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4 Place Jussieu-Case 188, F-75252 Paris Cedex 05, France

(Received 3 March 2009; in final form 8 October 2009)

Realized variance option and options on quadratic variation normalized to unit expectation
are analysed for the property of monotonicity in maturity for call options at a fixed strike.
When this condition holds the risk-neutral densities are said to be increasing in the convex
order. For Lévy processes, such prices decrease with maturity. A time series analysis of
squared log returns on the S&P 500 index also reveals such a decrease. If options are priced to
a slightly increasing level of acceptability, then the resulting risk-neutral densities can be
increasing in the convex order. Calibrated stochastic volatility models yield possibilities in
both directions. Finally, we consider modeling strategies guaranteeing an increase in convex
order for the normalized quadratic variation. These strategies model instantaneous variance
as a normalized exponential of a Lévy process. Simulation studies suggest that other
transformations may also deliver an increase in the convex order.

Keywords: Equity options; Levy process; Mathematical finance; Stochastic volatility;
Stochastic processes

1. Introduction

Financial markets now trade options on numerous
underliers other than stocks and stock indices. Examples
include options on the VIX index, realized variance on
stocks and stock indices, cumulated losses from natural
disasters, cumulated losses on defaults by a basket of
firms, among other possibilities. The underlying outcomes
on which these option contracts are written are not traded
assets. As a consequence, the calendar spread inequality
usually satisfied by call options on stocks need no longer
hold. This property is often referred to as the condition
for positive forward variance, reflecting the principle that
total variance to the later maturity exceeds total variance
to the earlier maturity.

Specifically, for stock options one may consider them
as written on the price relative to the forward price for the
appropriate maturity. Viewed this way, the underlier, now
taken as the forward deflated stock price, has unit
expectation for all maturities. If one now fixes a strike,
at a pre-specified level of moneyness relative to the

forward, it is well known by static arbitrage arguments

that call prices for this strike are increasing in maturity.

It then follows that all convex functions of the forward

deflated stock price, delivered as promised payoffs, have

a higher current market value for a longer maturity.

Equivalently, one states that risk-neutral marginal den-

sities for the forward deflated stock price are increasing

in convex order as convex functions delivered later are

worth more. We refer to Föllmer and Schied (2002), Carr

and Madan (2005) and Davis and Hobson (2007) for the

relationship between such convex orders and the existence

of martingales meeting all the risk-neutral marginals. This

same proposition allows one to define forward variance

v(K,T1,T2) at strike K over the interval T15T2 by the

positive quantity (�2(K,T2)T2� �
2(K,T1)T1)/(T2�T1).

The arbitrage argument underlying this monotonicity

in call prices relies quite critically on the ability to trade

the underlying asset. When we have an underlying

outcome that is not a traded asset price, it is no longer

the case that risk-neutral marginal densities for outcomes

deflated to a unit mean should be related in any way by

the convex order for densities. Put another way, forward

variances may be negative. The marginal densities may*Corresponding author. Email: dbm@rhsmith.umd.edu
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still be recovered from option prices in the usual way, as
described, for example, by Breeden and Litzenberger
(1978), but call option prices at fixed levels of moneyness
relative to the mean may be increasing in maturity for
some strikes and decreasing for others, or even lose
monotonicity with respect to maturity at some strikes.
The primary reason for such possibilities is that unlike
an underlying traded asset, that refers at all times to the
present value of some terminal cash flow, thereby
constituting an underlying price process that is a martin-
gale, for non-traded underliers the level of the underlier at
different time points is more like two totally different
stocks and then there is no reason for the volatility of one
of them to be above or below another.

