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WhileAmericancallsonnon-dividend-payingstocksmay
be valued as European, there is no completely explicit
exact solution for the values of American puts. We use
a technique called randomization to value American puts
andcallsondividend-payingstocks.This techniqueyields
a new semiexplicit approximation for American option
values in the Black-Scholes model. Numerical results in-
dicate that the approximation is both accurate and com-
putationally efficient.

Closed-form solutions for the value of European-style op-
tions have been known since the seminal articles of Black
and Scholes (1973) and Merton (1973). Since American
calls on non-dividend-paying stocks are not rationally ex-
ercised early, they can be valued in closed form. Unfor-
tunately, the vast majority of listed options are American
style and are subject to early exercise. Despite a profu-
sion of research on the subject, no completely satisfactory
analytic solution for the value of such options has been
found.

The principal difficulty in obtaining an analytic solu-
tion arises from the absence of a simple expression for
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the optimal exercise boundary. An exercise boundary is a time path of critical
stock prices at which early exercise occurs. The optimal exercise boundary
of an American option is not known ex ante, and must be determined as
part of the solution to the valuation problem. Furthermore, it is difficult to
analytically approximate American option values using boundary approx-
imations that are consistent with the known short- and long-time behavior
of the exercise boundary.

The purpose of this article is to develop a new approach for determining
American option values and exercise boundaries based on a technique called
randomization. In general, randomization describes a three-step procedure
that can be used to solve a host of problems. The first step is to randomize
a parameter by assuming a plausible distribution for it. The second step
is to somehow calculate the expected value of the dependent variable in
this random parameter setting. This is the difficult step since one does not
know the dependent variable in the fixed parameter setting. The final step
is to let the variance of the distribution governing the parameter approach
zero, holding the mean of the distribution constant at the fixed parameter
value.

For standard options, one can randomize the initial stock price, the strike
price, the initial time, or the maturity date. In this article, we randomize the
maturity date of an American option and determine the exact solution for
its value. The owner of this random maturity American option can exercise
at any time up to and including some random maturity date. Thus a random
maturity American put gives its owner the right to sell an underlying secu-
rity for a fixed price at any time up to and including its random maturity,
while the call gives the corresponding right to buy. In this article the ma-
turity date is determined by the waiting time to a prespecified number of
jumps of a standard Poisson process, which is assumed to be independent
of the underlying stock price process. We note that the only role of the
Poisson process is to determine maturity; the stock price process used is
continuous.

A random maturity contract has a value which approximates the value
of its fixed maturity counterpart. In order to distinguish between these val-
ues, we refer to the former values as randomized. In general, the formulas
for randomized values are simpler than the formulas for fixed maturity
contracts. The simplest expression arises when the randomized American
option matures at the first jump time of a Poisson process, in which case the
maturity date is exponentially distributed. This random horizon problem is
equivalent to an infinite horizon problem with an adjusted discount rate,
as shown in a portfolio optimization setting by Cass and Yaari (1967) and
Merton (1971). In the option pricing context, American options with infinite
horizons were valued long ago by McKean (1965) and Samuelson (1965).
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Randomization and the American Put

So it is somewhat natural that randomizing the maturity will lead to simpler
option valuation formulas.1

For American options, the simplicity of the solution arising from random-
ization is mainly due to the taming of the behavior of the exercise boundary.
When the option matures with the first jump, the memoryless property of the
exponential distribution implies that as calendar time elapses, the option gets
no closer to its random maturity, and thus its value suffers no time decay. As
the exercise value is also time stationary, the exercise boundary becomes
independent of time as well. Thus the usual search for a time-dependent
boundary is reduced to the search for a single critical stock price. When the
underlying security has either no dividends or a constant continuous divi-
dend flow, we can solve explicitly for the critical stock price. In contrast, if
the underlying pays continuous proportional dividends, then a fairly sim-
ple algebraic equation must be solved numerically. As a result, the general
formulation leads to semiexplicit valuation formulas.

While the assumption of an exponentially distributed maturity leads to
simple approximations for American options, the approximation has too
much error to be used in practice. To improve the approximation, we instead
assume that the time to maturity may be subdivided inton independent
exponential subperiods. Thus the randomized American option matures at
the nth jump time of a standard Poisson process. The maturity time is
thereby Erlang distributed with a mean equal to the fixed maturity date of
the true American option. In this case the exercise boundary takes the form
of a staircase, with the levels being determined by optimizing within each
subperiod. The resulting expression for the randomized option value is a
triple sum, involving no special functions other than the natural log.

As the number of random subperiods becomes large, the variance of the
random maturity approaches zero, so that the Erlang probability density
function governing maturity approaches a Dirac delta function centered
at the American option’s fixed maturity. Thus increasing the number of
periods increases the accuracy of the solution at the expense of greater
computational cost. However, when Richardson extrapolation is used, our
numerical results indicate that our randomized option value converges to
the true American option value in a computationally efficient manner.

The randomization approach taken in this article is to exactly value a
contract which approximates the nature of an American option. An alter-
native approach is to approximate the valuation operator rather than the
contract. This is the approach taken when finite differences [see, e.g., Bren-
nan and Schwartz (1977)] are used to numerically solve the partial dif-
ferential equation (PDE) governing the value of an American option. As
is well known, the standard finite difference approach replaces all of the

1 I thank the referee for this insight.
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partial derivatives in a PDE with finite differences. When only the time
derivative is discretized, the approach is termed the (horizontal) method
of lines or Rothe’s method [see Rothe (1930) and Rektorys (1982)]. The
application of the method of lines to free boundary problems has been pro-
mulgated in Meyer (1970, 1979) and in Meyer and van der Hoek (1994),
who use it to numerically value American options. Goldenberg and Schmidt
(1995) test this numerical scheme against other approaches and find that it
is highly accurate, although slightly slower than some other approaches.2

Carr and Faguet (1994) give a semiexplicit solution to the sequence of ordi-
nary differential equations which arise when the method of lines is applied
to the Black-Scholes PDE. In fact, the solution obtained via randomiza-
tion in this article is mathematically equivalent to the solution in Carr and
Faguet.

The structure of this article is as follows. Section 1 reviews standard re-
sults on the pricing of American puts in the Black-Scholes model. Section 2
presents the randomization technique in the context of valuing an American
put on a non-dividend-paying stock with an exponential maturity. Section 3
discusses the more general case of an Erlang distributed maturity. Section 4
discusses the implementation of our formula and compares this implementa-
tion with extant approaches in terms of both speed and accuracy. Section 5
extends the analysis to dividends and American calls. Section 6 summa-
rizes and suggests directions for future research. An appendix collects all
the formulas needed to implement the randomization approach.

