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Leverage Effect, Volatility Feedback, and
Self-Exciting Market Disruptions

Peter Carr and Liuren Wu#*

Abstract

Equity index volatility variation and its interaction with the index return can come from
three distinct channels. First, index volatility increases with the market’s aggregate finan-
cial leverage. Second, positive shocks to systematic risk increase the cost of capital and
reduce the valuation of future cash flows, generating a negative correlation between the in-
dex return and its volatility, regardless of financial leverage. Finally, large negative market
disruptions show self-exciting behaviors. This article proposes a model that incorporates
all three channels and examines their relative contribution to index option pricing and stock
option pricing for different types of companies.

I. Introduction

Equity index returns interact negatively with return volatilities. This article
proposes a model tracing the negative interaction to three distinct economic chan-
nels, examines the relative contribution of the three channels to index option pric-
ing, and explores how the three channels show up differently in companies with
different business types and capital structure behaviors.

First, equity index return volatility increases with the market’s aggregate
financial leverage. Financial leverage can vary either passively as a result of
stock market price movement or actively through dynamic capital structure
management. With the amount of debt fixed, financial leverage increases when
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the stock market experiences downward movements due to shrinkage in market
capitalization. Black (1976) first proposes this leverage effect to explain the nega-
tive correlation between equity returns and return volatilities for companies hold-
ing their debt fixed. Adrian and Shin (2010) show, however, that some compa-
nies also proactively vary their financial leverage based on variations in market
conditions. Both types of variations in financial leverage generate variations in
the index return volatility.

Second, the volatility of the market’s risky asset portfolio can also vary be-
cause the risk of a particular business can change over time, and so can the com-
position of businesses in an aggregate economy. With fixed future cash flow pro-
jections, an increase in the market’s systematic business risk increases the cost of
capital and reduces the present value of the asset portfolio, generating a volatil-
ity feedback effect (Campbell and Hentschel (1992), Bekaert and Wu (2000)).
This effect can show up as a negative correlation between the index return and its
volatility, regardless of the market’s financial leverage level.

Third, financial crises have shown a disconcerting pattern that worries both
policymakers and financial managers: A large negative financial event often in-
creases the chance of more such events to follow. Researchers (e.g., Azizpour,
Giesecke, and Schwenkler (2017), Ding, Giesecke, and Tomecek (2009), and
Ait-Sahalia, Cacho-Diaz, and Laeven (2015)) label this phenomenon as self-
exciting behavior. Cross-sectionally, the default of or large negative shock to one
company has been found to increase the likelihood of default or large downward
movements of other companies. In aggregation, such cross-sectional propagation
leads to an intertemporal self-exciting pattern in the market: One market turmoil
increases the chance of another to follow.

This article proposes a model for the equity index dynamics that captures
all three channels of economic variation. The model separates the dynamics of
the market’s risky asset portfolio from the variation of the market’s aggregate
financial leverage. Returns on the risky asset portfolio generate stochastic volatil-
ities from both a diffusion risk source with volatility feedback effect and a jump
risk source with self-exciting behavior. The market’s aggregate financial leverage,
conversely, can vary both via unexpected random shocks and through proactive
target adjustments based on market risk conditions.

We first estimate the model on the Standard & Poor’s (S&P) 500 index op-
tions to examine the relative contribution of each channel to equity index option
pricing. Estimation shows that the volatility feedback effect reveals itself mainly
in the variation of short-term options, the self-exciting behavior affects both short-
term and long-term option variations, and the financial leverage variation has its
largest impact on long-dated options. Thus, by using option observations across
a wide range of strikes and maturities, we can effectively disentangle the three
sources of volatility variation.

The disentangling reveals economic insights on important empirical
observations. An important recent finding in the index options market is that
market-level variance risk generates a strongly negative risk premium (Bakshi
and Kapadia (2003a), (2003b), Carr and Wu (2009)). Several studies provide in-
terpretations and explore its relations with other financial phenomena (see, e.g.,
Bakshi and Madan (2006), Bollerslev, Tauchen, and Zhou (2009), Zhou (2010),
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Bollerslev, Gibson, and Zhou (2011), Drechsler and Yaron (2011), and Baele,
Driessen, Londono, and Spalt (2014)). Our structural decomposition shows that
the volatility risk premium can come from several different sources, including
the market prices of financial leverage risk, asset volatility risk, and self-exciting
market crashes. Estimation shows that the negative variance risk premium comes
mainly from the latter two sources.

The disentangling also allows us to answer important capital structure ques-
tions based on option price variations. Model estimation shows that contrary to
common wisdom, the aggregate financial leverage in the U.S. market does not al-
ways decline with increased business risk. Instead, the market responds differently
to different types of risks. The aggregate financial leverage can actually increase
with increasing business risk if the business risk is driven by small, diffusive
market movements. Only when the perceived risk of self-exciting market disrup-
tions increases does the market become truly concerned and start the deleveraging
process.

By separating the variation in business risk and capital structure decisions,
our model also has important implications for individual stock option pricing.
The three economic channels show up differently for companies with different
business types and capital structure behaviors, thus leading to different individ-
ual stock option pricing behaviors. In particular, we expect companies with more
systematic shocks to experience a stronger volatility feedback effect and compa-
nies with more passive capital structure policies to experience stronger leverage
effects. We also expect the self-exciting behavior to be more of a market behav-
ior through aggregation of cross-sectional propagation of negative shocks among
structurally related companies.

As a guidance for future comprehensive analysis, we perform a preliminary
examination of 5 companies selected from 5 distinct business sectors. Model es-
timation on the selected companies shows that the volatility feedback effect is the
strongest for energy companies, the shocks to which tend to have fundamental
impacts on the aggregate economy. The leverage effect is the strongest for manu-
facturing companies, which tend to hold their debt fixed for a long period of time
and thus exacerbate the leverage effect described by Black (1976). By contrast,
bank holding companies show a much weaker leverage effect but much stronger
mean-reverting behavior in their financial leverage variation because they tend to
actively manage their financial leverage to satisfy regulatory requirements.

