximum

value between 7 and 15 are not exactly encodable. In order to
avoid encoding infeasible holdings, these can be penalized by
an appropriate penalty function. However, this penalty function
will typically be a high-order polynomial and require many
auxiliary binary variables in order to reduce it to a quadratic
form. Instead, we propose to modify the encoding by adding
bits with the specific values needed. For example, {1, 1,2, 2,4}
represents a modified binary encoding for the values 0 to 10.

The constraints of Eq. 2 can be incorporated into the objec-
tive function by rearranging the equations, squaring them, and
summing the result, obtaining the penalty term

T N 2
penalty[w] = fMZ K- wye | 8)
=1 1

n=

where M > 0 is the strength of the penalty. In theory, M can
be chosen large enough such that all feasible solutions have a
higher value than all infeasible solutions. In practice, having an
overly large M leads to problems due to the noise in the system
(see Section II-D), so we choose it empirically by trial and error.
In the future, it might be possible to include equality constraints
of this form via a change in the quantum annealing process,
allowing us to drop this term [37].

We note that an alternative approach, involving the tiling of
the integer search space with binary hypercubes, was investi-
gated by [38]; however, it requires an exponential number of
calls to the quantum annealer.

C. Numerical Results

The results for a range of portfolio optimization problems are
presented in Table IV. For each problem 200 random instances
were generated. Each instance was solved using one query to the
quantum annealer, with 1000 reads per query (which involved
either 1 call or 5 calls if averaging over gauges).> All results were
obtained from chips with a hardware graph with either 512 or
1152 qubits. (The number of active qubits was a little smaller.)
For validation purposes, each instance was also solved using an
exhaustive integer solver to find the optimal solution. For the

2We have observed that the success rate rises when increasing the number of
reads, for a fixed problem size. If the number of reads is fixed, the success rate
is expected to decrease as problem size increases, as the results show.
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TABLE IV
RESULTS USING D-WAVE’S 512-QUBIT QUANTUM ANNEALER (WITH 200
INSTANCES PER PROBLEM)

N T K Encoding Vars Density Qubits Chain S(0) S(1) S(2)

2 3 3 Binary 12 0.52 31 3 100.00  100.00 100.00
2 2 3 Unary 12 0.73 45 4 97.00  99.50 100.00
2 4 3 Binary 16 0.40 52 4 96.00  100.00 100.00
2 3 3 Unary 18 0.53 76 5 94.50  99.50 100.00
2 2 7 Binary 12 0.73 38 4 90.50  100.00 100.00
2 5 3 Binary 20 0.33 63 4 89.00  100.00 100.00
2 6 3 Binary 24 0.28 74 4 50.00 97.50  99.50
32 3 Unary 18 0.65 91 6 38.50 7250  91.50
33 3 Binary 18 0.45 84 5 3550  66.50  82.50
3 4 3 Binary 24 0.35 106 6 9.50  50.50 84.50

N is the number of assets, 7" is the number of time steps, K is the number of units
to be allocated at each time step and the maximum allowed holding (with K’ = K),
“Encoding” refers to the method of encoding the integer problem into binary vari-
ables, “Vars” is the number of binary variables required to encode the given problem,
“Density” is the density of the quadratic couplers, “Qubits” is the number of physical
qubits that were used, “Chain” is the maximum number of physical qubits identified
with a single binary variable, and S () refers to the success rate given a perturbation
magnitude % (explained in the text).

larger problems, a heuristic solver was run a large number of
times in order to find the optimal solution with high confidence.

As a solution metric, we used the percentage of instances for
each problem for which the quantum annealer’s result fell within
perturbation magnitude a% of the optimal solution, denoted by
S(«). This metric was evaluated by perturbing each instance at
least 100 times, by adding Gaussian noise with standard devia-
tion given by a% of each eigenvalue of the problem matrix ().
Each perturbed problem was solved by an exhaustive solver, and
the optimal solutions were collected. If the quantum annealer’s
result for that instance fell within the range of optimal values
collected, then it was deemed successful (within a margin of
error). This procedure was repeated for each random problem
instance, giving a total success rate for that problem. For the
case a = 0, this reduces to defining success as the finding of the
optimal solution.

The chosen approach relaxes the success metric in a problem-
instance-specific way. An alternative would be to define success
as finding a solution within e of the optimum. However, this
alternative success metric has the disadvantage that e could be
small or large compared to the energy scale of a particular prob-
lem instance, and so the metric can be misleading for problems
of the type being solved here.

Although the variance of the success rate would also be in-
teresting to observe, the number of experimental runs required
for this metric to be statistically significant were not able to be
performed due to a limited availability of machine time.

