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The risk-neutral process is modeled by a four parameter self-similar process of in-
dependent increments with a self-decomposable law for its unit time distribution. Six
different processes in this general class are theoretically formulated and empirically in-
vestigated. We show that all six models are capable of adequately synthesizing European
option prices across the spectrum of strikes and maturities at a point of time. Consid-
erations of parameter stability over time suggest a preference for two of these models.
Currently, there are several option pricing models with 6–10 free parameters that deliver
a comparable level of performance in synthesizing option prices. The dimension reduc-
tion attained here should prove useful in studying the variation over time of option
prices.
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Processes

1. INTRODUCTION

The standard models for portfolio allocation (Merton 1973) and for option pricing (Black
and Scholes 1973) both assume that continuously compounded returns are normally
distributed. The central limit theorem is often invoked as a primary motivation for this
assumption. By this theorem, the normal distribution arises as the limiting distribution
for the sum of n independent random variables, when the sum is divided by

√
n. Hence,

if returns are realized as the sum of a large number of independent influences, then one
can anticipate that returns will in fact be normally distributed.
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Unfortunately, it is well documented that the assumed normality of the return distri-
bution is violated in both the time-series data and in option prices. This has led many
authors to consider jump-diffusion models (Merton 1976; Jones 1984; Naik and Lee
1990; Bates 1991), stochastic volatility models (Heston 1993), pure jump Lévy processes
(Madan, Carr, and Chang 1998; Barndorff-Nielsen 1998; Eberlein, Keller, and Prause
1998), and various combinations of these alternatives (Bates 1996, 2000; Duffie, Pan,
and Singleton 2000; Barndorff-Nielsen and Shephard 2001; Carr et al. 2002).The use of
these processes for option pricing is now covered in a number of books and we cite by
way of example, Schoutens (2003), Cont and Tankov (2004), and Applebaum (2004). To
adequately explain the time-series data and the variation in option prices across both
strike and maturity, these models employ between 6–10 parameters, which is a far cry
from the single-parameter model originally proposed by Black and Scholes.

The reason that so many parameters are needed is usually thought to be due to the
complexity of the underlying stochastic process. Bates (1996), Bakshi, Cao, and Chen
(1997), and Carr et al. (2003) all argue that stochastic volatility is needed to explain
option prices at long maturities while jumps are needed to simultaneously explain the
short maturity option prices.

In order to see if more parsimonious models of option prices can be obtained, this paper
examines if there are alternatives to the Gaussian distribution as a limit law. We note that
there is no compelling economic motivation for the scaling function to be

√
n as opposed

to some other function of n. As a result, we are lead to the so-called laws of class L, which
were defined by Khintchine (1938) and Lévy (1937) as limit laws for sums of n independent
variables when centered and scaled by functions of n, not necessarily

√
n. These laws were

subsequently found to be identical to the so-called class of self-decomposable laws, which
loosely speaking describe random variables that decompose into the sum of a scaled
down version of themselves and an independent residual term. For interesting examples
we refer the reader to Knight (2001) who also observes that this class of laws stands
between the stable laws and the infinitely divisible laws. Sato (1991) showed that the self-
decomposable laws are associated with the unit time distribution of self-similar additive
processes, whose increments are independent, but need not be stationary. Jeanblanc,
Pitman, and Yor (2001) recently show how one may easily pass between these additive
self-similar representations and stationary solutions to OU equations driven by Lévy
processes (Barndorff-Nielsen and Shephard 2001). In this paper, we investigate and report
on the effectiveness of these self-similar processes as models for a risk-neutral process.

We restrict our attention to several four parameter models as it was felt that the volatility
smile at each term requires at least three parameters to explain cross-sectional variations
in level, slope, and curvature. A four parameter model provides just a single additional
parameter to govern the variation of these smiles across maturity. Based on the higher
dimensional parameterizations used in the previous literature, our expectation was that
these models would not succeed in providing an effective synthesis of option prices across
both strike and maturity. Much to our surprise, our empirical results indicate that these
four parameter models have an average relative pricing error of below 3%, when describing
the prices of over 150 options written on the S&P 500. Furthermore, the low parametric
dimension of these models induces calibrations which are much quicker than those of
models with comparable pricing error and more parameters. While we did find that some
higher parametric structures provided marginal improvements in accuracy, we restrict
our attention here to the relatively parsimonious class of models associated with the
self-decomposable laws at unit time and the associated self-similar additive processes.
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Nine specific models are described in the paper, although the three models with
relatively poor performance are not described in detail. The remaining six models were
found to synthesize the option price surface equally well. However, considerations of
parameter stability over time indicate a preference for two of the constructions, based on
the variance gamma process and on the Meixner process.

The outline of the paper is as follows. Section 2 introduces the laws of class L and
the concept of self-decomposable laws, and outlines their association with self-similar
processes and with stationary solutions to OU equations. In Section 3, we introduce the
six self-decomposable laws studied in this paper, and their associated stochastic processes.
Section 4 summarizes the data and describes the design of the study. Results are presented
in Sections 5 and 6 while Section 7 concludes.

2. SELF-DECOMPOSABLE LAWS AND ASSOCIATED PROCESSES

This section introduces the laws of class L and the self-decomposable laws, which are
known to be identical. The connections of these laws to various stochastic processes is
then described. Finally, we indicate the financial relevance of the resulting stochastic
processes for option pricing.

2.1. Laws of Class L and Self-Decomposable Laws

Consider a sequence (Zk : k = 1, 2, . . .) of independent random variables and let Sn =∑n
k=1 Zk denote their sum. Suppose that there exist centering constants cn and scaling

constants bn such that the distribution of bnSn + cn converges to the distribution of some
random variable X . Then the random variable X is said to have the class L property. In
other words, a random variable has a distribution of class L if the random variable has
the same distribution as the limit of some sequence of normalized sums of independent
random variables. These laws were studied by Lévy (1937) and Khintchine (1938) who
coined the term class L. By the central limit theorem, a random variable with the standard
normal distribution has the class L property, as does a random variable with a stable dis-
tribution. However, the laws of class L represent an important generalization of Gaussian
and stable laws as they describe limit laws with more general scaling constants than 1/

√
n.

In a financial context, the increased flexibility may be required if the independent influ-
ences being summed are of different orders of magnitude. For example, suppose that the
sum of a set of independent influences on returns diverges when divided by

√
n, but that

convergence arises for an exponentially weighted average multiplied by
√

n, where the
weighted average is given for ρ > 1 by

(ρ − 1)
n∑

k=1

ρk−1Uk

(ρn − 1)
.

Defining Zk = ρk−1Uk, as the scaled effect, then we are considering the limit of the sum
Sn multiplied by

bn =
√

n(ρ − 1)
(ρn − 1)

.
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The distribution of a random variable X is said to be self-decomposable (Sato 1999,
page 90, Definition 15.1) if for any constant c, 0 < c < 1 there exists an independent
random variable say, X (c) such that

X law= cX + X (c).

In other words, a random variable is self-decomposable if it has the same distribution
as the sum of (cX) a scaled down version of itself and an independent residual random
variable (X (c)). Self-decomposable laws have the property that the associated densities are
unimodal (Yamazato 1978; Sato 1999, p. 404).