1. American Put Valuation in the Black-Scholes Model

In this section we focus on the valuation of American puts in the Black-
Scholes model. We defer the corresponding development for American calls
until dividends have been introduced. The Black-Scholes model assumes
that over the option’s life [0, T ], the economy is described by frictionless
markets, no arbitrage, a constant riskless rater > 0, no dividends from the
underlying stock, and that the underlying spot price process{St , t ∈ (0, T)}
is a geometric Brownian motion with a constant volatility rateσ > 0. Let
P(t, S; T) denote the value of an American put as a function of the current
time t , the current stock priceS, and the maturity dateT . The critical
stock priceS(t; T), t ∈ [0, T ] is defined as the largest priceS at which
the American put valueP(t, S; T) equals its exercise valueK − S, where
K is the strike price. As the maturity is shortened, the alive American put
value falls, while the exercise value remains constant. A reduction in time
to maturity therefore raises the critical stock price at which exercise occurs.

2 However, given the speed of modern computers, they argue that its inherent accuracy makes it the method
of choice among those tested.
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Randomization and the American Put

When graphed against time, the critical stock price is a smoothly increasing
function termed theexercise boundary.

For quite general stochastic processes, the American put’s initial value
is given by the solution to an optimal stopping problem,

P(0, S; T) = sup
τs∈[0,T ] E0,S{e−r τs[K − Sτs]

+}, (1)

whereτs is a stopping time and the expectation is calculated under the
risk-neutral probability measure. In the Black-Scholes model, this optimal
stopping time is the earlier of maturity and the first passage time to the
exercise boundary. Consequently, the alive American put may alternatively
be valued as

P(0, S; T) = sup
B(t);t∈[0,T ] E0,S{e−r (τB∧T)[K − SτB∧T ]+, S> S(0; T),

(2)
wherea ∧ b ≡ min(a,b) and τB is the first passage time fromS to an
exercise boundaryB(t), t ∈ [0, T ].3

McKean (1965) showed that an application of Itˆo’s lemma to Equation (1)
implies that the alive American put value and exercise boundary jointly solve
a free boundary problem, consisting of the Black-Scholes PDE:

σ 2

2 S2Pss(t, S; T)+ r SPs(t, S; T)− r P(t, S; T) = PT (t, S; T),
S∈ (S(t; T),∞), t ∈ (0, T), (3)

the following terminal conditions:

P(T, S; T) = (K−S)+, S∈ (S(T; T),∞), and S(T; T) = K , (4)

and the following boundary conditions:

lim
S↑∞

P(t, S; T) = 0,

lim
S↓S(t;T)

P(t, S; T) = K − S(t; T),
lim

S↓S(t;T)
Ps(t, S; T) = −1, t ∈ (0, T). (5)

Boundary value problems arising in option valuation usually require one
terminal condition and two boundary conditions to determine a unique so-
lution. The extra terminal condition in Equation (4) and the extra bound-
ary condition in Equation (5) arise from the requirement that the exercise
boundary must also be uniquely determined.

Unfortunately there is no known exact and completely explicit solution to
either the optimal stopping problem of Equation (1) or to the free boundary

3 As usual, the first passage time is considered to be infinite if the boundary is never touched.
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problem of Equation (3). The next section presents a new approach for
obtaining approximate solutions to these problems.

2. Exponential Maturity Valuation

In order to obtain an approximate solution for the value of an American put
and its exercise boundary, we now suppose that the maturity date is random.
Let τ denote the random maturity time. In this section we assume thatτ is
exponentially distributed with scale parameterλ:

Pr{τ ∈ dt} = λe−λtdt. (6)

Since the mean ofτ is the reciprocal ofλ, we setλ = 1
T , so that the mean

maturity of the randomized American put isT , the maturity of the true
American put. LetP(1)(S) denote the randomized value of an American
put, which matures at the first jump time of a standard Poisson process with
intensityλ = 1

T . We assume that the Poisson process is independent of
the stock price process. Furthermore, we assume that the Poisson process
is also uncorrelated with any market factor. It follows that the risk associ-
ated with the randomness of maturity can be diversified away by holding
a large portfolio of random maturity options on different stocks. Thus the
randomized value can be calculated in a risk-neutral fashion.

The analog to Equation (2) for randomized American option values is

P(1)(S) =sup
B E0,S{e−r (τB∧τ)[K − SτB∧τ ]

+}, S> S1, (7)

whereS1 is the unknown optimal exercise boundary. Note that the supremum
is taken only over time-stationary boundariesB rather than functions of time
B(t). The memoryless property of the exponential distribution implies that
the passage of time has no effect on either the randomized option value or
its optimal exercise boundary. Thus the time-dependent exercise boundary
of a true American put becomes flat when we randomize the maturity. When
the Poisson process governing maturity jumps up, the randomized option
value jumps down to intrinsic value(K − S)+. Thus one can think of the
pent up time decay of the option as being released at the jump time. This
release causes the exercise boundary to jump up fromS1 to K , crudely
approximating the behavior of the true exercise boundary.

The expectation in Equation (7) can be evaluated in closed form and
the result can be maximized over barriers analytically. Since the details are
cumbersome, a perhaps simpler approach is to rewrite Equation (7) as an
iterated expectation:

P(1)(S) =sup
B E0,S{E0,S{e−r (τB∧t [K − SτB∧t ]

+
∣∣∣∣τ = t}}, S> S1, (8)
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Randomization and the American Put

The first expectation is taken only over the random maturity, while the
second is taken only over the future stock price at a given realization of this
random maturity. Since the random maturity is exponentially distributed,
Equations (6) and (8) imply the following relationship between random and
fixed maturity put values:4

P(1)(S) =sup
B λ

∫ ∞
0

e−λt D(0, S; t; B)dt, (9)

whereD(0, S; t; B) is the initial value of a down-and-out put with fixed
maturityt , out barrierB, and rebateK − B:

D(0, S; t; B) = E0,S{e−r (τB∧t)[K − SτB∧t ]
+}, S> B.