In order to investigate the quality of the solution on soft-
ware enhancements, we replaced the “embedding solver” sup-
plied with the D-Wave quantum annealer with a proprietary
embedding solver developed by 1QBit, tuned the identification
coupling strength, and combined results from calls with mul-
tiple random gauges. A gauge transformation is accomplished
by assigning +1 or —1 to each qubit, and flipping the sign of
the coefficients in the problem matrix accordingly, such that
the optimization problem remains unchanged. We found a large
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TABLE V
RESULTS USING D-WAVE’S 512-QUBIT QUANTUM ANNEALER, WITH
CUSTOM-TUNED PARAMETERS AND SOFTWARE (WITH 200 INSTANCES PER
PROBLEM): AN IMPROVED EMBEDDING SOLVER, FINE-TUNED IDENTIFICATION
COUPLING STRENGTHS, AND AVERAGING OVER 5 RANDOM GAUGES (200
READS PER GAUGE, GIVING A TOTAL OF 1000 READS PER CALL)

N T K Encoding Vars Density Qubits Chain S(0) S(1) S(2)

2 3 3  Binary 12 0.52 31 3 100.00 100.00 100.00
2 4 3  Binary 16 0.40 52 4 99.50  100.00 100.00
32 3 Unary 18 0.65 91 6 99.00  100.00 100.00
2 3 3 Unary 18 0.53 76 5 98.50  99.50 100.00
2 5 3 Binary 20 0.33 63 4 96.00 100.00 100.00
2 6 3 Binary 24 0.28 74 4 80.00  100.00 100.00
2 4 3 Unary 24 0.41 104 6 70.50  96.50  99.50
3 4 3 Binary 24 0.35 106 6 44.00 9250  99.00
3 3 3 Binary 18 0.45 84 5 65.50  98.00 100.00
3 6 3 Binary 36 0.24 196 7 0.50  74.50  99.00
4 4 3  Binary 32 0.32 214 8 1.50 1350  60.50
4 5 3 Binary 40 0.26 281 10 0.00 3.00 24.00
Columns are as in Table IV.

TABLE VI

RESULTS USING D-WAVE’S 1152-QUBIT QUANTUM ANNEALER (WITH 200
INSTANCES PER PROBLEM), WITH LOWER NOISE AND HIGHER YIELD, AND
WITH CUSTOM-TUNED PARAMETERS AND SOFTWARE (AS IN TABLE V)

N T K Encoding Vars Density Qubits Chain S(0) S(1) S(2)

32 3 Unary 18 0.65 86 5 99.50  100.00 100.00
3 3 3 Binary 18 0.45 61 4 83.50  99.00  100.00
33 3 Unary 27 0.46 146 7 81.50 92,50 97.00
3 4 3 Binary 24 0.35 87 5 75.50 100.00 100.00
3 4 3 Unary 36 0.36 209 8 40.50 5250  60.50
4 4 3 Binary 32 0.32 157 6 27.00 46.50 64.50
36 3 Binary 36 0.24 143 5 15.50 59.00  78.50
4 5 3 Binary 40 0.26 210 7 4.00 3450 64.00
5 5 3 Binary 50 0.25 321 8 4.00 13.00 27.00
6 5 3 Binary 60 0.24 492 10 2.00 2050  49.50
6 6 3 Binary 72 0.20 584 11 0.00 650  21.00

Columns are as in Table IV.

improvement for all problems. Results with these improvements
are presented in Table V.

To investigate the dependence of the success rate on the noise
level and qubit yield of the quantum annealer, several problems
were solved on two different quantum annealing chips. Results
for the second chip, the D-Wave 2X, which has 1152 qubits,
a lower noise level and fewer inactive qubits and couplers, are
presented in Table V. We found an increase in all success rates,
and were able to solve larger problems.

These investigations highlight the importance of having an
in-depth understanding of D-Wave’s quantum annealer in order
to be able to achieve the best results possible.

D. Discussion

The success rate and the ability to solve larger problems are
affected by certain hardware parameters of the quantum an-
nealer. First, there is a level of intrinsic noise which manifests
as a misspecification error—the coefficients of the problem that
the quantum annealer actually solves differ from the problem
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coefficients by up to €. For future chip generations the expec-
tation is that e will decrease, and hence the success rate will
increase by virtue of the quantum annealer solving a problem
that is closer to the problem passed to it. In addition, the prob-
lem coefficients on the chip have a defined coefficient range,
and if the specified problem has coefficients outside this range,
the entire problem is scaled down. This can result in coefficients
becoming smaller than e, affecting the success rate. These fac-
tors are especially relevant for high-precision problems such as
the multi-period portfolio optimization problem solved here.

The quantum annealer has a hardware graph that is currently
very sparse and in general does not match the problem graph. In
order to solve problems that are denser than the hardware graph,
multiple physical qubits are identified with a single binary vari-
able, at the cost of using more physical qubits. In order to force
the identified qubits to all have the same value, a strong cou-
pling is needed. If the required coupling is outside of the range
of the couplings in the problem, the result will be an additional
scaling, possibly reducing additional coefficients to less than
€, again impacting the success rate. Generally, the denser the
hardware graph is, the fewer identifications are needed, and the
weaker the couplings are required to be to identify the qubits.