The self-decomposable laws are an important sub-class of the class of infinitely divisible
laws, as noted by Knight (2001) who studies in detail an interesting example. Lévy (1937)
(see also Loève 1945) showed that self-decomposable laws are infinitely divisible with a
special structure of their Lévy measure. Specifically, the characteristic function of these
laws (Sato 1999, p. 95, Corollary 15.11) has the form

E
[
eiuX ] = exp

[
ibu − 1

2
Au2 +

∫ ∞

−∞
(eiux − 1 − iux1|x|<1)

h(x)
|x| dx

]
,

where A ≥ 0, b is a real constant, h(x) ≥ 0,
∫ ∞
−∞(|x|2 ∧ 1) h(x)

|x| dx < ∞, and h(x) is increas-
ing for negative x and decreasing for positive x. For explicit examples of convergence
to self decomposable limit laws we refer the reader to Berkes (1991). Thus, an infinitely
divisible law is self-decomposable if the corresponding Lévy density has the form h(x)

|x|
where h(x) is increasing for negative x and decreasing for positive x. We call h(x) the
self-decomposability characteristic (SDC) of the random variable X . Note that it X(t) is
a Lévy process then X(1) is self-decomposable if and only if X(t) is self-decomposable for
every t > 0. We then say that the process X(t) enjoys the self-decomposability property.
Note that this SDC representation holds for both processes of bounded and unbounded
variation.

Sato (1999, p. 91, Theorem 15.3) shows that a random variable has a distribution of class
L if and only if the law of the random variable is self-decomposable. Since it is desirable
that a return distribution can be motivated as a limit law and that it be unimodal and
infinitely divisible, we are led to consider self-decomposable laws as candidates for the unit
period distribution of financial returns. Many of the older jump-diffusion models used in
the option pricing literature have Gaussian or exponential jump sizes. These compound
Poisson processes do not enjoy the self-decomposability property, as the Lévy densities
do not assume the necessary form. In contrast, the recent Lévy models employed by
Barndorff-Nielsen (1998), Eberlein, Keller, and Prause (1998), Madan, Carr, and Chang
(1998), and Carr et al. (2002) all enjoy the self-decomposability property.

2.2. Processes Associated with Self-Decomposable Laws

The economic arguments which motivate option pricing formulas generally rely on
dynamic trading in one or more assets whose prices follow stochastic processes in con-
tinuous time. Furthermore, financial contracting often involves the valuation of claims
with payoffs depending on the time path of stock prices, as opposed to just the level of the
price on a certain date. These considerations motivate modeling the stochastic process
of prices instead of just the random variable associated with the price at some future
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date. Fortunately Sato (1991) established a connection between a self-decomposable law
holding at a fixed time and a stochastic process reigning over the time interval.

First, note that a self-similar process is defined as a stochastic process (Y (t), t ≥ 0) with
the property that for any λ > 0 and all t,

Y(λt) law= a(λ)Y(t).(2.1)

It follows on considering Y (λμt) in two ways that:

Y(λμt) law= a(λμ)Y(t) law= a(λ)Y(μt) law= a(λ)a(μ)Y(t)

and hence a(t) = tγ for some exponent γ . We then say that Y is γ -self-similar.
Sato (1991) defines additive processes as processes with inhomogeneous (in general)

and independent increments. In the particular case when the increments are time ho-
mogeneous, the process is called a Lévy process. Sato (1991) showed that a law is self-
decomposable if and only if it is the law at unit time of an additive process, that is also a
self-similar process. As a result, we will refer to such processes as Sato processes.

To relate these concepts in a simple setting, suppose that a self-decomposable random
variable X is the value at unit time of some pure jump Lévy process whose sample paths
have bounded variation. We consider the case when the Lévy density integrates |x| in the
region |x| < 1 for which b = ∫

|x|<1 x h(x)
|x| dx. In this case the characteristic function of X

has the form

E
[
eiuX ] = exp

[∫ ∞

−∞
(eiux − 1)

h(x)
|x| dx

]
.(2.2)

Let Y (t) be the value at time t of a self-similar additive process with paths of bounded
variation. The characteristic function for Y (t) may be written as

E
[
eiuY (t)] = exp

[∫ t

0

∫ ∞

−∞
(eiuy − 1) g(y, s) dy ds

]
,(2.3)

for some time-dependent Lévy system g(y, t). Suppose that we require that the law of the
self-similar additive process at unit time be the self-decomposable law of the random
variable X :

Y(1) law= X.(2.4)

Then the following theorem relates the time-dependent Lévy system to the SDC, h(x) of
the self-decomposable law.

THEOREM 1. Given a self-decomposable law for the time one distribution (2.4) with a
characteristic function satisfying (2.2), then there exists a self-similar process Y(t) defined
with respect to the increasing scaling function tγ by (2.1) and which satisfies (2.3) when

g(y, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

h′
( y

tγ

)
γ

t1+γ
, y > 0

h′
( y

tγ

)
γ

t1+γ
y < 0.
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Proof . Combining equations (2.1), (2.4), and (2.2) we see that we must have

E
[
eiuY(t)

] = exp
[∫ ∞

−∞
(eiutγ x − 1)

h(x)
|x| dx

]

= exp

⎡⎢⎣∫ ∞

−∞
(eiuy − 1)

h
( y

tγ

)
|y| dy

⎤⎥⎦ .

(2.5)

Equating (2.5) to (2.3) separately for the positive and negative sides we get∫ t

0

∫ ∞

0
(eiuy − 1)g(y, s) dy ds =

∫ ∞

0
(eiuy − 1)

h
( y

tγ

)
y

dy(2.6)

and on the negative side we have∫ t

0

∫ 0

−∞
(eiuy − 1)g(y, s) dy ds =

∫ 0

−∞
(eiuy − 1)

h
( y

tγ

)
|y| dy.(2.7)

Differentiating with respect to t in the equation (2.6) and substituting −λ = iu we get
that ∫ ∞

0
(e−λy − 1)g(y, t) dy = −

∫ ∞

0
(e−λy − 1)

h′
( y

tγ

)
γ

t1+γ
dy.

Now differentiate with respect to λ to get

−
∫ ∞

0
e−λyyg(y, t) dy =

∫ ∞

0
e−λy

yh′
( y

tγ

)
γ

t1+γ
dy,

and it follows that

g(y, t) = −
h′

( y
tγ

)
γ

t1+γ
, y > 0.(2.8)

For the negative side we rewrite equation (2.7) with λ = iu as∫ t

0

∫ ∞

0
(e−λy − 1)g(−y, s) dy ds =

∫ ∞

0
(e−λy − 1)

h
(
− y

tγ

)
y

dy.

Differentiation with respect to t yields∫ ∞

0
(e−λy − 1)g(−y, t) dy =

∫ ∞

0
(e−λy − 1)

h′
(

− y
tγ

)
γ

t1+γ
dy.

Differentiation with respect to λ yields

−
∫ ∞

0
e−λyyg(−y, t) dw = −

∫ ∞

0
e−λy

yh′
(
− y

tγ

)
γ

t1+γ
dw,

and it follows that

g(y, t) =
h′

( y
tγ

)
γ

t1+γ
, y < 0. �(2.9)
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Observe that it is precisely the property of h that it be increasing on the left and
decreasing on the right that yields g as a positive inhomogeneous Lévy density. Different
choices of γ or exponents lead to unique representations of additive processes or processes
with independent and inhomogeneous increments with the self-decomposable law as the
unit time distribution. In the terminology for a fixed γ , the process is called self-similar
with exponent γ . The proof of Theorem 1 has been presented for the bounded variation
case but a similar argument extends this result to pure jump processes of infinite variation.

2.2.1. Some Other Processes Associated with Self-Similar Processes. It is shown in
Lamperti (1962), (see also Embrechts and Maejima 2002) that one may associate with
any γ -self-similar process Y (t) a stationary process Zt defined by

Zu = e−γ uY(eu)

Y(t) = tγ Z(log(t))
and so we observe that our scaled self-decomposable process Y (t) is also a scaled and
time changed stationary process.