One can immediately observe from Equation (9) that the randomized Amer-
ican put value is simply the Laplace-Carson transform of a fixed maturity
barrier put, maximized over barriers.5 Since down-and-out put values sat-
isfy the Black-Scholes PDE [Equation (3)], one can take the Laplace-Carson
transform of both sides of this PDE to obtain the following simpler ordinary
differential equation (ODE):

σ 2

2
S2P(1)ss (S)+r SP(1)s (S)−r P (1)(S) = λ[ P(1)(S)−(K−S)+], S> S1,

(10)
subject to the following boundary conditions:

lim
S↑∞

P(1)(S) = 0, lim
S↓S1

P(1)(S) = K − S1, lim
S↓S1

P(1)s (S) = −1. (11)

Using standard techniques for solving ODE’s, the randomized value of
an American put can be decomposed as

P(1)(S) =
 p(1)(S)+ b(1)(S) if S> S0 ≡ K

K R− S+ c(1)(S)+ b(1)(S) if S∈ (S1, S0)

K − S if S≤ S1,
(12)

wherep(1)(S) is the randomized value of a European put paying(K − S)+

4 Note that the randomized value obtained in this article is strictly smaller than the value of an exponentially

weighted portfolio of true American puts, that is,P(1)(S) < λ
∫ ∞

0
e−λt P(0, S; t)dt. The reason is that

the optimization over boundaries for our contract must be done with a random maturity. In contrast, the
given integral simply averages American values over maturities, where each American valueP(0, S; t) is
calculated by optimizing over a fixed maturityt . I thank the editor, Kerry Back, for correcting a mistake
on this point in an earlier draft.

5 The Laplace-Carson transform differs from the standard Laplace transform only by the introduction of
a constantλ in the kernel. See Rubinstein and Rubinstein (1993, pp. 512–517) for the properties of this
transform.
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at the first jump time,

p(1)(S) =
(

S

K

)γ−ε
(qK R− q̂K), S> K , (13)

with γ ≡ 1
2 − r

σ 2 , R≡ 1
1+rT , ε ≡

√
γ 2+ 2

Rσ 2T , and

p ≡ ε − γ
2ε

,q ≡ 1− p, p̂ ≡ ε − γ + 1

2ε
, andq̂ ≡ 1− p̂, (14)

b(1)(S) is the present value of interest received below the critical stock price
S1 until the first jump time,

b(1)(S) =
(

S

S1

)γ−ε
qK RrT, (15)

and finally,c(1)(S) is the randomized value of a European call paying(S−
K )+ at the first jump time,

c(1)(S) =
(

S

K

)γ+ε
( p̂K − pK R), S< K . (16)

The first line of our formula [Equation (12)] represents the randomized
version of a decomposition of the American put value into the European put
value and the early exercise premium. This decomposition also holds in the
fixed maturity setting, as shown previously in Kim (1990), Jacka (1991), and
Carr, Jarrow, and Myneni (1992). Note that the formula [Equation (13)] for
the randomized value of the European put is simpler than the Black-Scholes
formula in that it does not use any special functions such as the normal
distribution function. On the other hand, Equation (13) holds only for out-
of-the-money values (S> K ). In contrast to the Black-Scholes put formula
which holds for all positive stock prices, Equation (13), which values the
put whenS> K , does not correctly value the put whenS< K . The lack of
smoothness in the payoff function implies that put call parity must be used
to generate in-the-money values for European puts with random maturity.6

The second line of Equation (12) reflects this restriction. The third line of
Equation (12) sets the randomized put value to exercise value below the
critical stock priceS1. Figure 1 graphs the value of an exponential maturity
American put against the stock price. The function is twice differentiable
at the strike price, but only once differentiable at the exercise boundary, as
is the case for a true American put.

Imposing value-matching in Equation (12) at the critical stock priceS1

6 Put call parity holds so long as the options and a forward contract mature at the same jump time.
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Randomization and the American Put

Figure 1
Value of exponential maturity put

yields the following balance equation:

c(1)(S1) = pK RrT. (17)

The left-hand side is clearly the randomized value of a European call when
the stock price is at the critical stock price. The right-hand side represents
the randomized value of a claim paying interest on the strike price at all
stock prices above the current stock price level. The critical stock price is
chosen so that the call value just matches the present value of the interest
flow received above the boundary. Stationarity in the values involved implies
that the exercise boundary remains flat at this level until the jump time.

The simple expression of Equation (16) for the European call value im-
plies that the balance equation [Equation (17)] can be explicitly solved for
our first approximation to the exercise boundary,S1:

S1 = K

(
pRrT

p̂− Rp

) 1
γ+ε
. (18)

It is worth pointing out that explicit expressions for the critical stock price
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are rare. Indeed, we will lose this explicitness once constant proportional
dividends are introduced.7

For future use, note that substituting Equation (18) into Equation (16)
implies that the randomized value of a European call is given by a formula
similar to that of the randomized early exercise premium in Equation (15):

c(1)(S) =
(

S

S1

)γ+ε
pK RrT ≡ A(1)(S).

Equations (12) and (18) represent the randomized versions of the Amer-
ican put value and critical stock price, respectively. While these first ap-
proximations are simple and explicit, numerical implementation indicates
substantial undervaluation of the put. Intuitively, the reason the random-
ized value is substantially smaller than the true value is that the owner of a
random maturity put must optimize over boundaries without the benefit of
knowing when the option will mature.

Clearly the valuation error can be reduced by lowering the variance of
the distribution governing maturity. Unfortunately, if a random variable
with an exponential distribution has meanT , then its variance isT2. The
next section uses a two-parameter distribution for maturity, which permits
keeping the mean maturity constant atT , while reducing the variance as
much as desired. As the variance approaches zero, the result is a de facto
inversion of the Laplace-Carson transform of Equation (12), yielding an
accurate approximation of the American put value.

3. Erlang Maturity Valuation

Consider an investor who is faced with the problem of allocating his in-
vestable wealth amongn different securities. If the security returns are
independently and identically distributed (i.i.d.), the variance minimizing
allocation is to invest an equal proportion in each security. By the same
token, a simple and efficient way to reduce the variance of our option’s
random maturity is to split it inton i.i.d subperiods. If we also assume that
each of then periods is exponentially distributed with parameterλ, then the
maturity dateτ is Erlang distributed:

Pr{τ ∈ dt} = λn

(n− 1)!
tn−1e−λtdt.

In order that the mean maturity beT , each subperiod must have mean

7 However, we retain the explicitness of the exercise boundary if the dividend flow is constant in dollar
terms. For short-term options on stock indices, a constant dividend flow is more consistent with casual
empirical observation than constant proportional dividends.
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Randomization and the American Put

Figure 2
Convergence of gamma density functions

4 ≡ T/n, which impliesλ = 1/4. By assuming that the maturity is Erlang
distributed instead of exponentially distributed, the variance is reduced by a
factor of 1

n to onlyT2/n. Figure 2 shows three Erlang density functions, with
each corresponding to a maturity of meanT = 1 year, and with variances of
1, 1/2, and 1/3, respectively. The densities are converging to a Dirac delta
function centered atT = 1 year.

Let P(n)(S) denote the randomized value of an American put option
which can be exercised for(K −S)+ at any time up to and including thenth
jump time of a standard Poisson process (with intensityλ = 1/4). To value
this put, we use dynamic programming. Accordingly, suppose thatn − 1
jumps have occurred and that the investor is holding a put maturing at the
next jump time of the Poisson process. This valuation problem was solved
in the previous section, with the solutionP(1)(S) given by Equation (9),
except thatT must be everywhere replaced by4 ≡ T/n.