The current literature often indiscriminately labels the observed negative cor-
relation between equity or equity index returns and return volatilities as a “lever-
age effect,” causing confusion about the exact economic origins of the correlation.
Hasanhodzic and Lo (2010) highlight the inappropriateness of the terminology by
showing that the negative correlation between stock returns and return volatilities
is just as strong for all-equity-financed companies, which are by definition absent
of any financial leverage. Figlewski and Wang (2000) also raise questions about
whether the so-called “leverage effect” is really caused by financial leverage vari-
ation. In this article, we provide a careful distinction of the different economic
channels that can all generate a negative relation between returns and volatilities.
In particular, even in the absence of financial leverage, our model can still generate
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a negative relation between returns and volatilities through the diffusive volatility
feedback effect and the self-exciting jump-propagation behavior.

Our modeling approach provides a balance between richness in economic
structures and tractability for option pricing. The former is a prerequisite for ad-
dressing economic questions, and the latter is a necessity for effectively extracting
information from the large amount of option observations. The current literature
largely stays at the two ends of the spectrum. On the one end is the capital struc-
ture literature pioneered by Merton (1974), which is rich in economic structures
but remains both too stylized and too complicated to be a working solution for
equity options pricing. Cremers, Driessen, and Maenhout (2008) specify a jump-
diffusion stochastic volatility dynamics for the asset value and compute the equity
option values as compound options on the asset value. Through this specification,
they are able to calibrate the average credit spreads on corporate bonds to the aver-
age variance and jump risk premiums estimated from equity index options. Their
resolution of the average credit spread puzzle highlights the virtue of exploiting
information in equity options, but their stylized calibration exercise also high-
lights the inherent difficulty in making the structural approach a feasible solution
for capturing the time variation of equity options.

On the other end of the spectrum is the reduced-form option pricing lit-
erature, which can readily accommodate multiple sources of stochastic volatili-
ties with analytical tractability. Prominent examples include Heston (1993), Bates
(1996), (2000), Bakshi, Cao, and Chen (1997), Heston and Nandi (2000), Duffie,
Pan, and Singleton (2000), Pan (2002), Carr and Wu (2004), Eraker (2004), Huang
and Wu (2004), Broadie, Chernov, and Johannes (2007), Christoffersen, Jacobs,
Ornthanalai, and Wang (2008), Christoffersen, Heston, and Jacobs (2009), Santa-
Clara and Yan (2010), and Andersen, Fusari, and Todorov (2015). Nevertheless,
these models are often specified as linear combinations of purely statistical fac-
tors, without any direct linkage to economic sources. The absence of economic
linkage prevents these models from addressing economic questions. For exam-
ple, many option pricing models allow a negative correlation between return and
volatility. The negative correlation is often labeled as the “leverage effect,” with-
out further distinction on whether it is really coming from financial leverage vari-
ation or simply a volatility feedback effect that has nothing to do with financial
leverage, thus causing confusion in the interpretation of the estimation results.
Furthermore, the generic factor structure often poses identification issues that
limit most empirical estimations to one or two volatility factors.

Our specification retains the flexibility and tractability of reduced-form op-
tion pricing models but incorporates economic structures motivated by the capital
structure literature. As a result, the model can use the rich information in equity
index options to show how capital structure decisions vary with different types
of economic risk. Furthermore, by applying the economic structures, we also ob-
tain a rich and yet parsimonious 3-volatility-factor specification that can be well
identified from option observations.

Also related to our work is the increasing awareness of the rich information
content in options in addressing economically important questions. For example,
Birru and Figlewski (2012) and Figlewski (2009) provide insights into the recent
financial crisis in 2008 by analyzing the risk-neutral return densities extracted
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from the S&P 500 index options. Bakshi and Wu (2010) infer how the market
prices of various sources of risks vary around the National Association of Se-
curities Dealers Automated Quotations (NASDAQ) bubble period using options
on the NASDAQ 100 tracking stock. Backus and Chernov (2011) use equity in-
dex options to quantify the distribution of consumption growth disasters. Bakshi,
Panayotov, and Skoulakis (2011) show that appropriately formed option portfo-
lios can be used to predict both real activities and asset returns. Bakshi, Carr, and
Wu (2008) extract the pricing kernel differences across different economies using
options on exchange rates that form a currency triangle. Ross (2015) proposes
a recovery theorem that separates the pricing kernel and the natural probability
distribution from the state prices extracted from option prices. In this article, we
show that variations in financial leverage, asset diffusion risk, and asset crash risk
contribute differently to options price behaviors at different strikes and maturities.
Thus, we can rely on the large cross section of options to disentangle these differ-
ent sources of volatility variations.

The rest of the article is organized as follows: Section II specifies the eq-
uity index dynamics and discusses how the model incorporates the three sources
of volatility variation through separate modeling of asset dynamics and finan-
cial leverage decisions. The section also discusses how the three sources of
market variations can show up differently in individual companies with differ-
ent business types and different capital structure behaviors. Section III describes
the data sources and summarizes the statistical behavior of alternative financial
leverage measures and option-implied volatilities on both the S&P 500 index
and 5 individual companies selected from 5 distinct business sectors. The sec-
tion also elaborates the model estimation strategy with equity and equity index
options. Based on the estimation results, Section IV discusses the historical be-
havior of the three economic sources of variation, their relative contribution to
equity index option pricing, and the cross-sectional variation in the 5 selected
individual companies. Section V concludes. The Internet Appendix (available at
http://faculty.baruch.cuny.edu/lwu/) provides the technical details on option val-
uation under our model specification, the model estimation methodology, and a
discussion of the model’s option pricing performance.

[I. Model Specification

We fix a filtered probability space {2, F,IP,(F;),>o} and assume no-arbitrage
conditions in the economy. Under certain technical conditions, there exists a risk-
neutral probability measure QQ, absolutely continuous with respect to P, such that
the gains process associated with any admissible trading strategy deflated by the
risk-free rate is a martingale.