It is further shown in Jeanblanc, Pitman, and Yor (2001) that the stationary process Zu,
u ≥ 0 is the solution to the Ornstein–Uhlenbeck equation associated with a Background
Driving Lévy Process (Barndorff-Nielsen and Shephard 2001) U(t)

dZ = −γ Zdt + dU

with initial condition Z(0) = X .
The Lévy process may itself be constructed from the γ -self-similar process Y (t) in

accordance with

U(t) =
∫ et

1

1
sγ

dY (s).

2.2.2. Financial Relevance of Self-Similarity. The law of any infinitely divisible ran-
dom variable may be used to construct a Lévy process. This construction is employed
in Madan, Carr, and Chang (1998), Barndorff-Nielsen (1998), and Eberlein, Keller, and
Prause (1998) to develop several Lévy processes. Konikov and Madan (2002), noted that
the term t skewness for such processes falls like 1/

√
t while the excess kurtosis falls like

1/t. They also empirically determined the term structures of these moments from market
option prices and found that these moments may be rising somewhat or be constant, but
they are not falling. Self-similar processes have the property that these higher moments
are constant over the term by construction and hence in this respect they are consistent
with our observations. This feature of the resulting process provides further encourage-
ment in evaluating the potential relevance of these processes as models for risk-neutral
returns over differing horizons.

3. SOME SPECIFIC SELF-DECOMPOSABLE RISK NEUTRAL PROCESSES

In this section, we consider six examples of self-decomposable laws with which we shall
associate a γ -self-similar additive process Y (t). We then define the risk-neutral process
for the stock price process S(t) in terms of Y (t) by

S(t) = S(0)ert eY(t)

E[eY(t)]
.(3.1)
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The stock price process defined by (3.1) is a Markov process whose proportional drift
is the interest rate r. The discounted price process S(t)e−rt is a martingale, since Y (t) is
a process of independent increments. The characteristic function for ln (S(t)) is easily
written in terms of the characteristic function for Y (t),

φY(t)(u) = E
[
eiuY(t)]

and specifically we have that

E[eiu ln(S(t))] = exp(iu(ln(S(0)) + rt − ln(φY(t)(−i )))φY(t)(u).(3.2)

The characteristic function (3.2) is employed to estimate the parameters of the risk-
neutral process using market closing prices of European options. Model option prices
are obtained using the FFT methodology described in Carr and Madan (1998).

We note that in all the cases considered the stock price process is a pure jump process
with a mean rate of return equal to the interest rate. Furthermore, we consider special
semi-martingales where one may employ the identity function as a truncation function
and hence we may write the infinitesimal generator of the Markov process for the stock
price, in terms of the Lévy system g(y, t) identified in Theorem 1, for a test function f (S)
as

I( f ) =
(

r −
∫ ∞

−∞
(ey − 1)g (y, t) dy)S

∂

∂S
f

+
∫ ∞

−∞

(
f (Sey) − f (S) − S(ey − 1)

∂

∂S
f

)
g(y, t) dy.

We now develop the explicit form for the characteristic functions employed in our study.
The first three self-decomposable laws are those for the unit time variance gamma (VG)
model, of Madan, Carr, and Chang (1998), the normal inverse Gaussian (NIG) model
of Barndorff-Nielsen (1998), and the Meixner process (MXNR) developed by Grigelio-
nis (1999) and Schoutens (2001). In addition, we develop three new processes based on
laws related to the hyperbolic functions and studied by Pitman and Yor (2000): the three
processes involved employ the hyperbolic cosine, sine, and tangent functions in their an-
alytical structure. These processes time change Brownian motion using processes related
to the hyperbolic functions. Skewness is then added using an Esscher transform which is
equivalent to risk shifting using a power utility function defined over the final stock price.
We term the three new processes (VC), (VS), and (VT) as the variance conditional on the
time change is related to processes employing the cosh, sinh, or tanh functions. The details
for the VG, NIG, and MXNR processes are presented in separate subsections while the
three hyperbolic processes are treated collectively in a fourth subsection. The six processes
are denoted VGSSD, NIGSSD, MXNRSSD, VCSSD, VSSSD, and VTSSD where the
addition of the extension SSD signifies that the risk-neutral density varies with maturity
by a scaled self-decomposable law. We shall see that all six processes are described by
exactly four parameters. The first three parameters provide respective control over the
variance, skewness and excess kurtosis, while the fourth parameter provides control over
the effect of the horizon length on the risk-neutral distribution.

3.1. VGSSD

The VG process is defined by time changing an arithmetic Brownian motion with drift
θ and volatility σ by an independent gamma process with unit mean rate and variance
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rate ν. Let G(t; ν) be the gamma process, then the variance gamma process may be written
as

XVG(t; σ, ν, θ ) = θG(t; ν) + σ W(G(t; ν)),

where W (t) is an independent standard Brownian motion. Madan, Carr, and Chang
(1998) show that the VG process can also be expressed as the difference of two independent
gamma processes. Carr et al. (2002) show that the VG process is a Lévy process whose
Lévy density has the form

kVG(x) =

⎧⎪⎪⎨⎪⎪⎩
C

exp(Gx)
|x| x < 0

C
exp(−Mx)

x
x > 0,

where the parameters C, G, M are explicitly related to the original parameters by

C = 1
ν

G =
(√

θ2ν2

4
+ σ 2ν

2
− θν

2

)−1

M =
(√

θ2ν2

4
+ σ 2ν

2
+ θν

2

)−1

.

We observe that the SDC for the VG process is

hVG(x) =
{

C exp(Gx) x < 0

C exp(−Mx) x > 0.

The exponential and negative exponential are classic examples of functions, which are
increasing and decreasing, when the domains are restricted to the negative and positive
axis, respectively. Therefore the unit time VG law is a self-decomposable law.

The characteristic function for the VG process may be computed by conditioning
on the gamma time change and recognizing that the conditional characteristic function
is Gaussian. The resulting integral is easily calculated by recognizing it as a Laplace
transform. We thus obtain that

E
[
eiuX(1)] =

⎛⎜⎜⎝ 1

1 − iuθν + σ 2ν

2
u2

⎞⎟⎟⎠
1
ν

.

By the scaling property we want the law of Y (t) to be that of tγ X(1) and hence it follows
that

φVGSSD(u, t) =

⎛⎜⎜⎝ 1

1 − iuθνtγ + σ 2ν

2
u2t2γ

⎞⎟⎟⎠
1
ν

.(3.3)

Substituting (3.3) into (3.2) completes the specification of the log characteristic function
for the stock price at an arbitrary maturity.
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3.2. NIGSSD

The NIG process also has a characteristic function defined by three parameters (see
Barndorff-Nielsen 1998). To obtain the characteristic function, we follow the presentation
in Carr et al. (2003). From this perspective, we first define inverse Gaussian time Iν

t as the
time it takes an independent Brownian motion with drift ν to reach the level t. It is well
known that the Laplace transform of this random time is

E
[

exp
( −λIν

t

)] = exp
( − t(

√
2λ + ν2 − ν)

)
.(3.4)

The process is well defined for ν > 0, while for ν < 0 it gets infinite almost surely; more
precisely, P(Iν

t < ∞) = exp(2tν). Next, we evaluate an independent arithmetic Brownian
motion with drift θ and volatility σ at this inverse Gaussian time:

XNIG(t; σ, ν, θ ) = θIν
t + σW

(
Iν
t

)
(3.5)

on the set Iν
t < ∞. The characteristic function of the resulting process is evaluated in

Carr et al. (2003) as

E
[
eiu XNIG(t)] = exp

⎛⎝−tσ

⎛⎝√
ν2

σ 2
+ θ2

σ 4
−

(
θ

σ 2
+ iu

)2

− ν

σ 2

⎞⎠⎞⎠ .