To solve larger problems, the number of qubits must be
greater. More qubits would also allow the use of an integer
encoding scheme that is less sensitive to noise levels (such as
unary encoding versus binary encoding). The fabrication pro-
cess is not perfect, resulting in inactive qubits and couplers. The
more inactive qubits and couplers there are on a chip, the lower
the effective density and the higher the number of identifications
required, which typically reduces the success rate.

In addition, custom tuning, through software, can be used
to enhance the results. In particular, when the problem to be
solved has a graph that differs from the hardware graph, a map-
ping, referred to as an “embedding,” must be found from the
problem graph to the hardware graph. The development of so-
phisticated ways to find better embeddings (for example, with
fewer identified qubits) would be expected to increase the suc-
cess rate—often the structure of the problem can be exploited
in order to find better embeddings. In addition, when an embed-
ding is used, there are different ways in which the couplings of
the identified qubits should be set, controlled by the “embedding
solver.” For example, the strength of the couplings could be fine-
tuned further to give higher success rates, or tuned separately
for each set of identified qubits [39].

The issue of which embedding properties are most desirable
is still under active research. Here the pi-elite metric was used
to select the best scaling of the problem versus the strength of
the qubit identification chains, and to choose the best embed-
ding amongst the highest-ranked embeddings [39]. The pi-elite
score is determined by comparing the mean energy of the best
(“elite”) states (for example, the lowest 2%) found by using each
scale/embedding. The embeddings were ranked using a scheme
that combines equal weights based on the shortest of the longest
chains, the total number of qubits, and the variance of the lengths

3The intrinsic noise for the current generation of chip is estimated to be
around 2%—4% of the full scale.
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of the chains, after which the highest-ranked embeddings were
compared using their pi-elite scores.

In addition, it has been observed that there is a gauge transfor-
mation under which the problem and solution remain invariant,
but the success rates vary strongly (due to imperfections in the
annealing chip). Combining results from multiple calls to the
solver with random gauges, as we did, could provide a large
improvement [39]. Software error correction, such as majority
voting or energy minimization, which we employed when the
identified physical qubits do not agree, as well as calibration,
could also lead to improved solutions [40]-[46]. We also note
that it may be possible to use the quantum annealer to find good
local minima, which could then be used to speed up determin-
istic or heuristic classical solvers [47], [48].

Although the core contributions of this paper are the for-
mulation of the general multi-period optimization strategy and
discussion of the issues involved in solving that problem using
available quantum annealing hardware, a brief comment regard-
ing the time taken to calculate a solution is warranted. In general,
benchmarking of the time to solution of a D-Wave quantum an-
nealer against classical hardware is an area of ongoing and active
research. For the small-scale problems solved in this study, the
time to solution, on both classical hardware and using the quan-
tum annealer, is comparable. The recent results by Denchev
et al. [33], which show that for a specific class of problems the
D-Wave machine has the potential to provide a speedup over
computations on classical hardware, are encouraging. However,
only after quantum speedup has been demonstrated for general
problems, and specifically those requiring a high precision of
couplings, is it expected that a quantum speedup for the optimal
trading trajectory problem will be observed.

III. CONCLUSION

In this limited experiment we have demonstrated the potential
of D-Wave’s quantum annealer to achieve high success rates
when solving an important and difficult multi-period portfolio
optimization problem. We have also shown that it is possible
to achieve a considerable improvement in success rates by fine-
tuning the operation of the quantum annealer.

Although the current size of problems that can be solved
is small, technological improvements in future generations of
quantum annealers are expected to provide the ability to solve
larger problems, and at higher success rates.

Since larger problems are expected to be intractable on classi-
cal computers, there is much interest in solving them efficiently
using quantum hardware.

APPENDIX
DEFINITION OF SYMBOLS

The symbols used above are defined in Table VII. In addition,
we use w; to denote the t-th column of the matrix w (and
similarly for p), and X; to denote the covariance matrix (N X
N) which is the ¢-th page of the tensor X. For convenience
of notation, the temporary transaction costs ¢ are represented
using the tensor A, where Ay,,,,» = ¢u46,,,, (and similarly for the
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TABLE VII
DEFINITION OF SYMBOLS

Symbol  Type Description

K N; Number of units to be allocated at each time step

K' N Largest allowed holding for any asset

N N, Number of assets

T N; Number of time steps

1 RN *T  Forecast mean returns of each asset at each time step

5 R Risk aversion

) RT *N %N Forecast covariance matrix for each time step

¢! RN *T Permanent market impact coefficients for each asset at each time step
c RN *T Transaction cost coefficients for each asset at each time step

wo Ny Initial holdings for each asset

W+ NL‘]M Final holdings for each asset

w N(‘J\' *T" Holdings for each asset at each time step (the trading trajectory)

permanent price impact ¢’ and A’). The difference in holdings
between two time periods is defined as Aw; = w; — w;_1.
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