We now back up a random time period and think ofP(1)(S) as the random
payoff occurring at the end of this random period, provided that no exercise
has occurred beforehand. Since exercising yields a payoff of(K − S)+ as
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usual, the randomized value of the American put with two jumps to maturity
is

P(2)(S) = sup
B>0 ES{e−r τB [K − B]+1(τB < τ2)

+ e−r τ2 P(1)(Sτ2)1(τB ≥ τ2)}, S> S2, (19)

whereτ2 denotes the length of the second random period prior to maturity
and S2 denotes the unknown optimal exercise boundary over this period.
Once again, the stationarity of the barrierB over the period implies that the
expectation in Equation (19) can be evaluated in closed form and the result
can be maximized over barriers analytically.

As in the previous section, a perhaps simpler approach is to work with
Laplace-Carson transforms. Proceeding by analogy with the previous sec-
tion, let D(S; T − t, B) denote the timet value of a down-and-out put with
fixed maturityT , out barrierB, and which pays a rebate ofK − B at the
first passage time toB, if this occurs beforeT , and which paysP(1)(ST ) at
T otherwise. Then,D(S; T − t, B) satisfies the Black-Scholes PDE,

σ 2

2
S2Dss(S; T − t, B)+ r SDs(S; T − t, B)− r D(S; T − t, B)

= DT (S; T − t, B), S∈ (B,∞), t ∈ (0, T), (20)

subject to the terminal conditionD(S;0, B) = P(1)(S) and the boundary
conditions

lim
S↑∞

D(S; T−t, B) = 0, lim
S↓B

D(S; T−t, B) = K−B, t ∈ (0, T).

The randomized value of the American put maturing after two more
jumps of the Poisson process is related to this fixed maturity claim by

P(2)(S) =sup
B λ

∫ ∞
0

e−λt D(S; t, B)dt. (21)

Taking Laplace-Carson transforms of both sides of the PDE, Equation (20)
implies that

σ 2

2
S2P(2)ss (S)+ r SP(1)s (S)− r P (2)(S) = λ[ P(2)(S)− P(1)(S)], S> S2,

(22)
subject to the following boundary conditions:

lim
S↑∞

P(2)(S) = 0, lim
S↓S2

P(2)(S) = K − S2, lim
S↓S2

P(2)s (S) = −1. (23)

This simpler free boundary problem can be solved analytically for both the
randomized put valueP(2)(S) and the critical stock priceS2. The graph
of the American put value is similar to Figure 1, but with slightly higher
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Randomization and the American Put

Figure 3
Exercise boundary of Erlang maturity put

value due to the lower variance in maturity. Figure 3 shows the exercise
boundary for a realization in which the first jump happened to occur 0.53
years after issuance, while the put matured with the second jump 0.93 years
after issuance. The critical stock price over the earlier of the two periods is
below the critical stock price of the later period because the end-of-period
payoff is greater (i.e.,P(1)(S) ≥ K − S).

More generally, letP(m)(S) and Sm denote the randomized put value
and exercise boundary stair levels, respectively, withm random periods
to maturity,m = 0,1, . . . ,n, with P(0)(S) ≡ (K − S)+ and S0 ≡ K .
ThenP(m)(S) andSm jointly solve the following sequence of free boundary
problems:

σ 2

2
S2P(m)ss (S)+ r SP(m)s (S)− r P (m)(S)

= λ[ P(m)(S)− P(m−1)(S)], for S∈ (Sm,∞), (24)
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subject to the boundary conditions

lim
S↑∞

P(m)(S) = 0,

lim
S↓S

m

P(m)(S) = K − Sm,

lim
S↓S

m

P(m)s (S) = −1, for m= 1, . . . ,n. (25)

Substitutingλ ≡ 1
4 on the right-hand side of Equation (24) and com-

paring with the Black-Scholes PDE of Equation (3) indicates an alterna-
tive interpretation of the approximation induced by our randomization pro-
cedure. Our randomized put valueP(m)(S) is also the approximation for
P(T −m4, S; T) which arises when time is discretized and the maturity
derivativePT (t, S; T) ≡ ∂P

∂T (t, S; T) in Equation (3) is replaced with the

finite differenceP(m)(S)−P(m−1)(S)
4 = 4P(m)(S)

4 . Note however that the spatial
derivatives are not replaced with their finite differences, in contrast to stan-
dard finite difference schemes or the binomial model.8 As mentioned in
the introduction, the notion of discretizing one variable while leaving the
other continuous is known in the numerical methods literature as semi-
discretization or the method of lines.

The accuracy of our approach may be anticipated a priori by noting that
as the maturity dateT approaches infinity holding the number of periods
n fixed, thenλ ↓ 0 and thus Equation (24), describing the randomized put
value, approaches that of the perpetual put. As a result, the randomized put
solution with any number of jumps remaining will converge to the correct
perpetual solution. Conversely, asn gets arbitrarily large withT held fixed,
then the finite difference4P(m)(S)

4 on the right-hand side of Equation (24)
converges to the maturity derivativePT (t, S; T) in Equation (3). As a re-
sult, we conjecture that the solution (P(n)(S), Sn) to our randomized option
problem converges to the unknown solution (P(0, S; T), S(0; T)) of the
American problem in Equation (1) or (3).9

Recall from Section 2 that our formulas for random maturity option
values depended on whether the option was in or out of the money. Simi-
larly, our formula for the randomized put value,P(n)(S), depends on which

8 The binomial model uses a forward finite difference for the maturity derivative leading to an explicit
scheme. The appearance of a backward difference for the maturity derivative indicates that our random-
ization procedure may be considered as the limiting case of a fully implicit scheme, where the size of
each space step is infinitessimally small. Surprisingly, this implicit scheme has a semiexplicit solution for
an American option and a fully explicit solution for a European or barrier option.

9 While numerical implementation of our solution will prove to be consistent with this conjectured conver-
gence, a formal proof of convergence remains an open question.
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interval(Si , Si−1) contains the current spot priceS:10

P(n)(S) =


p(n)0 (S)+ b(n)1 (S) if S> S0 ≡ K
v
(n)
i (S)+ b(n)i (S)+ A(n)i (S;1) if S∈ (Si , Si−1],

i = 1, . . . ,n
K − S if S≤ Sn,

(26)

wherep(n)0 (S) is the out-of-the-money value of a European put maturing in
n (random-length) periods:11

p(n)0 (S) =
(

S

K

)γ−ε n−1∑
k=0

(
2ε ln

(
S
K

))k
k!

n−k−1∑
l=0

(
n− 1+ l

n− 1

)
× [K Rnqn pl+k − Kq̂n p̂l+k], S> K , (27)

with 4 ≡ T/n, γ ≡ 1
2 − r

σ 2 ,

R≡ 1

1+ r4 , ε ≡
√
γ 2+ 2

Rσ 24 , (28)

p,q, p̂, q̂ given in Equation (14), and fori = 1, . . . ,n, v(n)i (S) is the
randomized value of a short forward position maturing inn− i +1 periods:

v
(n)
i (S) = K Rn−i+1− S,

b(n)i (S) is the present value of interest received below the boundary for the
first n− i + 1 periods:

b(n)i (S) =
n−i+1∑

j=1

(
S

Sn− j+1

)γ−ε j−1∑
k=0

(
2ε ln

(
S

S
n− j+1

))k

k!