To obtain the NIG Lévy density, we condition on a jump of magnitude g in the time
change. The conditional move is then normally distributed with mean θg and variance
σ 2g. The arrival rate for the jumps is given by the following Lévy density for inverse
Gaussian time:

k(g) =
exp

(
−ν2

2
g
)

g3/2
.

It follows, on applying Sato’s (1999) theorem 30.1, that the Lévy density for NIG is∫ ∞

0

1

σ
√

2πg
exp

(
− (x − θg)2

2σ 2g

)
1

g3/2
exp

(
−ν2

2
g
)

dg

= 1
σ

∫ ∞

0

1√
2π

g−2 exp
(

− x2

2σ 2g
− ν2

2
g + θ

σ 2
x − θ2

2σ 2
g
)

dg

= e
θ

σ2 x

σ

∫ ∞

0

1√
2π

t−2 exp

⎛⎜⎜⎝−
ν2 + θ2

σ 2

2
t − x2

2σ 2t

⎞⎟⎟⎠ dt

= e
θ

σ2 x

σ

∫ ∞

0

1√
2π

exp
(

−s − x2α2

4s

)
s−2 σ 2α2

2
ds,

where

α =
√

ν2

σ 2
+ θ2

σ 4
.
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We now recall the integral representation of the McDonald function

Ka(x) = 1
2

(
x
2

)a ∫ ∞

0
exp

(
−

(
t + x2

4t

))
t−a−1 dt.

Hence, we may write∫ ∞

0
exp

(
−

(
t + x2

4t

))
t−a−1 dt = 2Ka(x)

(
2
x

)a

and so by Sato’s (1999) theorem 30.1, the NIG Lévy density is given by

kNIG(x) =
√

2
π

σα2 e
θ

σ2 xK1(|x|)
|x| .(3.6)

For an alternative derivation of the Lévy density of NIG, we refer the reader to Barndorff-
Nielsen (1998). It follows that the SDC for NIG process is given by

hNIG(x) =
√

2
π

σα2e
θ

σ2 xK1(|x|)

and hence the law is self-decomposable for θ/σ 2 sufficiently small.
The characteristic function for the NIGSSD process is easily obtained by evaluating

the NIG characteristic function for XNIG(1) at utγ . This result is

φNIGSSD(u, t) = exp

⎛⎝−σ

⎛⎝√
ν2

σ 2
+ θ2

σ 4
−

(
θ

σ 2
+ iutγ

)2

− ν

σ 2

⎞⎠⎞⎠ .(3.7)

3.3. MXNRSSD

The Meixner process has recently been proposed by Grigelionis (1999) and Schoutens
(2001). The characteristic function for zero drift is

E
[
eiuXMXNR(t); a, b, d

] =

⎛⎜⎜⎝ cos
(

b
2

)
cosh

(
au − ib

2

)
⎞⎟⎟⎠

2dt

.

We note here that XMXNR(t; a, b, d)
(d)= aXMXNR(dt; 1, b, 1), and furthermore the process

(XMXNR(u; 1, b, 1), u ≥ 0) is obtained by an Esscher transform applied to the case b = 0.
When b = 0 we observe that, for fixed t,

XMXNR(t; 1, 0, 1)
(d)= β

(∫ 1

0
R2

4t(s) ds
)

,

where β is a Brownian motion and R4t is an independent Bessel process of dimension 4t.
The Esscher transform is comparable to the procedure described below in equation (3.11)
in the context of the hyperbolic processes.
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The probability density of the Meixner distribution is given on Fourier inversion of
the characteristic function by

f (x; a, b, d) =

(
2 cos

(
b
2

))2d

2aπ
(2d)
exp

(
b
a

x
) ∣∣∣∣
(

d + i
x
a

)∣∣∣∣2

,

where 
(z) is the gamma function with complex argument z.
The Lévy density is given by

kMXNR(x) = d
exp

(
b
a

x
)

x sinh
(πx

a

) .

Hence, the SDC of the Meixner process is given by

hMXNR(x) = d
exp

(
b
a

x
)

∣∣∣sinh
(πx

a

)∣∣∣ .
This function also satisfies the self-decomposability condition for small enough values of
b/a.

The characteristic function MXNRSSD is obtained as usual as

φMXNRSSD(u, t) =

⎛⎜⎜⎝ cos
(

b
2

)
cosh

(
autγ − ib

2

)
⎞⎟⎟⎠

2d

.

3.4. The Hyperbolic Processes VCSSD, VSSSD, and VTSSD

We define two increasing additive processes denoted by Ct, St by their Laplace trans-
forms:

E[e−λCt ] =
(

1

cosh(
√

2λt )

)

E[e−λSt ] =
( √

2λt

sinh(
√

2λt )

)
.

These processes may be described by

Ct = inf{s : |Bs | = t}
St = inf{s : BES(3, s) = t},

where Bs is a standard Brownian motion and BES(3, s) is the Bessel process of dimension
3, i.e., the norm of a three-dimensional standard Brownian motion.

Using Lévy’s theorem for Ct and the results of Pitman (1975) on three-dimensional
Brownian motion for St, we write alternative characterizations for these processes as

Ct
(d)= inf {s : Ms − Bs = t}

St
(d)= inf {s : 2Ms − Bs = t} ,

where Mt = sups≤t Bs .
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We now allow for drift in the Brownian motion. Hence, let

B(ν)
t = νt + Bt

and define

C(ν)
t = inf

{
s : M (ν)

s − B(ν)
s = t

}
S (ν)

t = inf
{
s : 2M (ν)

s − B(ν)
s = t

}
,

where M (ν)
t = sups≤t B(ν)

s .

We also consider a one dimensional diffusion Z(ν)
t with infinitesimal generator

1
2

∂2

∂x2
+ ν tanh(νx)

∂

∂x
and define

T (ν)
t = inf

{
s :

∣∣Z (ν)
s

∣∣ = t
}
.

We note that (|Z (ν)
s |, s ≥ 0)

(d)= (|B(ν)
s |, s ≥ 0) when both start at zero.

On identifying the infinitesimal generators of the Markov processes M(ν)
t − B(ν)

t
(Fitzsimmons 1987; Cherny and Shiryaev 1999), 2M(ν)

t − B(ν)
t (Pitman and Rogers 1981)

and given the infinitesimal generator of Z(ν)
t we apply Girsanov’s theorem to com-

pute expectations working with the zero drift measure and employ the appropriate
Radon–Nikodym measure change density to determine the Laplace transforms of these
times. Alternative derivations may also be found in Williams (1976) and Taylor (1975).
The resulting transforms are

E
[
e−λC(ν)

t
] = exp(−νt)

√
ν2 + 2λ√

ν2 + 2λ cosh(t
√

ν2 + 2λ ) − ν sinh(t
√

ν2 + 2λ )

E
[
e−λS(ν)

t
] = sinh(νt)

ν

√
ν2 + 2λ

sinh(t
√

ν2 + 2λ )

E
[
e−λT(ν)

t
] = cosh(νt)

cosh(t
√

ν2 + 2λ )
.