This paper considers the question of monotonicity in
convex order of marginal densities, or the increase in price
for calls with respect to maturity at a fixed strike, for
options on realized variance normalized to a unit expec-
tation.We shall consider both the physical and risk-neutral
densities in this context or the monotonicity in maturity of
the expected call payoff and its price. Though realized
variance options are not yet exchange traded, there is a
developing over the counter market in these contracts
permitting the observation of some risk-neutral informa-
tion. When working with data we shall take account of the
necessary discretization of realized variance in terms of
averaged squared daily log price relatives. At a theoretical
level we study the behavior of the rate of realized
quadratic variation, defined as the quadratic variation
to time t deflated by the time to reflect the averaging
implicit in the definition of the realized variance contract.

We begin with an analysis of some simple models. The
classic model of geometric Brownian motion (Black and
Scholes 1973, Merton 1973) is not a reasonable candidate
for options on the rate of realized quadratic variation, as
in this model this rate is a constant and not a random
variable. A class of processes with independent incre-
ments, like Brownian motion, that has now successfully
been employed for equity options is the class of infinite
activity, pure jump Lévy processes with examples includ-
ing the variance gamma model (Madan and Seneta 1990,
Madan et al. 1998), the normal inverse Gaussian model
(Barndorff-Nielsen 1998), the generalized hyperbolic
model (Eberlein and Kellerer 1995, Eberlein 2001,
Eberlein and Krause 2002) and the CGMY model (Carr
et al. 2002). We show that the densities for the rate of
realized quadratic variation in all these models are
decreasing in the convex order. In fact, in these models
the rate of realized quadratic variation is a backward
martingale. A particularly simple example for the rate of
realized quadratic variation is the rate of increase of the
gamma process and we explicitly describe and graph its
call option prices. For these models call options on
realized quadratic variation display negative forward
variance. The result may be intuitively understood on
noting that, for reasons related to the law of large
numbers, the variance of the rate of realized quadratic
variation decreases as the reciprocal of maturity and the
standard deviation falls as the reciprocal of the square
root of maturity. Call prices on mean adjusted rates of

realized quadratic variation should therefore fall with
maturity. The issue is not connected with mean reversion
in volatility as the normalization to unit expectation puts
aside all matters of mean reversion, whether existent or
not. The decline is a pure consequence of the effects of
averaging sequences of independent centered variates. As
a practical implication we note that if market data were to
reveal an increase with respect to maturity for call prices
at fixed strikes on realized quadratic variation normalized
to unit expectation, then one would need to entertain
models that keep the central limit theorem at bay. This is
a modeling problem that has also been commented on by
Eberlein and Madan (2009).

Next we consider the behavior of realized variance for
data on the S&P 500 index under the physical measure
including the highly volatile period of the last quarter of
2008 in our study. Here we observe that the densities are
slowly decreasing in the convex order. If we employ the
operational concepts of acceptability introduced by
Cherny and Madan (2009) and follow Madan (2009) to
price options to levels of acceptability that are slightly
increasing in maturity, with a view to reflecting a
deteriorating confidence in the model used, we find the
implied risk-neutral densities to be increasing in convex
order. Hence there is a real possibility that these densities
are increasing in convex order in the markets. A small
sample of over the counter market prices is also suggestive
of an increase in the convex order.

Numerically, we investigate the property of monotoni-
city in a wide class of stochastic volatility models,
including the Heston (1993) model, and the stochastic
volatility Lévy models of Carr et al. (2003) and Niccolato
and Venardos (2003). We find that these models primarily
deliver densities for the rate of realized quadratic variation
that are both increasing and decreasing in convex order.

Finally, we explore modeling strategies that will deliver
densities that are increasing in the convex order for the rate
of realized quadratic variation. An increase is guaranteed
when we model instantaneous volatility as a normalized
exponential of a Lévy process. Simulation studies suggest
that other functional transformations may also work.

The outline of the paper is as follows. Section 2 presents
the results for Lévy processes and the example of the
gamma process. In section 3 we describe the analysis of
densities for the rate of realized quadratic variation on the
S&P 500 index under the physical measure, and the risk-
neutral measure as implied by pricing to acceptability and
observing a small sample of over the counter prices.
Section 4 takes up the stochastic volatility models
followed by strategies for densities convex in the
increasing order in section 5. Section 6 concludes.