×
j−k−1∑

l=0

(
j − 1+ l

j − 1

)
q j pk+l Rj Kr4, (29)

and finally,A(n)i (S;1) is the randomized value of an out-of-the-money Eu-
ropean call less interest paid above the boundary over the complementary

10 Note that Equation (26) is closely related to the value of a fixed maturity American option when the
variance rate is gamma distributed. See Madan and Chang (1997) for a closed form solution for European
options.

11 See Equations (54) and (53) in the Appendix for the randomized values of European calls and in-the-money
European puts, respectively.
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period:12

A(n)i (S; h) ≡
n−i+1∑

j=h

(
S

Sn− j+1

)γ+ε j−1∑
k=0

(
2ε ln

(
S

n− j+1

S

))k

k!

×
j−k−1∑

l=0

(
j − 1+ l

j − 1

)
pj qk+l Rj Kr4. (30)

The formula in the first line of Equation (26) again reflects the random-
ized version of the well-known decomposition of the American put value
into the value of the corresponding European put and the early exercise
premium. The formula in the second line is the randomized version of a
new decomposition of the American put value into the value if forced to
sell at a given date prior to expiration, and the premia which arise because
exercise can occur before or after this date. The final line of Equation (26)
indicates that the put should be exercised immediately if the stock priceS
is at or below our approximation for the critical stock priceSn.

The staircase levels comprising the exercise boundary can be determined
by recursive solution of an explicit formula. Continuity at the strike price
in each periodm= 1, . . . ,n impliesc(m)1 (K ) = A(m)1 (K ;1), which in turn
implies the following explicit solution for each critical stock priceSm:

Sm = K

(
pRKr4

c(m)1 (K )− A(m)1 (K ;2)

) 1
γ+ε

, m= 1, . . . ,n, (31)

where from Equation (54) in the Appendix, the at-the-money call value with
m periods to maturity simplifies to

c(m)1 (K ) =
m−1∑
l=0

(
m− 1+ l

m− 1

)
[K p̂mq̂l − K Rm pmql ], m= 1, . . . ,n.

(32)
SinceA(m) in Equation (31) depends onSm−1 to S1, the critical stock prices

must be solved recursively, withS1 = K ( pRr4
p̂−Rp)

1
γ+ε .

4. Implementation

Our Equation (26) for the randomized put valueP(n)(S) is a triple sum.
Clearly we need the number of periodsn to be small in order to achieve com-
putational efficiency. This section describes how Richardson extrapolation
can be used to provide accurate answers using just a few periods. Richard-

12 This value also accounts for the smoothness at the exercise boundary in every period.
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son extrapolation has been used previously to accelerate valuation schemes
for American options. Geske and Johnson (1984) first used Richardson ex-
trapolation in a financial context to speed up and simplify their compound
option valuation model. In general, it is not a good idea to extrapolate on the
number of time steps in the binomial model [see Cox, Ross, and Rubinstein
(1979) and Rendleman and Bartter (1979)] due to the oscillatory nature
of the convergence. However, Broadie and Detemple (1996) successfully
use Richardson extrapolation to accelerate a hybrid of the binomial and
Black-Scholes models. Furthermore, Liesen (1997) shows that randomiz-
ing the length of the time steps in the binomial model permits the successful
use of extrapolation. Finally, Huang, Subrahmanyam, and Yu (1996) and
Ju (1998) use the approach to accelerate the integral representation of the
early exercise premium.

Denote our approximation [Equation (26)] by a functionP̂(4) of the
mean period length4. Richardson extrapolation can be used when the
approximation can be adequately described by the firstN terms in a Taylor
series expansion about the origin:

P̂(4) =
N−1∑
n=0

∂n P̂(0)

∂4n

4n

n!
+ O(4N). (33)

The explicit nature of our equation (26) can be used to show that our approx-
imation has the requisite smoothness for anyN. If we ignore the terms of

O(4N) in Equation (33), then theN coefficients∂
n P̂(0)
∂4n ,n = 0,1, . . . , N−1

can be determined by using anyN values of4 for which P̂(4) is known.
The N-point Richardson extrapolation is then the first coefficientP̂(0).
From Equation (33), this extrapolation has error of orderO(4N).

For example, a three-point Richardson extrapolation can be obtained by
assuming that our approximation is approximately quadratic in the mean
period length:

P̂(4) ≈ P̂(0)+ P̂′(0)4+ 1

2
P̂′′(0)42.

Substituting in4 = T,4 = T/2, and4 = T/3 leads to three equations in
the three unknownŝP(0), P̂′(0), and P̂′′(0). Inverting the system implies
that the three point extrapolation is given by

P̂1:3(0) ≡ 1

2
P̂(T)− 4P̂(T/2)+ 9

2
P̂(T/3). (34)

Figures 4 and 5 illustrate the idea behind a three-point extrapolation. From
Marchuk and Shaidurov (1983, p. 24), anN-point Richardson extrapolation
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Table 1
Convergence of randomized put value to American without and with Richardson extrapolation

Number of stepsn or pointsN Unextrapolated put valueP(n) Extrapolated put valueP1:N

1 7.0405 7.0405
2 7.6175 8.1946
3 7.8353 8.3089
4 7.9505 8.3257
5 8.0220 8.3311
6 8.0709 8.3333
7 8.1065 8.3345
8 8.1335 8.3353
9 8.1548 8.3358

10 8.1720 8.3362
11 8.1862 8.3365
12 8.1981 8.3367
13 8.2082 8.3369
14 8.2169 8.3370
15 8.2246 8.3371

S= 100,K = 100,T = 1, r = 0.1, δ = 0, σ = 0.3

is the following weighted average ofN randomized put values:13

P̂1:N(0) ≡
N∑

n=1

(−1)N−nnN

n!(N − n)!
P̂(T/n). (35)

An accurate approximation for the critical stock price at the initial time
can be obtained by imposing either of the smooth pasting conditions in
Equation (25) or by Richardson extrapolation:14

S1:N(0) ≡
N∑

n=1

(−1)N−nnN

n!(N − n)!
S(T/n), (36)

whereS(4) is the function relating the initial critical stock priceSn deter-
mined by Equation (31) to the mean period length.