A. Separating Leverage Effect from Volatility Feedback and Self-Exciting
Jumps

Let F, denote the time ¢t forward level of the equity index over some
fixed time horizon. We separate the dynamics of the risky asset portfolio from
the variation in the market’s financial leverage via the following multiplicative
decomposition:
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(1) Ft = XtAts

where A; denotes the time ¢ forward value of the risky asset, and X, =F,/A,
denotes the ratio of equity to risky assets. Intuitively, one can decompose a balance
sheet into equity and debt on the one side and risky assets and riskless assets (e.g.,
cash) on the other side. The riskiness of the equity is determined by the riskiness
of the risky asset investments and the ratio of the equity to the risky assets. In this
classification, one can think of the cash position as a reduction in debt and hence
reduction in leverage, noting that the equity can be safer than the risky asset if the
company holds a large amount cash such that the ratio of equity to risky assets
X, is greater than 1. The decomposition in equation (1) is a mere tautology, but it
allows us to disentangle the impact of financing leverage decisions from decisions
regarding business investment and operation in the economy.

1. Asset Value Dynamics with Volatility Feedback Effects and Self-Exciting Jumps

We model the forward value dynamics for the risky asset A, under the phys-
ical measure PP as follows:

(2) dAJA, = &dt+vZdZ, + / (e" — 1) (u(dx,dt) — n* (x)dxv] dt),

(3)  dv? = k(0 —v7)dt+o,\/v7dZ!, E[dZ'dZ]=pdt <0,

t

4) dv] = k(67 —v/)dt — ,/ x (u(dx,dt) — 7" (x)dxv] dt),

where &, denotes the instantaneous risk premium on the asset return, determined
by the market pricing specification on various risk sources; Z, and Z’ denote
two standard Brownian motions; wu(dx,dt) denotes a counting measure for jumps;
¥ (x)v/ denotes the time 7 arrival rate of jumps of size x in the natural logarithm
of asset value, In A,, with

) 7Py = ey

and A,_ denotes the asset value at time ¢ just prior to a jump.

Equation (2) decomposes the asset value variation into a diffusion compo-
nent with stochastic variance v* and a discontinuous component with stochastic
jump intensity v;/. A negative correlation between Z, and Z! in equation (3) gen-
erates the volatility feedback effect: A positive shock to the market business risk
increases the cost of capital and reduces the asset value.

The negative jJump component in equation (2) captures the impact of market
turmoil. The intensity of market turmoil is stochastic and follows the dynamics
specified in equation (4), where a downside jump in the asset value is associated
with an upside jump in the jump intensity. The coefficient o} >0 captures the
proportional scale on the jump size in the intensity per each jump in the log asset
value, and the negative sign in front of o highlights the opposite effect of the
jump on the asset value and the jump intensity. The specification captures the
self-exciting behavior: The occurrence of a downside jump event increases the
intensity of future downside jump events.
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To derive the risk-neutral Q dynamics for option pricing, we perform the
following decomposition on the diffusion asset value risk:

(6) zZ, = pZ)+J1-pZ,

and assume proportional market prices (yZ,y") on the independent diffusion re-
turn risk Z, and the diffusion variance risk Z°, respectively. The proportional
market price (y%) of the independent diffusion return risk (Z,) generates an
instantaneous risk premium on the asset return of y /1 — p2vZ. The proportional
market price (y") of the diffusion variance risk (Z}') generates a drift adjustment
term y'o,v? for vZ. It also generates an instantaneous asset return risk premium
py'v?. We assume constant market price (y’) on the jump return risk, which
generates an exponential tilting on the jump arrival rate under the risk-neutral
measure Q:

©) rx) = e e M|t = e h iy,

with v; =07 /(1 —y”’v}). Under these specifications for the market price of risk,
we can write the forward asset value dynamics under the risk-neutral measure Q
as follows:

0
®) dAJA_ = JvEdZ, +/ (e" = 1) (u(dx,dr) — m(x)dxv] dr),
9) dv/ = (0, —v7)dt +o0,/v7dZ},
0
(10) dv! = «, (Bj—vtl)dt—cn/ x (u(dx,dt) — 7 (x)dxv] dt),

where k; =k, + "0, 0, =k,0% /K7, k;=k5 + 0,05 —v,), and 0, =k567 /k;.

Although we can readily accommodate both positive and negative jumps in
the risky asset dynamics, equation (5) incorporates only negative jumps for par-
simony. When we incorporate positive jumps in the specification, estimation on
equity index options often results in a positive jump size that is not significantly
different from zero.

Many option pricing models add jumps to the equity index dynamics. Bakshi
et al. (1997) allow a jump with constant intensity. Pan (2002) specifies the jump
intensity as a function of the diffusion variance rate. Du (2011) builds a gen-
eral equilibrium model for equity index options pricing that includes a Poisson
jump component in the consumption growth rate and time-varying risk aversion
induced by habit formation. Eraker, Johannes, and Polson (2003), Eraker (2004),
and Broadie et al. (2007) use synchronized finite-activity jumps to model the eq-
uity index return and volatility. Still, the diffusion variance and jump intensity are
governed by one process. These models do not capture the observation that small
market movements and large market turmoils can be driven by completely differ-
ent forces. Huang and Wu (2004) and Santa-Clara and Yan (2010) allow diffusion
and jumps to generate separate stochastic volatilities, but they do not accommo-
date the self-exciting behavior. Our specification for the asset value dynamics
is the first in the literature that allows small market movements with volatility
feedback effect and large market turmoils with self-exciting behavior as separate
sources of stochastic volatility.
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2. Active Capital Structure Decisions and Dynamic Financial Leverage Variation

We propose a dynamic for the ratio of equity to risky assets X, that accom-
modates the market’s active capital-structure-targeting decisions and the impacts
of financial leverage shocks on equity return volatility. Formally, under the phys-
ical measure [P, we specify the following:

(]1) dXt/X, = Xt_p(ax_KXXx,_KXthZ_Kx_]UtJ)dl—i‘(SXI_de,,

where W, denotes a standard Brownian motion, § is a positive quantity capturing
the volatility scale of the financial leverage shocks, and p is a power coefficient
that determines how the equity index return volatility varies with the level of fi-
nancial leverage. With p > 0, the process captures the leverage effect: Conditional
on a fixed level for the risky asset, a decline in X increases the financial leverage
and reduces the equity value by definition, and it also raises the equity volatility
via the power term X, ” in equation (11). Hurd and Li (2008) show that under
certain parametric conditions, the Leland (1994) capital structure model, where
equity is modeled as a barrier option on the asset value, implies that the equity
return volatility is a power function of the equity-to-asset ratio, with the power
being p =1/2. Our specification can be regarded as a generalization of the Leland
structural model by allowing the power dependence on the leverage ratio to be
a free parameter and by accommodating much more sophisticated and realistic
asset-value dynamics.

The drift specification in equation (11) captures the market’s active capital-
structure-targeting decision: The market adjusts the capital structure target based
on the current levels of financial leverage (X,), the business diffusion risk U,Z, and
the business jump risk v/. The constant term ay allows the market to set a long-run
target on the equity-to-asset ratio.

Traditional capital structure models such as those by Merton (1974) and
Black and Cox (1976) often fix the notional amount of debt. In such models,
capital structure variations are completely passive because they are driven purely
by variations in the asset value. Collin-Dufresne and Goldstein (2001) specify
a simple mean-reverting process for the leverage ratio. Adrian and Shin (2010)
show that a company often proactively varies its financial leverage target based
on variations in market conditions. In particular, commercial banks, in an effort
to comply with regulation requirements, strive to maintain a stable leverage ratio
despite market variations. Investment banks go one step further. They not only
manage their leverage ratios proactively but also pro-cyclically by raising lever-
age during economic booms and deleveraging during recessions. These actions
generate the exact opposite effect of what is described in the traditional models,
where leverage would go down when asset values go up.

Based on such evidence, we take a completely new approach by directly
modeling the leverage ratio (X,) variation. Our dynamics specification in equation
(11) captures the proactive leverage decision rules through the drift specification
and captures the random, unexpected shocks in the leverage variation through the
Brownian motion. We not only allow mean-reverting financial-leverage-targeting
behaviors but also allow the market to target different levels of financial leverage
based on different market risk conditions.
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We assume independence between the Brownian shock in financial lever-
age (dW,) and the Brownian shocks in the asset value (dZ,) and volatility (dZ}).
The independence assumption allows us to model A, and X, as separate mar-
tingales under the risk-neutral measure, facilitating the pricing of equity index
options. The risk-neutral dynamics for the equity-to-asset ratio can thus be written
as follows:

12) dX,/X, = §&X;"dW,.
The Internet Appendix provides the technical details on how options can be priced
tractably under our model specification.

B. An Alternative Representation

Combining the specifications in equations (8)—(11), we can write the risk-
neutral dynamics for the forward equity index as follows:

P
) AW, + 7 dZ,

0
+ / (e" = 1) (u(dx,dt) — w(x)dxv] dt),

13 dFJF. = §( L=
(13) t/—(A

t—

where the variation of the equity index return volatility comes from three distinct
sources: the financial leverage (X, =F,/A,), the variance of the asset diffusion
movement (v/), and the arrival rate of the self-exciting jumps (v;).

By performing a change of variable v =§2X, *” we can rewrite the risk-
neutral equity index dynamics in equation (13) in the form of a 3-factor stochastic
volatility model,

(14) dF,/F_ = JuXdW,+\v7dz,

0
+/ (e" = 1) (u(dx,dt) — 7 (x)dxv] dt),

where the stochastic variance from the leverage effect v* follows a 3/2 process:

(15) dv = kx()dt —ox(v})?dw,
where kx = p(2p+1), ox =2p, and the innovation is perfectly negatively corre-
lated with the corresponding return innovation component. Under the specifica-
tion in equation (14), the index return is driven by two Brownian motion com-
ponents and a jump component. The instantaneous variances on the 2 Brownian
motions v* and v and the jump-intensity process v; are all stochastic and are
driven by three separate dynamic processes, specified in equations (15), (3), and
(4), respectively.

The alternative representation reveals several new insights. First, equation
(15) makes it explicit that financial leverage variation can be one of the three
contributors to stochastic volatility in the equity index return. Indeed, in classic
capital structure models, such as those by Merton (1974), Black and Cox (1976),
Leland (1994), and Leland and Toft (1996), financial leverage variation is the
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only source of variation in equity return volatility because these models assume
constant asset return volatility.

Second, the particular 3/2 volatility of volatility dependence due to the lever-
age effect in equation (15) is interesting. The behaviors of 3/2 processes have
been studied by several authors, including Heston (1997), Lewis (2000), and Carr
and Sun (2007). Within the context of 1-factor diffusion, several empirical studies
find that a 3/2 specification on the variance-rate dynamics performs better than
the square-root specification.' Thus, by including a 3/2-volatility component in
addition to the square-root dynamics for the asset-diffusion variance rate v? and
the self-exciting jump dynamics for the jump intensity v/, our model has the po-
tential to generate better pricing performance than existing affine specifications in
the literature.

Third, equations (14) and (15) reveal that from index options alone, we
cannot identify the volatility scale (6) of the process for the equity-to-asset ra-
tio. Instead, we can identify a standardized version of the equity-to-asset ratio,
X,=56""7X,, or the corresponding leverage-induced variance rate v¥ =82X, > =
X, 7" The standardized equity-to-asset ratio shows a unit volatility scaling for its
dynamics:

(16) d%,/ir = )?—P (ax—’IZX/)(?,‘_fIzXthZ_flzijtJ)dt‘i‘)N(t_de,,

withdy =ayd™!, Kxx =8""PPkyx, Kxz =8 "kx,, and Kx; =8 'kx,. Thus, the im-
pact of financial leverage on equity index option pricing comes only through its
standardized form. To the extent that the actual equity-to-asset ratio can show
stochastic volatility, with §, following a stochastic process, our identified varia-
tion on the standardized leverage measure X, will reflect the combined effect of
the variations in the raw financial leverage and its volatility. A separate identifica-
tion of the two would need inclusion of actual financial leverage data.