2. Lévy process results

Suppose the stock price process S¼ (S(t), t� 0) follows
an exponential Lévy model with a driving Lévy process
X¼ (X(t), t� 0) with no Gaussian component, and

SðtÞ ¼ Sð0Þ expðrtþ XðtÞ þ !tÞ,
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where

! ¼ �logðEðXð1ÞÞ:

Well-known examples of such Lévy processes employed

in the finance literature were cited earlier in the intro-

duction. The quadratic variation to time t, Q(t), for such

a process is given by

QðtÞ ¼
X
s�t

ðDXðsÞÞ2,

and it was observed by Carr et al. (2005) that the

process Q(t) is itself a Lévy process with Lévy density

q(y), defined in terms of the Lévy density k(x) for the

process X by

qð yÞ ¼
kð

ffiffiffi
y
p
Þ

2
ffiffiffi
y
p þ

kð�
ffiffiffi
y
p
Þ

2
ffiffiffi
y
p , y4 0:

Now for any Lévy process Z¼ (Z(t), t� 0) with

E [jZ(t)j]51 we have

ZðtÞ

t
�!
t�!1

E ½Zð1Þ�,

and

ZðtÞ

t
, t4 0

� �

is a backwards martingale (Jacod and Protter 1988), i.e. if

Fþt ¼ �fZðsÞ, s � tg,

then

E
ZðsÞ

s

����Fþt
� �

¼
ZðtÞ

t
, s5 t: ð1Þ

Now from equation (1), one easily deduces that for

every convex function  (x)

E  
ZðtÞ

t

� �� �
� E  

ZðsÞ

s

� �� �
:

It follows that the marginal densities for the rate of

realized quadratic variation Q(t)/t are decreasing in the

convex order. A particular example is provided by the

variance gamma model for which the quadratic variation

is given by a gamma process �¼ (�(t), t� 0) in the case of

unit volatility or �¼ 1. In this case the backward

martingale is particularly simple using the beta gamma

algebra. Let B(�,�) be a beta random variable with

parameters �, � and note that for a5b, �a/�b is

distributed as B(a, b� a) and is independent of �b. It

follows that for s5t, and Fþt ¼ �f�u j u � tg,

E
�s
s

���Fþt
h i

¼ E
�s
�t

�t
s

���Fþt
� �

¼ E Bðs, t� sÞ
�t
s

���Fþt
h i

¼
�t
t
:

The price of a call option c(a, t) on the rate of realized
quadratic variation with strike a and maturity t, for an
interest rate of r, is

cða, tÞ ¼ e�rtE
�t
t
� a

� 	þ� �

¼ e�rt
Z 1
at

x

t
� a

� 	xt�1 e�x
�ðtÞ

dx

¼ e�rt
Z 1
at

xt e�x

�ðtþ 1Þ
dx� a

Z 1
at

xt�1e�x

�ðtÞ
dx

� �
:

The result is easily computed using the incomplete gamma
function and figure 1 presents a graph of call prices for
strikes relative to the mean ranging from 0.5 to 1.5 for the
maturities of one month, and 3, 6, 9 and 12 months. The
decrease in convex order is quite evident at this unit
volatility for the gamma process.

3. Analysis of S&P 500 data

We analyse in this section the physical densities for the
rate of realized quadratic variation on the S&P 500 index.
For this purpose we took daily data on the level of the
index, St, from 2 January 1990 to 17 December 2008 and
we constructed the time series for daily squared log price
relatives by

vt ¼ log
St

St�1

� �� �2

:

In order to construct the densities for realized variance
under the physical measure, and to investigate their
monotonicity in convex order, it suffices to construct the
expectation under the physical measure of the payout to
call options on realized variance options. For this
purpose we need to model the physical measure and to
simulate paths for vt. It is well known that vt is

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Realized variance call option prices for gamma QV