The effectiveness of Richardson extrapolation is illustrated by a typical
test case:S= 100, K = 100,T = 1, r = .1, andσ = .3. The true value
based on the binomial method with 2000 time steps appears to be 8.3378.
Table 1 shows that for this test case the unextrapolated values approach the
true value very slowly from below. In contrast, the extrapolated put values
converge rapidly to this true value, with penny accuracy obtained in only 5
points. Table 2 elaborates on the calculation of the first two unextrapolated
values in Table 1. Besides indicating typical values of some of the variables,
it should aid in the reproduction of the results of Table 1.

13 The weights always sum to unity and alternate in sign. In general, higher order approximations involve
weights with greater absolute value. As a result, implementing higher order extrapolations on a computer
requires double precision to control roundoff error.

14 We prefer the former method when accuracy is important and the latter method when speed matters.
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Figure 4
Three-point Richardson extrapolation

Table 2
Intermediate put values

Variable n = 1 n = 2

4 1.0000 0.5000
γ −0.6111 −0.6111
R 0.9091 0.9524
ε 4.9818 6.8586
p 0.5613 0.5446
q 0.4387 0.4554
p̂ 0.6617 0.6175
q̂ 0.3383 0.3825

S1 77.9724 80.7216
S2 N/A 77.2941

v
(n)
1 (S) −9.0909 −9.2971

b(n)1 (S) 0.9917 1.0176
A(n)1 (S;1) 15.1397 15.8970

P(n)(S) 7.0405 7.6175
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Figure 5
Three-step Richardson extrapolation

Broadie and Detemple (1996) and Ju (1998) conduct extensive numerical
simulations of a wide array of methods for valuing American options. Both
articles conclude that three approaches dominate other methods in terms of
speed and accuracy. These three methods are the lower and upper bound
approximation (LUBA) in Broadie and Detemple (1996), the piecewise
exponential boundary approximation in Ju (1998), and the randomization
approach discussed in this article. Of these three methods, LUBA has the
singular advantage of providing bounds as well as an accurate approxima-
tion. The randomization approach is unique in that the exercise boundary is
given by a recursion rather than root finding, when dividends are constant
or zero. Finally, Ju’s piecewise exponential boundary approach appears to
deliver the best combination of speed and accuracy, although speed com-
parisons at each accuracy level were not conducted.

5. Extension to Positive Dividends and American Calls

It is reasonable to assume that the dividend stream from the underlying asset
is continuous over time if the asset underlying the option is an index or a
basket with a large number of stocks. Merton (1973) generalized the Black-
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Scholes analysis to continuously paid dividends which are either constant
or proportional to the price of the underlying. He did not permit a dividend
rate which is linear in the spot price, presumably due to the difficulty in
generating analytic solutions under this assumption. While we are also
unable to deal with a linear dividend rate, this section develops formulas for
randomized American option values when the dividend payout rate has both
a fixed and a proportional component. We also show that our approximation
to the put’s critical stock price is still given by an explicit formula when
dividends are constant, but must be determined numerically when there is a
proportional component to the dividend flow. Finally, we show how to find
the randomized values of American calls on dividend paying stocks.

We assume that the underlying stock pays dividends continuously until
the fixed maturityT . To obtain a truly fixed componentφ of this dividend
flow, we follow Roll (1977) in assuming that this component has been
escrowed out of the stock price. In other words, the timet stock priceSt

decomposes into

St = φ

r
[1− e−r (T−t)] + st , t ∈ [0, T ], (37)

where the first term is the present value att of the constant flowφ until
T , and the residualst is the stripped price, reflecting the stripping off of
the fixed component of the dividend flow from the stock price. We assume
that the risk-neutralized process for the stripped price{st , t ∈ [0, T ]} is the
following geometric Brownian motion:

st = sexp

[(
r − δ − σ

2

2

)
t + σWt

]
, t ∈ [0, T ], (38)

where{Wt , t ∈ [0, T ]} is a standard Brownian motion, and from Equa-
tion (37), the initial value is

s= S− φ
r

[1− e−rT ]. (39)

Thus the dollar dividend ratedt has both a fixed and a proportional compo-
nent:

dt = φ + δst , t ∈ [0, T ]. (40)

The parameterφ captures the stickiness of dividends in the short run, while
δ captures the tendency for dividends to increase with stock prices in the
long run. Ifδ = 0, thenφ is the constant dividend rate, while ifφ = 0, then
δ is the constant dividend yield, sincest = St from Equation (37).
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5.1 Positive dividends and American puts
We generalize the previous analysis by lettingP(t, s; T) denote the value of
an American put as a function of the current timet , the current stripped price
s, and the maturity dateT . We also define the critical stripped prices(t)
as the largest stripped prices at which the American put valueP(t, s; T)
equals its exercise valueK − s− φ

r [1 − e−r (T−t)], for t ∈ [0, T ]. From
Equation (37), the critical stock priceS(t) is now defined by

S(t) ≡ φ

r
[1− e−r (T−t)] + s(t), t ∈ [0, T ]. (41)

In the random maturity setting, the underlying stock pays dividends con-
tinuously until the option matures. Recalling thatR≡ 1

1+r4 is the discount
factor over a single period of random length, the random maturity analog
of Equation (39) is

s= S− φ4(R+ R2+ . . .+ Rn) = S− φ
r

R(1− Rn). (42)

We defineP(m)(s) as our approximation for the American put value when
m random periods remain,m= 1, . . . ,n. Our approximation for the critical
stripped price,sm, is the largests satisfyingP(m)(s) = K − s− φ

r R(1−
Rm),m= 1, . . . ,n.