These three processes are additive processes associated with the hyperbolic functions, and
are different from and not to be confused with the three Lévy processes in Pitman and
Yor (2003) also denoted by C, S, and T . The processes VC, VS, and VT are constructed
by first evaluating an independent Brownian with volatility σ at the times C(ν)

t , S(ν)
t , and

T (ν)
t , respectively, to obtain the characteristic functions:

E
[
eiuσ B(C (ν)

t )] = exp(−νt)
√

ν2 + σ 2u2
√

ν2 + σ 2u2 cosh(t
√

ν2 + σ 2u2 ) − ν sinh(t
√

ν2 + σ 2u2 )
(3.8)

E
[
eiuσ B(S (ν)

t )] = sinh(νt)
ν

√
ν2 + σ 2u2

sinh(t
√

ν2 + σ 2u2 )
(3.9)

E
[
eiuσ B(T (ν)

t )] = cosh(νt)

cosh(t
√

ν2 + σ 2u2 )
.(3.10)

As the resulting processes are symmetric, they cannot match market skews. To add asym-
metry, one may use Esscher transforms or one may consider evaluating Brownian motion
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with drift at the time changes given by C(ν)
t , S (ν)

t , and T (ν)
t . For the VG process, a compar-

ison of the results of Madan, Carr, and Chang (1998) with those of Madan and Milne
(1991) implies that the two methods lead to identical processes. In general this is not
the case. Here, we considered subordinating Brownian motion with drift to the proposed
time changes and found that the models did not calibrate well to the options data. The
Esscher transforms performed much better and so we only report on them.

For a transform parameter θ we define for Ht ∈ {C (ν)
t , S (ν)

t , T (ν)
t }

E(θ )
[
eiuσ B(Ht)

] = E
[
eiuσ B(Ht)eθσ B(Ht)

]
E

[
eθσ B(Ht)

]
= E

[
ei (u−iθ)σ B(Ht)

]
E

[
ei (−iθ)σ B(Ht)

] .

(3.11)

The characteristic functions for XVC(t), XVS(t), XVT(t) may then be obtained by substitut-
ing (3.8), (3.9), and (3.10) into (3.11):

φVHSSD(u, t) = E
[
eiutγ XVH (1)]

for H ∈ {C(ν)
t , S(ν)

t , T (ν)
t }.

4. SUMMARY OF DATA AND DESIGN OF STUDY

The ultimate objective in options modeling is to capture the variation in option prices
across strike, maturity, and calendar time using a parsimonious model whose parameters
are stable over wide ranges of the these three variables. To our knowledge, no such option
pricing model presently exists. In fact, no model with fewer than five parameters appears
able to accurately capture the variation in just two of these variables. Rather than cast
about for this elusive model, our present interest is in obtaining a parsimonious model
which accurately captures the variation in option prices across all strikes and maturities,
and whose parameters are stable over wide ranges of these two variables. The main interest
in such a model is that for short periods of time over which the parameters are stable,
it can be relied upon for quoting option prices required to enter new positions and for
capturing the market value of existing positions. Over longer periods of time, models
of this type must be recalibrated in order to retain their accuracy. We recognize that
models which require frequent recalibration are internally inconsistent, and are generally
unreliable for hedging and investment decisions. However, for S&P 500 index options,
the modeller faces the daunting task of explaining over 150 closing market prices, over
periods that may last more than several years. Given the current state of practice, we
regard it as a significant advance if a parsimonious model is forwarded which can capture
just the variation in option prices across strike and maturity at a fixed point in time using
risk-neutral valuation by a measure on the paths of the stock price process, thus avoiding
static arbitrages. Just as stochastic volatility models were originally proposed as a remedy
for deficiencies in the constant volatility model, future work can focus on specifying the
stochastic evolution of the parameters of the relatively parsimonious models examined
here.

At the present stage of this research program, we are therefore engaged in effectively
synthesizing the information content of the surface of option prices in a parsimonious
way. For this purpose, we evaluate the average absolute error as a percentage of the average
option price. Based on market practice, we regard the particular model for a particular
name on a particular day as having failed if this average percentage error (APE) is over 5%.
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In developing summary statistics for model parameters, we exclude all failures defined
by the 5% cut-off for the APE. If this is not done, then outliers arising from a variety of
error sources unduly influence the summary parameter set making it an inappropriate
representation of the results. Needless to say if the APE target is infrequently attained then
the particular modeling exercise has been a failure. As mentioned earlier, the hyperbolic
process time changes when used to evaluate Brownian motion with drift are an example
of such failed models, and hence we do not present the results.

Given the focus described above, we obtained data for equity options on 21 different
underlyings, including both single names and market indices, and with varying strikes
and maturities. For each of the 14 months from September 2000 to October 2001, we used
closing market prices for the second Wednesday of the month. In September 2001, we
took the third Wednesday as markets were closed on the second Wednesday for obvious
reasons. The names employed were, amzn, ba, bkx, c, csco, ge, hwp, ibm, intc, jnj, ko,
mcd, mrk, msft, orcl, pfe, spx, sunw, wmt, xom, and yhoo. The specific dates employed,
reported in the format YYYYMMDD, were, 20000913, 20001011, 20001108, 20001213,
20010110, 20010214, 20010314, 20010411, 20010509, 20010613, 20010711, 20010808,
20010919, and 20011010.

For each name and each day we used closing prices of out-of-the-money (spot) options,
to reduce any bias due to the possibility of early exercise. We also excluded options expiring
in the current month or maturing after 15 months. Strikes used were within 35% of the
spot on both sides and we excluded options with a price below .00075 times the spot
price. In all, we had 11,988 option prices and we performed 1,764 estimations covering
294 = (21 × 14) estimations for each of the six models.

5. RESULTS

The results of the study are presented in the following format. First, we cover the aggregate
performance levels as measured by APE across all days and names for each of the six
models. Second, we present the results for the names averaged across the days, and for
the days averaged across the names. Third, we report the average and standard deviation
of the four parameters for each of the six models for all 21 names and across all 14 days.

5.1. Aggregate Results

Table 5.1 indicates the proportion of times that the six models achieved the 5% APE
target. It also reports the means and standard deviations of the APE across the entire
data set of 294 estimations for each model.

TABLE 5.1
Average Percentage Errors across Names and Days

Proportion
Model below .05 Mean SD

VG 0.9320 0.02488 0.008937
NIG 0.9456 0.02492 0.009001
MXNR 0.9456 0.02487 0.008966
VC 0.9149 0.02539 0.008741
VS 0.9014 0.02600 0.008728
VT 0.9150 0.02548 0.008853
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FIGURE 5.1. Graphs of densities of average pricing errors for the six models across 21
names for the 14 days.

TABLE 5.2
Average Rank of Model

VG NIG MXNR VC VS VT

1.97 3.25 3.68 4.21 4.29 3.58

We observe from Table 5.1 that all six models are acceptable, with errors that are
generally around half of the 5% mark. To get a better picture of the distribution of pricing
errors, Figure 5.1 graphs the six densities of average pricing errors constructed across all
294 estimations for each model. More specifically the figure graphs the histogram of the
average percentage pricing error across all the options for each model in the 294 cases
generated by estimating the model for 21 names on each of 14 days.

We observe that the models are fairly comparable in their estimation performance. For
all of the days and names, we ranked the models by APE for each of the 294 cases and
computed the average rank. As indicated in Table 5.2, the VG models has the highest
rank followed by NIG, VT, MXNR, VC, and VS models.