Moneyness

C
al

l o
pt

io
n 

pr
ic

e

Figure 1. Graph showing prices of call options for gamma
process quadratic variation as a function of the strike for
maturities of 1, 3, 6, 9, and 12 months in blue, red, black,
magenta and green, respectively.
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highly autocorrelated. The property we refer to is also

called long memory as reflected in an autocorrelation

function that sums to infinity across the lags. Long

memory is an interesting property from a financial

viewpoint as it will keep monotonicity in maturity for

call prices written on the rate of the realized quadratic

variation. These considerations suggest a regression model

for vt based on many lagged values for vt. However, such a

model would not give positive values for vtwhen simulated

forward. For this reason we consider a regression model

on yt¼ log(vt). We then exponentiate simulated paths for

yt to build the paths for vt.
The model for yt regressed yt on its lagged values using

a robust regression procedure, given the length of the data

period and the presence of some fairly volatile periods in

the data set. The specific model used is

yt ¼ aþ
X20
i¼1

biyt�i þ ut:

The results of the robust regression are presented in

table 1. We observe the pattern of possible long range

dependence in the significance of t-statistics lagged up to

20 days.
For the simulation we draw from the empirical density

of the residuals. We present in figure 2 the density for the

residual employed in the simulation.
We simulate forward from the end of the data set on

17 December 2008 for 252 days 10,000 paths for vt in this

model. We then compute the realized variance at

maturities of 1, 3, 6, 9 and 12 months for each of the

10,000 paths and divide by the mean value for each

maturity. This gives us 10,000 readings for realized

variance normalized to a unit expectation for our five

maturities and we evaluate the price of call option payoffs

under this physical measure for a range of strike ranging

from 0.5 to 1.5. We present in figure 3 the prices of these

call options for all the five maturities, and we present in

figure 4 a graph of the densities for realized variance

normalized to a unit mean.
We observe clearly that these densities are slightly

decreasing in the convex order. We have explored this

construction over varied time sub-intervals with similar

results. The physical densities reflect the force of

averaging in generating densities that are decreasing in

the convex order.
The question remains as to what one may expect of risk

neutrally. For a potential perspective on this we follow

Madan (2009) and consider pricing to pre-specified levels

of acceptability the residual cash flow held on selling the

realized variance option for an ask price. The levels of

acceptability of residual cash flows were axiomatized

by Cherny and Madan (2009). For each level � of

acceptability for a residual cash flow X, there is a convex

Table 1. Regression results for log squared returns.

Coefficient t-Stat

Constant �2.4798 �7.465
Lag 1 �0.0007 �0.539
Lag 2 0.0285 2.0734
Lag 3 0.0506 3.6805
Lag 4 0.0524 3.8111
Lag 5 0.0753 5.4666
Lag 6 0.0573 4.1504
Lag 7 0.0304 2.1985
Lag 8 0.0457 3.3062
Lag 9 0.0299 2.1605
Lag 10 0.0540 3.9111
Lag 11 0.0444 3.2115
Lag 12 0.0393 2.8418
Lag 13 0.0296 2.1422
Lag 14 0.0281 2.0313
Lag 15 0.0292 2.1138
Lag 16 0.0218 1.5849
Lag 17 0.0233 1.6955
Lag 18 0.0529 3.8441
Lag 19 0.0294 2.1347
Lag 20 0.0315 2.2864
R2 11.01%
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Figure 3. Prices of call options on normalized realized vari-
ance under the physical measure for maturities of 1, 3, 6, 9
and 12 months in blue, red, black, magenta and green,
respectively.
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Figure 2. Density of residuals in the log squared return
regression.
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set of measures D� supporting such acceptability with the