Finally, the literature often makes a dichotomous distinction between the lo-
cal volatility models of Dupire (1994) and stochastic volatility models such as
that by Heston (1993). The local volatility models are popular in the industry,?
but the academic option pricing literature focuses almost exclusively on scale-
free stochastic volatility specifications. The two representations of our model
show that the gap between the two strands of literature is not as big as is gen-
erally perceived. We can represent our model as either a pure 3-factor stochastic
volatility model as in equation (14) or as having a local-volatility component as in
equation (13). Compared with Dupire’s local volatility specification as a function
of the index level, we scale the index level by the risky asset level to build a more

'Favorable evidence from time-series returns includes Chacko and Viceira (2003), Ishida and En-
gle (2002), Javaheri (2005), and Jones (2003). Supporting evidence from equity index options include
Jones (2003), Medvedev and Scaillet (2007), and Bakshi, Ju, and Ou-Yang (2006). Christoffersen,
Jacobs, and Mimouni (2010) provide further empirical support from a joint analysis of stock index
returns, realized volatilities, and options.

2Several earlier articles specify the equity index as following a pure constant elasticity of vari-
ance process (e.g., Beckers (1980), Cox (1996), Emanuel and MacBeth (1982), and Schroder (1989)).
Dupire (1994) specifies the equity return volatility as a generic function of the equity level and shows
that this function can be identified via a forward partial differential equation. Dumas, Fleming, and
Whaley (1998) investigate the empirical performance of various specifications for local volatility
functions.
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fundamentally stable local volatility function in terms of the unitless equity-to-
asset ratio (F,/A,).

C. Application to Individual Companies

We use three economic channels to model the equity index volatility varia-
tion and its interactions with the equity index return. These channels act differ-
ently and show up to different degrees in individual stocks for companies with
different business types and different capital structure behaviors.

First, in modeling the aggregate financial leverage behavior, we allow the
market to target the aggregate financial leverage variation according to the mar-
ket’s levels of diffusive and jump risk. When an individual company determines
its financial leverage target, the company may consider both the aggregate mar-
ket conditions and its own unique situation. Furthermore, different types of com-
panies can show drastically different capital structure behaviors. For example,
Adrian and Shin (2010) show that manufacturing companies tend to hold their
debt level fixed for a long period of time and are therefore more likely to experi-
ence the leverage effect described by Black (1976). In contrast, bank holding com-
panies tend to target a fixed financial leverage level in accordance with regulatory
requirements, whereas investment firms tend to be even more proactive in their
capital structure management, often reducing financial leverage during market re-
cessions while increasing financial leverage during market booms. Such proactive
financing activities can significantly reduce the leverage effect and, accordingly,
the negative relation between the company’s stock returns and volatilities.

Second, the volatility feedback effect in the equity index is generated based
on classic asset pricing arguments that an increase in systematic business risk
raises the cost of capital and accordingly lowers the valuation of the business,
with the cash flow projection held fixed. For an individual company, the volatility
feedback effect can be weaker or even nonexistent if shocks to this company’s
business are largely idiosyncratic or even countercyclical. Only companies with
a large proportion of systematic business shocks show strong volatility feedback
effects. Conversely, due to diversification, shocks to the equity index are mostly
systematic and should thus generate the strongest feedback effect. This diversi-
fication effect suggests that the volatility feedback effect on the equity index is
stronger than the average volatility feedback effect on the individual companies
that constitute the index.

Third, the self-exciting jump behavior on the aggregate index can also be
stronger than the average behavior of individual companies because a cross-
sectional self-exciting propagation or contagion across companies can lead to a
strong intertemporal self-exciting pattern on the equity index. A large negative
shock or, in the extreme, a default event in one company can propagate and trig-
ger a large negative shock for another related company, either through their struc-
tural connection (e.g., a supplier—customer relationship) or due to shared busi-
ness activities and markets. In aggregation, such propagation generates the in-
tertemporal self-exciting jump behavior that our model captures. When confined
to one individual company, the analysis does not reveal as much about the cross-
company propagation and mainly captures the clustering of large negative shocks
for one particular company.
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Taken together, different types of companies can have different stock price
and stock option behaviors, and these behaviors can differ from those on the eq-
uity index. In particular, even for a company without financial leverage, its return
and volatility can show a strong negative correlation if shocks to the company
have fundamental impacts on the aggregate economy and induce strong volatility
feedback effects. Conversely, even for a company with a large amount of debt,
if the company has the capability and financing environment to either actively
rebalance its financial leverage around a fixed target level or move against its
business shocks, its stock price dynamics will show very little of the leverage
effect described by Black (1976). Finally, we expect to see a stronger volatility
feedback effect on the equity index than on an average individual company due to
the diversification effect, and we may also see stronger self-exciting jump behav-
ior on the equity index because of the index’s aggregation of cross-company risk
propagations.

Given the distinct behaviors of the stock index and individual stocks, it is im-
portant for future research to develop theoretical models for individual stocks that
accommodate both market-wide and firm-specific shocks. It is also important to
perform a comprehensive empirical analysis of individual stock options and their
linkage to the company’s fundamental characteristics and aggregate market condi-
tions. Although such a comprehensive analysis is beyond the scope of this article,
we apply our equity index model to a selected number of individual companies to
gain a preliminary understanding of how individual stock options behave differ-
ently across companies that are in different business sectors and pursue different
capital structure policies.

[ll. Data and Estimation on Equity Index and Selected Single
Names

We estimate the model on the S&P 500 index (SPX) options and also on
individual stock options for the 5 selected companies. Estimating the model on
the index options extracts the three market risk factors and identifies the values of
the structural model parameters that govern the market risk dynamics. Estimating
the model on individual stock options reveals how the three economic channels
show up differently in different types of companies.