5.2. Results Sorted by Name and Day

In this section, we first consider the performance of the models for each of the 21 names
averaged across the days. Table 5.3 reports the APE for each model across all days, for
each name in the sample.
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TABLE 5.3
Average Pricing Errors across Days for Each Name and M̄ the Average Number of

Options Used

Name VG NIG MXNR VC VS VT M̄

amzn 0.0284 0.02937 0.02947 0.02948 0.0335 0.0305 18
ba 0.0268 0.0269 0.0269 0.0269 0.0295 0.0276 27
bkx 0.0224 0.0219 0.0218 0.0218 0.0234 0.0219 159
c 0.0298 0.0294 0.0292 0.0295 0.0306 0.0295 48
csco 0.0197 0.0200 0.1986 0.0214 0.0212 0.0208 25
ge 0.0336 0.0344 0.0340 0.0344 0.0360 0.0345 40
hwp 0.0267 0.0267 0.0268 0.0277 0.0302 0.0274 24
ibm 0.0209 0.0200 0.0203 0.0204 0.0221 0.0204 41
intc 0.0160 0.0162 0.0160 0.0166 0.0182 0.0165 30
jnj 0.0276 0.0279 0.0277 0.0280 0.0282 0.0289 32
ko 0.0261 0.0265 0.0265 0.0278 0.0289 0.0266 24
mcd 0.0322 0.0316 0.0319 0.0321 0.0326 0.0323 22
mrk 0.0174 0.0175 0.0175 0.0175 0.0175 0.0202 27
msft 0.0207 0.0204 0.0201 0.0213 0.0219 0.0197 30
orcl 0.0195 0.0197 0.0197 0.0207 0.0231 0.0201 30
pfe 0.0274 0.0275 0.0274 0.0280 0.0283 0.0277 34
spx 0.0319 0.0302 0.0305 0.0306 0.0302 0.0301 135
sunw 0.0207 0.0209 0.0209 0.0225 0.0256 0.0216 30
wmt 0.0224 0.0224 0.0223 0.0234 0.0281 0.0226 34
xom 0.0299 0.3030 0.0301 0.0303 0.0320 0.0303 25
yhoo 0.0247 0.0248 0.0248 0.0251 0.0287 0.0284 21

TABLE 5.4
Average Pricing Errors across Names for Each Day

Day VG NIG MXNR VC VS VT

September 2000 0.0260 0.0263 0.0262 0.0256 0.0292 0.0268
October 2000 0.0245 0.0245 0.0243 0.0253 0.0278 0.0248
November 2000 0.0254 0.0261 0.0257 0.0264 0.0270 0.0270
December 2000 0.0252 0.0250 0.0250 0.0259 0.0289 0.0258
January 2001 0.0252 0.0282 0.0228 0.0237 0.0256 0.0232
February 2001 0.0254 0.0252 0.0252 0.0255 0.0272 0.0254
March 2001 0.0274 0.0273 0.0273 0.0267 0.0276 0.0264
April 2001 0.0248 0.0243 0.0243 0.0253 0.0280 0.0248
May 2001 0.0227 0.0242 0.0241 0.0247 0.0244 0.0245
June 2001 0.0236 0.0236 0.0235 0.0243 0.0268 0.0251
July 2001 0.0240 0.0239 0.0237 0.0240 0.0260 0.0239
August 2001 0.0301 0.0302 0.0300 0.0294 0.0308 0.0305
September 2001 0.0267 0.0262 0.0264 0.0268 0.0281 0.0270
October 2001 0.0230 0.0222 0.0225 0.0239 0.0238 0.0234
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TABLE 5.5
Average Model Rankings

Average Average
rank rank

across across
names days

VG 2.0 2.36
NIG 2.62 2.79
MXNR 2.57 1.43
VC 4.76 4.86
VS 4.24 4.64
VT 4.81 4.93

When we instead averaged across names for each day, the average number of options
each day was around 50. Table 5.4 reports the model performances by day, averaged
across the 21 names.

We rank the models on the basis of the average rank across days, for the 21 names. On
the basis of the average rank across names for the 14 days we get the average rankings
displayed in Table 5.5 in columns 1 and 2, respectively.

From Table 5.5 we see that the VG model is best for most names, based on the average
absolute percentage error across the days of the year, while the Meixner model is best on
most days based on the average absolute percentage error across the 21 names estimated
on that day. The differences in rankings between VG, NIG, and MXNR are small, as are
the differences between VC, VS, and VT models.

6. PARAMETER ESTIMATES BY NAME FOR ALL MODELS

In Tables 6.1–6.6, we report the mean and standard error of the four parameter es-
timates, across all days for which the 5% APE cutoff was met. We observe that the
parameter estimates for the scaling parameter γ are very stable overtime, across both
models and names. This is reflected in the low standard deviation for this parameter
across the 14 days. The values of γ are also observed to be close to and just under
the value of 1/2. We note that at γ = 1/2 variances scale linearly with time, a prop-
erty consistent with the process being one of independent identically distributed in-
crements. However, excepting Brownian motion, the validity of the scaling refutes the
independent identically distributed increment property. We also note that NIG, VC,
VS, and VT have considerably large standard deviations for the drift in the Brown-
ian motion used for the time change, as well as for the skewness parameter. In con-
trast the parameters of MXNR and VG are relatively stable over the time dimension.
Given the high rankings of these models in the ranking performance on the names
and the days we conclude that these two models are probably better suited for further
investigation.
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TABLE 6.1
Average Parameter Values and (SD) for VG by Name

Name σ ν θ γ NDays

amzn 0.7721 0.7077 −1.1354 0.4465 12
(0.1641) (0.1963) (0.4983) (0.0202)

ba 0.3304 0.2857 −0.3390 0.4073 12
(0.0115) (0.0019) (0.0341) (0.0167)

bkx 0.2892 0.6003 −0.1463 0.4713 12
(0.0079) (0.0443) (0.0022) (0.0193)

c 0.3433 0.4477 −0.3077 0.4714 14
(0.0099) (0.0489) (0.0122) (0.0184)

csco 0.5479 0.4244 −0.5871 0.4197 14
(0.0366) (0.0392) (0.0733) (0.0153)

ge 0.2866 0.4764 −0.3392 0.4257 14
(0.0106) (0.0448) (0.0307) (0.0165)

hwp 0.4843 0.2863 −0.5974 0.4083 13
(0.0206) (0.0420) (0.2956) (0.0160)

ibm 0.3661 0.5064 −0.2897 0.4178 13
(0.0123) (0.0492) (0.0085) (0.0166)

intc 0.4774 0.2986 −0.5181 0.4172 14
(0.0182) (0.0268) (0.0594) (0.0138)

jnj 0.2540 0.4243 −0.2135 0.4620 13
(0.0054) (0.0175) (0.0047) (0.0180)

ko 0.2782 0.2082 −0.3589 0.4586 12
(0.0068) (0.0096) (0.0411) (0.0201)

mcd 0.3083 0.4623 −0.1603 0.4642 13
(0.0083) (0.0516) (0.0048) (0.0183)

mrk 0.2820 0.2534 −0.2916 0.4660 14
(0.0061) (0.0068) (0.0079) (0.0167)

msft 0.4107 0.6185 −0.2606 0.4339 13
(0.0152) (0.0545) (0.0089) (0.0172)

orcl 0.5235 0.2223 −0.9821 0.4086 14
(0.0332) (0.0112) (0.3047) (0.0140)

pfe 0.3224 0.3746 −0.2667 0.4736 14
(0.0080) (0.0267) (0.0104) (0.0181)

spx 0.1783 0.5848 −0.1914 0.4677 12
(0.0033) (0.0347) (0.0049) (0.0201)

sunw 0.4690 0.2156 −1.2908 0.4100 12
(0.0435) (0.0186) (0.5704) (0.0174)

wmt 0.3584 0.2644 −0.3769 0.4694 14
(0.1093) (0.0328) (0.0437) (0.0184)

xom 0.2191 0.2144 −0.3011 0.4644 12
(0.0061) (0.0198) (0.0811) (0.0208)

yhoo 0.6456 0.2062 −1.4052 0.3771 13
(0.0650) (0.0265) 1.4860 (0.0142)
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TABLE 6.2
Average Parameter Values and (SD) for NIG by Name