The values of European options maturing inn random-length periods are

p(n)(s) =


(

s
K

)γ−ε n−1∑
k=0

(2ε ln( s
K ))

k

k!

n−k−1∑
l=0

(n−1+l
n−1

)
[K Rnqn pk+l − K Dnq̂n p̂k+l ] if s> K

K Rn − sDn + c(n)(S) if s ≤ K

(43)

c(n)(s) =


sDn − K Rn + p(n)(s) if s> K(

s
K

)γ+ε n−1∑
k=0

(2ε ln( K
s ))

k

k!

n−k−1∑
l=0

(n−1+l
n−1

)
[K Dn p̂nq̂k+l − K Rn pnqk+l ] if s ≤ K ,

(44)

where nowγ ≡ 1
2− r−δ

σ 2 , R, ε, p,q, p̂, q̂, are again given by Equations (28)
and (14), while

D ≡ 1

1+ δ4 . (45)

Forδ = 0 andφ ≥ r K , American puts are not rationally exercised early.
Consequently, the randomized put valueP(n)(s) is given by Equation (43)
in this case. Forδ > 0 orφ < r K , the randomized put value decomposes
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as

P(n)(s) =
 p(n)0 (s)+ b(n)1 (s) if s> s0 ≡ K
v
(n)
i (s)+ b(n)i (s)+ A(n)i (s;1) if s ∈ (si , si−1], i = 1, . . . ,n

K − S if s ≤ sn,
(46)

where fori = 1, . . . ,n, v(n)i (s) is the randomized value of a short forward
position maturing inn− i + 1 periods:

v
(n)
i (s) = K Rn−i+1− sDn−i+1− φR

Rn−i+1− Rn

1− R
, (47)

b(n)i (s) is the present value of the interest less dividends (net interest) re-
ceived when below the boundary for the firstn− i + 1 periods:

b(n)i (s) =
n−i+1∑

j=1

(
s

sn− j+1

)γ−ε j−1∑
k=0

(
2ε ln

(
s

s
n− j+1

))k

k!

j−k−1∑
l=0

(
j − 1+ l

j − 1

)
×[q j pk+l Rj (Kr − φ)− q̂ j p̂k+l D j sn− j+1δ]4, (48)

while A(n)i (s;1) represents the randomized value of a European call less the
net interest paid above the boundary over the complementary period, after
accounting for the smoothness at the exercise boundary in every period:

A(n)i (s; h) =
n−i+1∑

j=h

(
s

sn− j+1

)γ+ε j−1∑
k=0

(
2ε ln

(
s

n− j+1

s

))k

k!

j−k−1∑
l=0

(
j − 1+ l

j − 1

)
×[ pj qk+l Rj (Kr − φ)− p̂ j q̂k+l D j sn− j+1δ]4.

Continuity in s at the strike price in each periodm = 1, . . . ,n again
implies c(m)1 (K ) = A(m)1 (K ;1), which in turn implies that each critical
stripped pricesm implicitly solves

c(m)1 (K )− A(m)1 (K ;2) =
(

K

sm

)γ+ε
[ pR(Kr − φ)− p̂Dsmδ]4,

m= 1, . . . ,n, (49)

where from Equation (44), the at-the-money call value on the left-hand side
of Equation (49) simplifies to

c(m)1 (K ) =
m−1∑
l=0

(
m− 1+ l

m− 1

)
[K Dm p̂mq̂l−K Rm pmql ] m= 1, . . . ,n.

(50)
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It is straightforward to recursively solve Equation (49) numerically for each
critical stripped pricesm, sincesm does not appear on the left-hand side.
Settingδ = 0 in Equation (49) implies the following explicit solution for
the critical stripped prices when the dividend rate is constant atφ:

sm = K

(
pR(Kr − φ)4

c(m)1 (K )− A(m)1 (K ;2)

) 1
γ+ε

, m= 1, . . . ,n, (51)

where the call valuec(m)1 (K ) is now given by Equation (32). This solution is
a good initial guess when numerically solving Equation (49). From Equation
(42), each critical stock priceSm is determined by

Sm =
φ

r
R(1− Rm)+ sm, m= 1, . . . ,n, (52)

wheresm is given by Equation (51) whenδ = 0 and solves Equation (49)
otherwise. LettingS(4) denote the initial critical stock price as a function
of the mean period length4, one can use Richardson extrapolation [Equa-
tion (36)] to approximate the initial critical stock price for an American put
on a dividend-paying stock.

5.2 Positive dividends and American calls
When there is no fixed component to the dividend (i.e.,φ = 0), an American
put call symmetry result can be used to easily value American calls on stocks
with a constant dividend yield,δ. Let P(S, K ; δ, r )andC(S, K ; δ, r )denote
the respective values of American puts and calls with fixed maturityT .
Working in the binomial model, McDonald and Schroder (1990) show that

C(S, K ; δ, r ) = P(K , S; r, δ).
In other words, the call value can be obtained from the put valuation formula
by switching the stock price and strike price, and also by switching the
riskfree rate and dividend yield. This result is proved in the Black-Scholes
model by Carr and Chesney (1997) and Schroeder (1997), who also prove
the corresponding result for critical stock prices:

S̄(δ, r ) = K 2

S(r, δ)
.

In words, the critical stock price for an American call can be obtained from
that of an American put by switching the riskfree rate and dividend yield,
and then obtaining the geometric reflection in the strike.

It can be shown that these symmetry results also hold for randomized
option values and critical stock prices. Furthermore, randomized American
calls can be valued directly when there is also a fixed component to the
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dividend flow. The Appendix presents the formulas for the call value and
critical stock price in this case.

6. Summary and Future Research

We implemented a new approach to valuing American options that is fast,
accurate, and flexible. The approach is to value options which mature by
definition at thenth jump time of a standard Poisson process. Between jump
times, the memoryless property of the exponential distribution implies that
the option value and exercise boundary are time stationary. In contrast, at
jump times, the option value jumps down and the exercise boundary jumps
nearer to the strike price. The local time stationarity yields semiexplicit so-
lutions for the option value and critical stock price, while the jump behavior
roughly captures the global behavior of these values. As we let the number of
jump times approach infinity, keeping the mean maturity fixed, our numer-
ical results indicate that the randomized option value appears to converge
smoothly from below to the true American option value. This convergence
is dramatically enhanced through the use of Richardson extrapolation.

Alhough randomization can be used to value fixed maturity or barrier
options, its main advantage over traditional methods is in the application to
free boundary problems. Such problems also arise when valuing American
exotic options and passport options, that is, European options written on
the profit or loss from a market timing strategy specified by the option’s
owner [see Andersen, Andreasen, and Brotherton-Ratcliffe (1997), Hyer,
Lipton-Lifschitz, and Pugachevsky (1997), Jamshidian (1998), and Shreve
and Večeř (1998)]. It is also possible to significantly generalize the analysis
of this article to level dependent volatility. In the interests of brevity, these
extensions are best left for future research.

Appendix

This appendix collects all the formulas needed to calculate random maturity
values of European and American puts and calls when the underlying has a
continuous payout with a fixed componentφ and a proportional component
δ. Lettings = S− φ

r [1 − e−rT ], the N-point Richardson extrapolation of
the randomized European put formula is

p1:N(s) ≡
N∑

n=1

(−1)N−nnN

n!(N − n)!
p(n)(s),
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where

p(n)(s) =


(

s
K

)γ−ε n−1∑
k=0

(2ε ln( s
K ))

k

k!

n−k−1∑
l=0

(n−1+l
n−1

)
[K Rnqn pk+l − K Dnq̂n p̂k+l ] if s> K
K Rn − sDn + c(n)(s) if s ≤ K ,

(53)

and where

γ ≡ 1

2
− r − δ

σ 2
, 4 ≡ T

n
, R≡ 1

1+ r4 ,

D ≡ 1

1+ δ4 , ε ≡
√
γ 2+ 2

Rσ 24 , p ≡ ε − γ
2ε

,

q ≡ 1− p, p̂ ≡ ε − γ + 1

2ε
, andq̂ ≡ 1− p̂.