A. Data Sources and Sample Choices

The SPX index options are both listed on the Chicago Board of Options Ex-
change (CBOE) and traded actively over the counter (OTC). Options transactions
on the listed market are concentrated at short maturities, whereas activities on the
OTC market are more on long-dated contracts. We estimate the model using OTC
SPX options data from a major bank. The data are in the form of Black and Sc-
holes (1973) implied volatility quotes from Jan. 8, 1997 to Oct. 29, 2014. At each
date, the quotes are on a matrix of 8 fixed time to maturities at 1, 3, 6, 12, 24,
36, 48, and 60 months and 5 relative strikes at each maturity at 80%, 90%, 100%,
110%, and 120% of the spot index level. The OTC quotes are constructed to match
listed option prices at short maturities and OTC transactions at long maturities. We
choose the OTC quotes for model estimation mainly because they cover a much
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wider span of maturities than do the listed options. The wider maturity span helps
us achieve a better disentanglement of the different mechanisms that our model
incorporates. The data are available daily, but we sample the data weekly every
Wednesday to avoid weekday effects. The sample contains 40 implied volatility
series over 930 weeks, a total of 37,200 observations.

For application to individual companies, we choose 5 sectors where we ex-
pect to see distinct behaviors in terms of both business types and capital structure
policies. Within each sector, we select one company that has actively traded stock
options over the same sample period. The 5 chosen companies are as follows:

1. General Electric Company (GE), one of the companies with the most ac-
tively traded stock options throughout the sample period within the “Indus-
trials” sector. GE is a large infrastructure company that operates in many
different segments, including power and water, oil and gas, energy manage-
ment, aviation, health care, transportation, and appliances and lighting. It
also has a capital segment offering financial services.

2. Wal-Mart Stores Inc. (WMT), one of the companies with the most actively
traded stock options throughout the sample period within the “Staples”
sector. The company operates retail stores in various formats worldwide.

3. JPMorgan Chase & Co. (JPM), one of the largest bank holding and financial
service companies worldwide.

4. Duke Energy Corporation (DUK), one of the companies with the most ac-
tively traded stock options throughout the sample period within the “Utili-
ties” sector. The company operates through three segments: regulated utili-
ties, international energy, and commercial power.

5. Exxon Mobil Corporation (XOM), one of the companies with the most ac-
tively traded stock options throughout the sample period within the “En-
ergy” sector. The company explores for and produces crude oil and natural
gas in the United States, Canada, South America, Europe, Africa, Asia, and
Australia/Oceania.

Manufacturing companies and bank holding companies tend to show differ-
ent behaviors in managing their capital structures in response to market conditions
(Adrian and Shin (2010)). We use GE as a representative manufacturing company
and JPM as a representative bank holding company. We are also interested in
knowing how a large retail store like WMT differs in behavior from a manufac-
turing company. In addition, we expect distinct behaviors from a company oper-
ating in a regulated utility market such as DUK, which tend to have stable profits
and stable financial leverage. We also include an oil and gas exploration company
(XOM). Energy companies like XOM tend to have long and risky investment hori-
zons for their projects and lower financial leverage due to the inherent business
risk. Furthermore, shocks to energy prices not only affect the profitability of such
energy exploration companies but also have reverberating impacts on the whole
economy.
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To estimate the model on each selected company, we obtain listed stock op-
tions data from OptionMetrics. Listed options on individual stocks are American-
style options. OptionMetrics uses a binomial tree to estimate the option-implied
volatility that accounts for the early exercise premium. We estimate our model
based on the implied volatility estimates. At each maturity and strike, we take
the implied volatility quote of the out-of-the-money option (call option when the
strike is higher than the spot; put option when strike is lower than the spot) and
convert it into a European option value based on the Black and Scholes (1973)
pricing formula.®> We further filter the data by requiring that i) the time to maturi-
ties of the chosen options are greater than 21 days, and ii) the log strike deviation
from the log forward is within 2 standard deviations of its mean.

Figure 1 summarizes the distribution of the selected data sample across dif-
ferent brackets of maturities and relative strikes via histogram plots. The legends
in the graph show the tickers of the 5 selected companies in descending order in
terms of the total number of selected data observations, which are 71,344 for JPM,
54,859 for WMT, 52,918 for XOM, 52,592 for GE, and 22,785 for DUK. The ma-
turity histograms in the left panel show that the listed options are concentrated at
short maturities. The number of observations declines rapidly when option matu-
rities are longer than 12 months. The longest maturities are less than 3 years. The
relative strike histograms in the right panel show that the strikes center around the
spot level but spread far apart and can be 50% below or above the spot level.

FIGURE 1
Maturity and Relative Strike Distribution of Individual Stock Options Sample
Graph A of Figure 1 plots the histogram of the time to maturities of the selected options data sample for each company.

Graph B plots the histogram of the relative strikes of the selected options data sample for each company. The legends
list the companies in descending order based on the total number of selected option observations.
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B. Summary Statistics of Different Financial Leverage Measures

Because the model decomposes equity value F into asset value A and the
equity-to-asset ratio X, model identification would be stronger if we could include
financial leverage as an observed series. The issue is that it is difficult to obtain
accurate and timely estimates of financial leverage. In Table 1, we construct three
alternative measures, A;—A;, for the equity-to-asset ratio based on accounting

3See Carr and Wu (2009) for a detailed discussion on the various considerations involved in pro-
cessing American-style individual stock options.
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and financial market data, and we report the summary statistics for both the 5
individual companies and the S&P 500 index. The associated financial data are
obtained from Bloomberg.