requirement that EQ[X ]� 0, for all Q2D�. The higher the

level of acceptability the larger is the set of supporting

measures with D��D� 0 for �5� 0. The set of cash flows

acceptable at level �, A�, forms a convex cone of

random variables that contains all the non-negative cash

flows. When the acceptability of a cash flow is just a

function of its probability law, one may define accept-

ability using a concave distortion. In this case, one

associates with each level � a concave distribution

function �� defined on the unit interval and X is

acceptable at level � just if

Z 1
�1

xd��ðFXðxÞÞ � 0,

where FX is the distribution function of the random

variable X. The set of supporting measures related to a

particular distortion are defined by Cherny and Madan

(2009).
The ask price for a cash flow X attaining the accept-

ability level � is the smallest constant a one may add to

the cash flow to make aþX acceptable at level �. It is

shown by Madan (2009) that this ask price is the negative

of the expectation under concave distortion at level � of

the distribution function for negative of the cash flow. We

employ here just a slight increase in the level of accept-

ability for longer maturities, reflecting a decreased con-

fidence in the underlying model employed. We used an

initial acceptability level of 0.025, that increases monthly

by 0.025, for the distortion MINMAXVAR. For this

distortion,

��ðuÞ ¼ 1� ð1� u1=ð1þ�ÞÞ1þ� :

Figure 5 presents a graph for the resulting call prices

across a range of strikes for our five maturities. We

observe that these prices are increasing in the convex

order. Hence we conclude that it is a real possibility that
financial markets may well display marginals for normal-
ized realized variance options that are increasing in the
convex order.

4. Prices in markets

We obtained data for three at-the-money straddle prices
for options on realized variance on the SPX. There
were two at-the-money straddle prices on 4 February
2009 maturing December 2009 and December 2010 with
bid and ask at 14.7/16.0 and 13.85/15.5, respectively,
with the variance swap reference price at 41.5 and 39.5.
We also have an at-the-money straddle quoted on 15
January 2009 for a 9 June maturity with a bid and
ask at 16.25/18.25 at a variance swap reference of
48.5. The maturities for the first two straddles are
0.8685 and 1.8675, while for the third straddle it
is 0.4247.

For the monotonicity in convex order we are interested
in the prices of the options written on random variables of
unit expectation and so we relativize the strikes and
option prices to the level of the variance swap rate or the
level of the risk-neutral expectation of realized variance.
The dollar mid-quote price of the first two relativized unit
strike straddles are 0.7397 and 0.7430. The relativized
dollar mid-quote price of the third straddle is 0.7113.
Since the longer maturities have the higher relativized
price these observations support the hypothesis that in the
market we possibly have a slight increase in the convex
order.

We also obtained two other prices, a 4 February 2009
quote for a 60 strike call of 3.1 with a variance swap
reference of 42, and a 23 January 2009 quote for a 9
March at-the-money put at 9.0 for a variance swap
reference of 50.5.
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Figure 4. Densities for realized variance normalized to unit
expectation under the physical measure for 1, 3, 6, 9 and 12
months in blue, red, black, magenta and green, respectively.
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Figure 5. Call prices under acceptability pricing with accept-
ability levels slowly rising with maturity. The maturities are 1, 3,
6, 9 and 12 months in blue, red, black magenta and green,
respectively.
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5. Stochastic volatility models

There are two important classes of stochastic volatility

models in the literature. These are the Heston (1993)

model and its extensions to underlying Lévy processes

by Carr et al. (2003) and the OU model driven

background Lévy processes with only positive jumps

entertained by Barndorff-Nielsen and Shepard (2001)

and Nicolato and Venardos (2003). We investigate in

this section the behavior in convex order of the

marginal densities for the rate of realized quadratic

variation normalized to a unit expectation in the

Heston (1993) model (HSV), the CGMYSA model

and the model CGMYSG, which were developed by

Carr et al. (2003). Given the relevance of stationary

solutions to the OU equations employed and the

resulting impact of ergodic theorems on the behavior

of averages, we anticipate that although one may have

an initial increase in the convex order, these models will

primarily be characterized by an eventual decrease in

convex order for the relevant marginals. The task of

creating risk-neutral models generically reflecting an

increase in the convex order in then taken up in the

final section of the paper.
We begin with the HSV model. In this model, realized

quadratic variation to time t takes the form

QðtÞ ¼

Z t

0

yðuÞdu:

The characteristic function for Q(t) is readily available

from the cited papers and may be used to build the

Laplace transform of the rate of realized quadratic

variation normalized to unit expectation or Q(t)/E [Q(t)].