TheN-point Richardson extrapolation of the randomized put formula is

P1:N(s) ≡
N∑

n=1

(−1)N−nnN

n!(N − n)!
P(n)(s),

where

P(n)(s) =
 p(n)0 (s)+ b(n)1 (s) if s> s0 ≡ K
v
(n)
i (s)+ b(n)i (s)+ A(n)i (s;1) if s ∈ (si , si−1], i = 1, . . . ,n

K − S if s ≤ sn,

where fori = 1, . . . ,n,

v
(n)
i (s) = K Rn−i+1− sDn−i+1− φ

r
R(Rn−i+1− Rn),

b(n)i (s) =
n−i+1∑

j=1

(
s

sn− j+1

)γ−ε j−1∑
k=0

(
2ε ln

(
s

s
n− j+1

))k

k!

j−k−1∑
l=0

(
j − 1+ l

j − 1

)
×[q j pk+l Rj (Kr − φ)− q̂ j p̂k+l D j sn− j+1δ]4,

A(n)i (s; h) =
n−i+1∑

j=h

(
s

sn− j+1

)γ+ε j−1∑
k=0

(
2ε ln

(
s

n− j+1

s

))k

k!

j−k−1∑
l=0

(
j − 1+ l

j − 1

)
×[ pj qk+l Rj (Kr − φ)− p̂ j q̂k+l D j sn− j+1δ]4.
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If δ = 0, the critical stripped prices are given by

sm = K

(
pR(Kr − φ)4

c(m)1 (K )− A(m)1 (K ;2)

) 1
γ+ε

, m= 1, . . . ,n.

If δ > 0, the critical stripped prices solve

m−1∑
l=0

(
m− 1+ l

m− 1

)
[K Dm p̂mq̂l − K Rm pmql ] − A(m)1 (K ;2)

=
(

K

sm

)γ+ε
[ pR(Kr − φ)− p̂Dsmδ]4,m= 1, . . . ,n.

Letting s(T/n) ≡ sn denote the solution obtained by recursing ons̄m, the
N-point Richardson extrapolation of the put’s initial critical stock price is
S1:N ≡ φ

r [1− e−rT ] +∑N
n=1

(−1)N−nnN

n!(N−n)! s(T/n).

Similarly, lettings= S− φ

r [1− e−rT ], theN-point Richardson extrap-
olation of the randomized European call formula is

c1:N(s) ≡
N∑

n=1

(−1)N−nnN

n!(N − n)!
c(n)(s),

where

c(n)(s) =


sDn − K Rn + p(n)(s) if s> K(

s
K

)γ+ε n−1∑
k=0

(2ε ln( K
s ))

k

k!

n−k−1∑
l=0

(n−1+l
n−1

)
[K Dn p̂nq̂k+l − K Rn pnqk+l ] if s ≤ K ,

(54)

and where again

γ ≡ 1

2
− r − δ

σ 2
, 4 ≡ T

n
, R≡ 1

1+ r4 ,

D ≡ 1

1+ δ4 , ε ≡
√
γ 2+ 2

Rσ 24 , p ≡ ε − γ
2ε

,

q ≡ 1− p, p̂ ≡ ε − γ + 1

2ε
, andq̂ ≡ 1− p̂.

For δ = 0 andφ ≤ r K , early exercise is not optimal, so the random-
ized call value is given by Equation (54). Forδ > 0 or φ > r K , the N-
point Richardson extrapolation of the randomized call value isC1:N(s) ≡

623

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/11/3/597/1594817 by N

ew
 York U

niversity user on 05 M
arch 2019



The Review of Financial Studies / v 11 n 3 1998

∑N
n=1

(−1)N−nnN

n!(N−n)! C(n)(s), where

C(n)(s) =


S− K if s ≥ s̄n

−v(n)i (s)+ α(n)i (s)+ B(n)i (s;1) if s ∈ [s̄i−1, s̄i ),
i = 1, . . . ,n

c(n)0 (s)+ α(n)1 (s) if s< s̄0 ≡ K

where for i = 1, . . . , n,−v(n)i (s) = sDn−i+1 + φ

r R(Rn−i+1 − Rn) −
K Rn−i+1 is the initial value of a long forward position maturing inn− i +1
periods,

α
(n)
i (s) =

n−i+1∑
j=1

(
s

s̄n− j+1

)γ+ε j−1∑
k=0

(
2ε ln

(
s̄n− j+1

s

))k

k!

j−k−1∑
l=0

(
j − 1+ l

j − 1

)
×[ p̂ j q̂k+l D j s̄n− j+1δ − pj qk+l Rj (Kr − φ)]4,

is the initial value of dividends less interest received above the boundary
for the firstn− i + 1 periods, while

B(n)i (s; h) =
n−i+1∑

j=h

(
s

s̄n− j+1

)γ−ε j−1∑
k=0

(
2ε ln

(
s

s̄n− j+1

))k

k!

j−k−1∑
l=0

(
j − 1+ l

j − 1

)
×[q̂ j p̂k+l D j s̄n− j+1δ − q j pk+l Rj (Kr − φ)]4.

B(n)i (s; h) is the inital value of a European put less the excess of dividends
over interest received below the boundary over the complementary period,
after accounting for the smoothness of the exercise boundary in every period.
Continuity ins at K in each period implies that̄sm solves

p(m)0 (K )− B(m)1 (K ;2) =
(

K

s̄m

)γ−ε
[q̂ Ds̄mδ − q R(Kr − φ)]4,

m= 1, . . . , n, (55)

where from Equation (53),

p(m)0 (K ) =
m−1∑
l=0

(
m− 1+ l

m− 1

)
[K Rmqm pl − K Dmq̂m p̂l ].

If φ = r K , Equation (55) can be solved, ands̄m = K ( Kq̂ Dδ4
p(m)0 (K )−B(m)

1 (K ;2) )
1

γ−ε−1 ,

m = 1, . . . ,n. This solution is a good initial guess when solving Equa-
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tion (55) numerically. Recursively solving for eachs̄m results ins̄(T/n) ≡
s̄n. The N-point Richardson extrapolation of the call’s critical stock price
is S̄1:N(T) ≡ φ

r [1− e−rT ] +∑N
n=1

(−1)N−nnN

n!(N−n)! s̄(T/n).
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