Panel A of Table 1 reports the statistics on the A, measure, which is con-
structed based on book value of total debt (TD) and total assets (TA), A, =
1—TD/TA. Book values can deviate significantly from market values; neverthe-
less, the data are readily available from quarterly balance sheet statements, and
the summary statistics provide us with a general picture of the company’s level
of financial leverage. Among the 5 companies, GE has the lowest mean estimate
at 0.48 and hence the highest book leverage. By contrast, the mean estimate for
XOM is very high at 0.94, suggesting that the company has very little debt. WMT,
DUK, and JPM have similar average levels from 63% for JPM to 73% for WMT,
close to the average estimate on the equity index at 66%. The largest time vari-
ation comes from the company with the highest debt ratio (GE), with a standard
deviation estimate of 7%, whereas the smallest standard deviation comes from the
retail store WMT at 2%.

Panel B of Table 1 reports the statistics on the A, measure, constructed based
on book value of total debt and market capitalization (MC), A, =MC/(MC+TD).
Whereas the market value of a company’s debt is not always readily observable,
the market capitalization on the company’s equity is readily available. The mea-
sure A, uses the market capitalization to represent the equity value but retains the
book value of total debt as the debt amount. In terms of market capitalization,
JPM now has the lowest average estimate and thus the highest financial lever-
age. By contrast, WMT’s average financial leverage looks much lower in terms of
market capitalization than its book-value counterpart. XOM’s financial leverage
looks even smaller in terms of market capitalization. The standard deviation

TABLE 1
Summary Statistics of Alternative Financial Leverage Measures

Table 1 reports summary statistics on three alternative financial leverage measures, A;—As, constructed using financial
and accounting data to proxy the equity-to-asset ratio X that we use in our model. The statistics are computed over the
sample period from Jan. 1997 to Oct. 2014. Data are from Bloomberg.

Statistics GE WMT JPM DUK XOM SPX

Panel A. Ay in Book Value of Total Debt and Total Asset

Mean 0.48 0.73 0.63 0.69 0.94 0.66
Median 0.51 0.73 0.63 0.70 0.94 0.63
Standard deviation 0.07 0.02 0.04 0.04 0.03 0.05
Minimum 0.34 0.68 0.52 0.60 0.87 0.61
Maximum 0.56 0.81 0.73 0.78 0.97 0.77

Panel B. A, in Book Value of Total Debt and Market Capitalization

Mean 0.49 0.86 0.20 0.60 0.96 0.61
Median 0.49 0.84 0.20 0.59 0.96 0.60
Standard deviation 0.14 0.05 0.05 0.09 0.02 0.07
Minimum 0.12 0.75 0.09 0.33 0.90 0.44
Maximum 0.75 0.96 0.32 0.78 0.98 0.71

Panel C. A; in Merton's Standardized Distance to Default

Mean 1.48 3.05 0.60 2.28 4.39 2.83
Median 1.39 2.95 0.40 2.62 4.32 257
Standard deviation 1.06 1.23 1.16 111 1.38 1.21
Minimum —1.08 0.81 —1.99 —0.33 1.38 0.19
Maximum 3.52 5.81 2.64 4.26 6.00 5.36
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estimate remains the largest for GE but the lowest for XOM, which has very little
debt compared with its market capitalization. The average level for the index is
similar to that for DUK but with a lower standard deviation.

Even with fixed debt principal, the market value of debt can fluctuate, not
only with the market capitalization but also with the riskiness of the investment.
Merton (1974) proposes to value the company by treating the equity as a call
option on the company’s asset and by measuring the credit risk of the company
with a standardized financial leverage measure called distance to default, which
scales the log distance between the company’s asset value and debt principal by
the asset return volatility. We perform a simple implementation of the Merton
model as in Bai and Wu (2016) by taking the total debt (TD) as the debt principal,
the market capitalization (MC) as the equity value, and the estimate of 1-year
stock return historical volatility as the equity return volatility (o) while assuming
zero interest rate and a 10-year debt maturity (7 = 10). With these assumptions,
we solve the asset value (A) and asset return volatility (o,) at each date from the
following two equations:

17) MC = AxN®DD+o,7/T)—TD x N(DD),
(18) or = N(MDD+0,vVT)o,(A/MC),
where N(-) denotes the cumulative standard normal distribution, and the stan-

dardized variable DD, often referred to as the distance-to-default measure, is as
follows:

In(A/TD) — Lo3T
UA\/T .

We use the estimated distance to default as a standardized financial leverage mea-
sure A; =DD and report its summary statistics in Panel C of Table 1. Both A, and
A; are constructed using book value of total debt and market capitalization, ex-
cept the A; measure is scaled by asset return volatility. Comparing their summary
statistics, we observe that the sample averages for A, and A; share the same cross-
sectional rank. However, due to the scaling by asset return volatility, the standard
deviation estimates for Aj; are close to 1 for all companies.

(19) DD

C. Summary Statistics of Option-Implied Volatilities

Listed options on individual stocks have fixed strike prices and fixed expiry.
Their time to maturity and moneyness vary over time, making it difficult to per-
form time-series analysis. OptionMetrics addresses this issue by constructing time
series of implied volatilities at fixed time to maturities and fixed options delta via
nonparametric smoothing across nearby contracts. From these smoothed data, we
take the average of the 3-month 50-delta call and 50-delta put series as a proxy for
the implied volatility level, and we report its summary statistics for the 5 selected
companies and the S&P 500 index in Panel A of Table 2. Among the 5 companies,
the average implied volatility level is the highest at 32.72% for the bank holding
company JPM, which has the highest financial leverage and shortest distance to
default. The time-series variation of the implied volatility is also the highest for
JPM, with a standard deviation estimate of 13.80%. The utility company DUK
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TABLE 2
Summary Statistics of Option-Implied Volatilities

Table 2 reports summary statistics of option-implied volatilities for the 5 selected companies and the Standard & Poor’s
(S&P) 500 index. The statistics are computed on standardized implied volatility series from OptionMetrics for the sample
period Jan. 1997-Oct. 2014. The implied volatility level in Panel A is proxied by the average of the standardized 3-month
50-delta call and 3-month 50-delta put implied volatility series. The implied volatility skew in Panel B is proxied by the
difference between the 3-month 25-delta put and 3-month 25-delta call implied volatility series, in percentage of the 50-
delta implied volatility level and scaled by 1.349 as an approximate measure of the standardized strike distance. The last
row of each panel reports the correlation estimates between the weekly changes in each series and the corresponding
weekly returns on the stock or stock index.