We then numerically price options on this variable for all

the models using an extension of the Carr and Madan

(1999) method to Laplace transforms that was also

employed by Carr et al. (2005).
More specifically we define

�ð�, tÞ ¼ E ½expð��QðtÞÞ�:

We may obtain by differentiation that

E ½QðtÞ� ¼ ���ð0, tÞ:

The Laplace transform of the normalized quadratic

variation is then

	ð�, tÞ ¼ �
�

���ð0, tÞ
, t

� �
:

The expectation of the normalized random variable is

unity and hence following Carr et al. (2005) the Laplace

transform in the strike a of the option prices,

wða, tÞ ¼ e�rtE
QðtÞ

E ½QðtÞ�
� a

� �þ� �
,

is given by


ð�, tÞ ¼ e�rt
	ð�, tÞ � 1

�2
þ

1

�

� �
,

where


ð�, tÞ ¼

Z 1
0

e��awða, tÞda:

The option prices follow on Laplace inversion.
For the CGMYSA model the quadratic variation to

time t is the quadratic variation of the CGMY process up
to the random time given by the integral of the square
root process. The Laplace transform of the quadratic
variation of the CGMY process to time t, QCGMY(t), was

derived by Carr et al. (2005) and we have

E ½expð��QCGMYðtÞÞ� ¼ �ð�, tÞ

¼ expð�t�ð�ÞÞ:

We are now interested in the expectation of

E exp ��QCGMY

Z t

0

yðuÞdu

� �� �� �

¼ E exp

Z t

0

yðuÞdu�ð�Þ

� �� �

¼ �ð�ð�Þ, tÞ:

A similar construction is made for the CGMYSG model.
For the details on the two functions �(�) and �(�) we
refer, respectively, to Carr et al. (2003, 2005). For the
numerical inversion of Laplace transforms we follow
Abate and Whitt (1995) and Rogers (2000).

Before proceeding with this investigation we comment
on the consequences for the Sato process introduced by

Carr et al. (2007) and studied further with respect to
options on variance by Eberlein and Madan (2009). The
Sato process is an additive process with independent but
inhomogeneous increments. It is constructed from a self-
decomposable random variable X at unit time by scaling
and defining the probably law of X(t) at time t as that of
t�X. Sato (1999) shows that there exists an additive
process X(t) with these marginal laws for each time t. The
Lévy system for this process may be explicitly derived

from the Lévy measure of X at unit time and is given by
Carr et al. (2005). It was demonstrated by Eberlein and
Madan (2009) that, for the Sato process, options on
realized variance remain a random variable and do not
lose variance with maturity provided the scaling coeffi-
cient is equal to or above 1/2.

Furthermore, it is shown by Carr et al. (2005,
theorem 5) that the quadratic variation of a Sato process
with scaling coefficient � is itself a Sato process with
scaling coefficient 2�. One may explicitly derive the Lévy
system of quadratic variation as an additive process in its

own right. The characteristic exponent at unit time is then
an integral of (eiux� 1) against this Lévy system that is
then observed to be of the form required for a
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self-decomposable law. One then shows that the Lévy

system of this self-decomposable law when scaled at 2�
coincides with the Lévy system for the quadratic variation

of the original process. Hence for a Sato process with

scaling coefficient �, its quadratic variation satisfies

QðtÞ ¼
ðd Þ

t2�Qð1Þ:

It follows that

E ½QðtÞ� ¼ t2�E ½Qð1Þ�,

and therefore

QðtÞ

E ½QðtÞ�
¼
ðd Þ Qð1Þ

E ½Qð1Þ�
,

whereby we have that the distribution of the realized

quadratic variation normalized to a unit expectation is

constant in convex order. The property of an increase in

convex order will therefore not be delivered by the Sato

process, even if it does give some reasonable value to

options on realized variance as argued by Eberlein and

Madan (2009).
We estimate on data for 130 SPX options on 4

February 2009 three stochastic volatility models. These

are the Heston stochastic volatility model, the model

CGMYSA (Carr et al. 2003), both of which have

instantaneous volatility modeled by a square root process,

along with the model CGMYSG, also studied by Carr

et al. (2003), that takes the instantaneous volatility to be

given by an OU equation driven by a process that only

jumps upwards with a finite jump arrival rate and

exponential jump size distribution.
We present first in table 2 the fit statistics and in table 3

the parameter estimates. Graphs of the fit of the model to

market prices are also presented in figures 6–8.
For each of these models we have the Laplace

transform in strike of the option price on the normalized
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Figure 7. Model (red dots) and market prices (blue circles) for
CGMYSA. SPX 4 February 2009.
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Figure 8. Model (red dots) and market prices (blue circles) for
CGMYSG. SPX 4 February 2009.
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Figure 6. Model (red dots) and market prices (blue circles) for
HSV. SPX 4 February 2009.

Table 3. Parameter values.

HSV CGMYSA CGMYSG

v0 0.4029 C 0.8065 C 0.6210
	 0.4316 G 4.7142 G 2.4159
� 1.7358 M 15.3727 M 44.5588
� 1.0182 Y 0.9187 Y 0.9390
� �0.7961 � 4.2242 � 2.8320

	 0.3503 � 1.0503
� 2.7448 
 0.3423

Table 2. Fit statistics for SPX 4 February 2009.

Model

HSV CGMYSA CGMYSG

RMSE 1.0036 1.1294 0.8172
AAE 0.8340 0.9134 0.6657
APE 0.0206 0.0226 0.0165
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quadratic variation and we present in figures 9–11 the
graphs of these call prices for the five maturities, 0.15,
0.27, 0.40, 0.65 and 0.90, that match the option maturities
to which the models were calibrated. We observe an
increase in convex order for HSV, and a decrease in
convex order for CGMYSA and CGMYSG.

6. Exponential Lévy models for instantaneous

quadratic variation

It may well turn out that, in markets, call prices on
realized variance options characteristically display an
increase with respect to maturity for a fixed strike. Model
calibrations may however still be done by fitting prices of

options on the index or underlying asset. It is then of
interest to know when we have a structure for the asset
dynamics that guarantees an increase in convex order for
the density of the rate of realized quadratic variation. We
are then led to consider modeling strategies guaranteeing
an increase in convex order for normalized quadratic
variation. We do not wish to rely on chance calibrations
delivering this property, but must organize it up front.

We begin by following Carr et al. (2008) and Baker and
Yor (2008) by taking the instantaneous variance of the
stock to be modeled by a geometric Brownian motion.
The absence of mean reversion in drift is not an issue as
our focus is on the law of normalized quadratic variation
and the drift will be put aside in any case by the
normalization. Hence we take the stock price (S(t), t� 0)
to be driven by a Brownian motion (WS(t), t� 0) with an
instantaneous variance process (v(t), t� 0) driven by an
independent Brownian motion (WV(t), t� 0) satisfying

dSðtÞ ¼ rSðtÞdtþ
ffiffiffiffiffiffiffi
vðtÞ

p
SðtÞdWSðtÞ,

dvðtÞ ¼ �vðtÞdWvðtÞ:

The normalized quadratic variation to time t, U(t), is then

UðtÞ ¼
1

t

Z t

0

e�WvðuÞ�ð�
2=2Þu du:

Carr et al. (2008) provide a proof that the process U(t) is
increasing in convex order and Baker and Yor (2008)
provide a short proof of this result. It is well known
(Strassen 1965, Doob 1968, Kellerer 1972) that a sequence
of marginal densities are increasing in the convex order
just if there exists a martingale on possibly another
probability space with the same marginal densities. Baker
and Yor (2008) show explicitly the martingales supporting
the increasing convex order of the densities U(t).