Name σ ν θ γ NDays

amzn 0.8847 2.1919 −4.5988 0.4538 14
(0.0194) (2.4009) (21.596) (0.0183)

ba 0.6154 4.7638 −3.5501 0.4078 12
(0.0573) (15.3077) (37.722) (0.0167)

bkx 0.3463 1.4036 −0.2597 0.4725 12
(0.0121) (0.2763) (0.0142) (0.0194)

c 0.5665 3.5821 −2.3455 0.4724 14
(0.0552) (15.4488) (22.141) (0.0185)

csco 0.8748 3.3396 −3.4704 0.4214 14
(0.1930) (5.2986) (12.983) (0.0154)

ge 0.4046 3.0785 −1.9875 0.4269 14
(0.0333) (3.3546) (5.911) (0.0166)

hwp 1.1130 7.5444 −10.4969 0.4089 13
(0.4717) (131.9591) (572.164) (0.0161)

ibm 0.5146 2.2696 −1.0283 0.4198 13
(0.0377) (3.6108) (1.8754) (0.0166)

intc 0.9912 4.8189 −4.2061 0.4181 14
(0.1797) (12.8605) (29.669) (0.0139)

jnj 0.3931 2.4982 −0.7561 0.4629 13
(0.0136) (0.7155) (0.1237) (0.0181)

ko 0.6808 6.8884 −4.8917 0.4619 13
(0.0693) (27.2538) (42.628) (0.0189)

mcd 0.4308 2.0235 −0.3958 0.4652 13
(0.0300) (2.4329) (0.1814) (0.0184)

mrk 0.5897 4.6321 −2.0588 0.4665 14
(0.0305) (4.2441) (2.3629) (0.0167)

msft 0.4840 1.3941 −0.4511 0.4390 14
(0.0202) (0.3605) (0.0485) (0.0163)

orcl 1.1195 6.9661 −12.5825 0.4093 14
(0.2063) (13.9692) (138.21) (0.0141)

pfe 0.5560 3.3970 −1.7111 0.4744 14
(0.0459) (5.7138) (5.7787) (0.0182)

spx 0.2299 1.7070 −4.2667 0.4700 12
(0.0047) (0.309) (0.0239) (0.0202)

sunw 1.0197 9.2134 −23.8656 0.4105 12
(0.2884) (48.796) (820.007) (0.0174)

wmt 0.8340 6.6603 −6.0660 0.4701 14
(0.1599) (39.991) (96.388) (0.0184)

xom 0.5375 1.0590 −11.8701 0.4646 12
(0.0786) (208.40) (646.61) (0.0208)

yhoo 1.7093 1.1686 −37.0183 0.3783 13
(1.0657) (202.12) (3570.7) (0.0143)
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TABLE 6.3
Average Parameter Values and (SD) for MXNR by Name

Name a b d γ NDays

amzn 1.4021 −1.8664 0.0643 0.4506 14
(1.0201) (0.5696) (0.1359) (0.0184)

ba 0.3925 −1.1532 1.3478 0.4076 12
(0.0310) (0.2508) (0.6479) (0.0167)

bkx 0.5341 −0.9343 0.5041 0.4717 12
(0.0333) (0.0761) (0.0349) (0.0194)

c 0.4738 −1.2992 0.9891 0.4717 14
(0.0372) (0.1568) (0.5665) (0.0184)

csco 0.7403 −1.4104 0.9559 0.4205 14
(0.0995) (0.2629) (0.3136) (0.0154)

ge 0.3834 −1.6021 0.8574 0.4261 14
(0.0320) (0.3973) (0.1898) (0.0165)

hwp 0.6426 −0.9846 1.3666 0.4090 13
(0.0842) (0.0942) (1.2189) (0.0160)

ibm 0.5851 −1.2506 0.7238 0.4189 13
(0.0611) (0.1444) (0.2101) (0.0166)

intc 0.5567 −1.1976 1.3588 0.4177 14
(0.0372) (0.0139) (0.6237) (0.0138)

jnj 0.3514 −1.2486 0.7994 0.4622 13
(0.0121) (0.0156) (0.0690) (0.0181)

ko 0.2839 −1.1442 1.7778 0.4617 13
(0.0102) (0.0158) (0.8890) (0.0188)

mcd 0.5249 −0.7972 0.7431 0.4646 13
(0.0396) (0.0999) (0.2843) (0.0184)

mrk 0.3079 −1.1801 1.3721 0.4662 14
(0.0094) (0.1010) (0.2436) (0.0167)

msft 0.7497 −1.1732 0.5079 0.4379 14
(0.0615) (0.1647) (0.0423) (0.0162)

orcl 0.5778 −1.4515 1.5222 0.4092 14
(0.0602) (0.2662) (0.3909) (0.0141)

pfe 0.4327 −1.1265 0.9975 0.4740 14
(0.0223) (0.1314) (0.2797) (0.0181)

spx 0.2859 −1.5852 0.5473 0.4689 12
(0.0081) (0.2143) (0.0286) (0.0201)

sunw 0.5274 −1.5945 1.8312 0.4105 12
(0.0729) (0.3673) (1.2941) (0.0174)

wmt 0.4023 −1.0651 1.6047 0.4698 14
(0.0265) (0.1383) (0.9919) (0.0184)

xom 0.2399 −0.9904 2.1091 0.4646 12
(0.0128) (0.2064) (2.8735) (0.0208)

yhoo 0.8216 −1.0675 1.8136 0.3778 13
(0.1674) (0.1572) (1.8085) (0.0143)
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TABLE 6.4
Average Parameter Values and (SD) for VC by Name

Name σ ν θ γ NDays

amzn 1.0742 −7.3852 −6.2111 0.4381 12
(0.1531) (7.0528) (4.7875) (0.0187)

ba 0.6706 −5.8178 −5.0463 0.4076 12
(0.0615) (28.658) (33.851) (0.0168)

bkx 0.2820 −11.258 −1.6672 0.4718 12
(0.0121) (0.6763) (0.4167) (0.0194)

c 0.5633 −4.3202 −4.3973 0.4718 14
(0.0731) (38.356) (17.410) (0.0185)

csco 0.9323 −3.6493 −5.0193 0.4136 13
(0.1351) (40.581) (4.3293) (0.0157)

ge 0.4319 −3.5052 −6.1607 0.4250 13
(0.0308) (13.400) (36.391) (0.0177)

hwp 1.3586 −10.421 −4.0699 0.4062 13
(0.2138) (15.570) (1.5958) (0.0158)

ibm 0.4645 −1.4936 −2.3992 0.4180 12
(0.0421) (3.177) (1.2864) (0.0179)

intc 1.1205 −7.6666 −3.8770 0.4171 14
(0.2467) (18.874) (2.2711) (0.0138)

jnj 0.3903 −2.4680 −4.1707 0.4627 13
(0.0146) (1.3883) (3.3296) (0.0181)

ko 0.6689 −6.9960 −5.1770 0.4628 12
(0.0659) (35.912) (14.113) (0.0203)

mcd 0.4079 −1.3050 −1.6087 0.4647 13
(0.0427) (5.2264) (1.0510) (0.0184)

mrk 0.5997 −5.2893 −4.7985 0.4665 14
(0.0319) (8.2719) (6.0315) (0.0167)

msft 0.4234 −0.7815 −2.0143 0.4397 13
(0.0277) (2.8996) (2.3860) (0.0173)

orcl 1.1193 −4.2016 −4.7485 0.4104 14
(0.1922) (48.010) (2.0724) (0.0141)

pfe 0.5612 −3.2062 −3.0348 0.4742 14
(0.0603) (6.5781) (1.8581) (0.0182)

spx 0.2016 −1.1092 −6.0776 0.4664 11
(0.0041) (0.4466) (4.6708) (0.0218)

sunw 1.1191 −4.0469 −4.4024 0.4120 12
(0.2785) (45.520) (2.0061) (0.0175)

wmt 0.9104 −12.725 −6.7275 0.4694 14
(0.2163) (455.95) (107.85) (0.0184)

xom 0.5735 −9.9126 −7.9885 0.4647 12
(0.0759) (160.20) (137.12) (0.0208)

yhoo 2.0048 −11.583 −4.1807 0.3810 12
(0.7647) (113.97) (2.1309) (0.0152)
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TABLE 6.5
Average Parameter Values and (SD) for VS by Name

Name σ ν θ γ NDays

amzn 0.6762 −0.0033 −4.7136 0.4295 8
(0.1274) (0.0010) (8.0115) (0.0259)

ba 0.5482 0.4109 −3.5142 0.4103 12
(0.0337) (1.9401) (14.583) (0.0170)

bkx 0.4362 0.0039 −2.6679 0.4698 12
(0.0187) (0.0004) (0.8780) (0.0192)

c 0.5187 0.0008 −3.2430 0.4733 14
(0.0264) (0.0008) (8.4956) (0.0186)

csco 0.7537 −0.0077 −4.5348 0.4202 13
(0.0891) (0.00005) (13.115) (0.0164)

ge 0.4412 0.0074 −4.1959 0.4279 14
(0.0174) (0.0004) (10.797) (0.0164)

hwp 0.6877 −0.0003 −4.6375 0.4134 13
(0.0644) (0.0001) (16.639) (0.0166)

ibm 0.4878 −0.6834 −7.3176 0.4193 13
(0.0415) (7.9552) (26.632) (0.0166)

intc 0.7587 −0.0556 −2.4846 0.4205 14
(0.0581) (0.0343) (7.1605) (0.0139)

jnj 0.4028 −0.2184 −3.3331 0.4630 13
(0.0137) (0.6085) (1.7648) (0.0181)

ko 0.5406 0.9748 −2.1484 0.4648 13
(0.0340) (4.3453) (0.6295) (0.0190)

mcd 0.5199 0.4645 −1.9539 0.4578 12
(0.0253) (2.4434) (1.4556) (0.0192)

mrk 0.5375 1.7864 −3.0694 0.4682 14
(0.0328) (10.120) (3.1822) (0.0169)

msft 0.5402 0.0038 −5.0184 0.4362 14
(0.0329) (0.0009) (23.191) (0.0161)

orcl 0.8008 −0.0162 −4.9636 0.4131 14
(0.0936) (0.0013) (14.183) (0.0145)

pfe 0.5363 1.0698 −3.0744 0.4736 13
(0.0300) (14.529) (10.429) (0.0196)

spx 0.2454 −0.0063 −6.9053 0.4687 12
(0.0054) (0.00002) (4.4521) (0.0202)

sunw 0.8940 −0.0176 −2.9397 0.4121 10
(0.1150) (0.00012) (7.7327) (0.0211)

wmt 0.4737 0.0023 −7.2048 0.4742 13
(0.0026) (0.00011) (23.744) (0.0200)

xom 0.5211 3.7511 −6.1284 0.4654 12
(0.0063) (165.26) (128.20) (0.0208)

yhoo 1.0503 −0.0186 −3.0005 0.3836 12
(0.1750) (0.00006) (7.8931) (0.0152)
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TABLE 6.6
Average Parameter Values and (SD) for VT by Name

Name σ ν θ γ NDays

amzn 0.9807 −0.6425 −5.6473 0.4483 11
(0.1113) (9.3187) (3.3910) (0.0226)

ba 0.6864 −0.6570 −5.1889 0.4059 11
(0.0694) (25.406) (30.705) (0.0182)

bkx 0.3037 −0.6830 −1.7716 0.4716 12
(0.0102) (0.4989) (0.3735) (0.0193)

c 0.5633 −4.1628 −3.7947 0.4716 14
(0.0705) (17.039) (5.2529) (0.0185)

csco 1.0567 −7.1514 −4.7568 0.4194 14
(0.2363) (14.482) (2.7087) (0.0152)

ge 0.4303 −4.0828 −6.6586 0.4264 14
(0.0259) (10.959) (34.789) (0.0165)

hwp 1.2715 −10.191 −4.1911 0.4070 13
(0.3009) (46.642) (5.0878) (0.0158)

ibm 0.4766 −2.0124 −2.4433 0.4185 13
(0.0348) (3.3663) (1.2919) (0.0167)

intc 1.0955 −7.7125 −3.7720 0.4171 14
(0.2349) (17.249) (2.1290) (0.0138)

jnj 0.3857 −2.9425 −4.1016 0.4582 12
(0.0163) (1.5215) (3.0704) (0.0192)

ko 0.6712 −7.6452 −5.4547 0.4620 13
(0.0638) (35.943) (14.775) (0.0188)

mcd 0.4079 −1.6715 −1.5911 0.4648 13
(0.0321) (3.4571) (0.8343) (0.0184)

mrk 0.5871 −5.5057 −4.6984 0.4665 14
(0.0302) (7.3340) (5.4601) (0.0167)

msft 0.4234 −0.8295 −1.5959 0.4396 13
(0.0185) (0.7021) (0.3757) (0.0173)

orcl 1.3337 −9.4482 −4.8852 0.4093 14
(0.2461) (17.195) (1.9136) (0.0141)

pfe 0.5429 −4.0225 −3.6854 0.4742 14
(0.0501) (13.918) (12.897) (0.0182)

spx 0.2034 −1.6843 −6.1219 0.4690 12
(0.0038) (0.5312) (4.2939) (0.0202)

sunw 1.2275 −7.5918 −4.7830 0.4084 11
(0.3288) (31.986) (2.2890) (0.1881)

wmt 0.7648 −5.2872 −3.1186 0.4704 13
(0.1061) (8.5511) (2.2215) (0.0197)

xom 0.5687 −10.080 −7.8559 0.4646 12
(0.0741) (146.79) (132.07) (0.0208)

yhoo 1.7314 −10.928 −4.3397 0.3843 12
(0.9138) (81.454) (1.7769) (0.0150)
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7. SUMMARY

Self-decomposable laws for the risk-neutral density at unit time were motivated as limit
laws and were associated with self-similar additive processes using the results of Sato
(1991). These processes were then employed to build option pricing models amenable
to empirical evaluation using the Fast Fourier Transform method of Carr and Madan
(1998). Six scaled, self-decomposable laws were formulated based on the variance gamma
law, the normal inverse Gaussian law, the Meixner process, and processes related to the
hyperbolic functions. Three additional models based on subordinating Brownian motion
with drift to the processes related to the hyperbolic functions were ruled out of the study
as they failed to meet acceptable error targets.

Empirical investigations were conducted using some 12,000 option prices on 21 names,
for 14 days and for a wide range of strikes and maturities. It was observed that all models
could explain option prices consistently across strike and maturity, with an average APE
of around 2.5%. Based on a variety of performance rankings, there was a slight preference
for the VGSSD, NIGSSD, and MXNRSSD models over the other three. Furthermore,
an analysis of parameter stability over time gives a clear preference for the use of the
VGSSD or the MXNRSSD models over the other models tested. Hence future research
should focus on the use of such models in an effort to capture the variation of option
prices across calendar time.

From the empirical adequacy of the calibrations based on the scaled self decompos-
able laws we may infer that the risk-neutral distributions indeed satisfy the scaling laws
introduced in Section 2. The process implications of the validity of such scaling are an
open question.
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