Hirsch and Yor (2009a) take up a general approach to
constructing processes increasing in the convex order and
simultaneously exhibiting the martingales with the same
marginal densities. We note in this context that
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Figure 9. Call prices on normalized quadratic variation in the
Heston model for an increasing set of maturities in blue, red,
black, magenta and green.
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Figure 10. Call prices on normalized quadratic variation in the
CGMYSA model for an increasing set of maturities in blue, red,
black, magenta and green.
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Figure 11. Call prices on normalized quadratic variation in the
CGMYSG model for an increasing set of maturities in blue, red,
black, magenta and green.
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Roynette (2009) has recently demonstrated that, for any
martingale (M(t), t� 0) and an increasing continuous
process �¼ (�(t), t� 0), the marginal densities of the
process

1

�ðtÞ

Z t

0

MðuÞd�ðuÞ

are increasing in the convex order. It follows from here
that, for any Lévy process (X(t), t� 0) admitting expo-
nential moments, the process

1

t

Z t

0

e�XðuÞ

E ½e�XðuÞ�
du

has marginals increasing in the convex order. Hence
instantaneous variance modeled as an exponential Lévy
processes normalized to unit expectation delivers normal-
ized quadratic variations increasing in the convex order.
The task of explicitly exhibiting the martingales with these
marginal densities is taken up by Hirsch and Yor (2009b).

We now consider other transformations that give
results in both directions. We leave for future research
the characterization question of what result to expect
from each functional transformation. For an example of
another potential transformation we first consider con-
structing normalized daily instantaneous variance for
N(x), the standard normal distribution function, as

vt ¼
NðXðtÞÞ

E ½NðXðtÞÞ�
,

where we take for X(t) the VG process with parameters
�¼ 0.5, �¼ 0.15, and 
¼�0.1. We simulated the VG
process on 10,000 paths of length 252 and constructed
10,000 simulated paths for vts. We then constructed
readings on realized variance as

RNs ¼
1

N

XN
t¼1

vts,

obtaining 10,000 observations for N corresponding to 1,
3, 6, 9 and 12 months. We graph in figure 12 the resulting
option prices for a variety of strikes.

For the opposite result, consider the square of the VG
process for vt. In this case we obtain a decrease in the
convex order as shown in figure 13.

7. Conclusion

Options on realized variance and quadratic variation
normalized to a unit expectation more generally are
investigated with respect to the property of monotonicity
in convex order for their one-dimensional marginal
distributions. It is observed that for Lévy processes
these densities are decreasing in the convex order. A
time series analysis of squared log returns on the S&P 500
index also reveals that the densities for realized variance
are decreasing in the convex order under the physical
measure. Hence we have the reverse situation for calendar
spreads to that known to exist for stock options, with

longer maturity calls declining in value for the same

strike.
It is observed that if options are priced to a slightly

increasing level of acceptability then the risk-neutral

densities would be increasing in the convex order.
Calibrated stochastic volatility models yield possibilities

in both directions. Finally, we consider modeling strate-
gies that guarantee an increase in convex order for the

normalized quadratic variation based on modeling instan-
taneous volatility as an exponential of a Lévy process

normalized to a unit expectation. Simulation studies
suggest that transformations other than the exponential

may also deliver an increase in the convex order. A more
detailed investigation of such transformations is left as a

topic for further research.
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Figure 13. Realized variance option prices for instantaneous
variance given by the cum norm function evaluated on the
square of the VG process for maturities of 1, 3, 6, 9 and
12 months in blue, red, black, magenta and green, respectively.
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Figure 12. Realized variance option prices for instantaneous
variance given by the cum norm function evaluated on the VG
process for maturities of 1, 3, 6, 9 and 12 months in blue, red,
black, magenta and green, respectively.
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