Statistics GE WMT JPM DUK XOM SPX

Panel A. 3-Month Implied Volatility Level

Mean 27.70 24.72 32.72 22.46 23.05 19.73
Median 25.68 21.75 30.80 19.36 22.40 19.06
Standard deviation 12.00 9.62 13.80 9.59 6.64 6.67
Minimum 12.38 1.1 14.56 10.66 12.53 10.03
Maximum 108.43 54.78 94.13 71.02 67.07 57.06
Correlation -0.73 —0.55 —-0.76 —0.56 —0.65 —0.82

Panel B. 3-Month Implied Volatility Percentage Skew

Mean 14.97 12.89 15.68 14.82 14.34 23.44
Median 14.83 12.89 15.94 14.91 13.44 23.58
Standard deviation 6.52 6.27 5.99 8.53 6.47 5.06
Minimum -5.70 -6.33 0.40 —14.41 —2.77 5.15
Maximum 37.54 31.94 35.32 38.40 33.99 35.52
Correlation 0.02 0.22 0.08 0.14 0.22 —0.10

has the lowest average implied volatility level, due to a combination of low risk
for the regulated business and a moderate level of financial leverage. Although
the energy company XOM has very little financial leverage, its average implied
volatility level is not the lowest, potentially due to its high business risk; never-
theless, its time-series standard deviation is the lowest at 6.64%. Finally, because
of the diversification effect, the S&P 500 index has the lowest average implied
volatility level at 19.73%.

The last row of Panel A in Table 2 reports correlation estimates between
weekly stock return and weekly changes in the implied volatility level. The corre-
lation estimates are all strongly negative. Among the 5 individual companies, the
most negative correlation estimate comes from the bank holding company JPM at
—0.76, which has the highest financial leverage. Conversely, even with very little
financial leverage, XOM also shows a strongly negative correlation estimate at
—0.65, highlighting the contribution of the volatility feedback effect even in the
absence of financial leverage. Finally, at —0.82, the return volatility correlation
for the equity index is more negative than for any of the selected companies, de-
spite the fact that the index has an “average” level of financial leverage. Under
our model, this stronger negative correlation for the equity index can come from
two sources. First, the volatility feedback effect is stronger for the equity index
because shocks to the index portfolio are mostly systematic due to diversification
and thus generate the strongest impact on the cost of capital and, accordingly,
market valuation. Second, the self-exciting jump behavior can also be stronger
for the index due to aggregation of cross-company propagation of large negative
shocks through structurally connected or related businesses.

Negative return volatility correlations, among other things, generate negative
skewness for the stock return distribution, which can show up in options as a
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negative implied volatility skew when the implied volatility at the same maturity
is plotted against some measure of moneyness. We construct an option-implied
volatility skew measure by taking the difference between the 3-month 25-delta
put and 25-delta call implied volatilities, in percentages of the 3-month 50-delta
call and put average implied volatility level, and scaling the percentage difference
with the standardized strike distance between the two series, approximated based
on the delta as N7'(0.75)— N~'(0.25)=1.349. This skewness measure is more
positive when the risk-neutral return distribution is more negatively skewed. Panel
B of Table 2 reports the summary statistics on this skewness measure. Among the
single names, JPM not only has the highest average implied volatility level but
also shows the strongest negative skewness, highlighting the contribution from its
large financial leverage. Conversely, the stock index shows much higher negative
skewness than any of the single names, potentially due to its stronger volatility
feedback effect and self-exciting jump behavior. Furthermore, the skew estimates
for the index stay negative for the whole sample period and show the smallest
intertemporal variation. The skew estimates for the individual stocks, however,
have larger standard deviation estimates and can switch signs over time, except
for JPM.

We also measure the correlation between weekly stock return and weekly
changes in the implied volatility skew and report the statistics in the last row
of Panel B of Table 2. The correlation estimate for the equity index is negative
at —0.10, suggesting that a downturn in the stock market is not only associated
with heightened option-implied volatility level but can also be associated with
a more negatively skewed risk-neutral return distribution. Under our model, the
self-exciting jumps can contribute to this behavior: A negative jump in the market
increases the intensity of more negative jumps to come in the future, thus raising
the negative skewness of the return distribution. By contrast, the correlation esti-
mates for the single names are all positive, suggesting that the self-exciting effect
is weaker for individual companies.

Different from the listed options, the OTC SPX option-implied volatility
quotes that we use for the equity index model estimation are in fixed time to matu-
rities and relative strikes in the percentage of the spot index level. The quotes also
cover a much wider range of maturities from 1 month to 5 years, thus allowing
us to gain a better understanding of the index option’s term structure behavior.
To capture the term structure of the implied volatility level, we take the implied
volatility level at 100% strike for each maturity and report the summary statistics
in Panel A of Table 3. The average implied volatility shows an upward-sloping
term structure pattern, starting from 19.19% at 1-month maturity to 23.52% at
5-year maturity. The upward-sloping mean term structure is often regarded as evi-
dence of the presence of the variance risk premium. The standard deviation of the
volatility series declines with the option maturity, a sign of mean reversion in the
risk-neutral volatility dynamics; however, the decline is very slow, as the implied
volatility series shows a significant amount of time-series variation even at 5-year
maturity. The last row reports the correlation between the weekly index return
and the weekly changes in each series. The correlation estimates are all strongly
negative, more so at short maturities than at long maturities. Comparing the
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TABLE 3
Term Structure of SPX Option-Implied Volatility Levels and Skews

Table 3 reports summary statistics on the Standard & Poor’s 500 index (SPX) over-the-counter (OTC) option-implied
volatility quotes at different maturities. Panel A reports the statistics on the at-the-money implied volatility quotes where
strike prices are at 100% of the spot index level. Panel B reports the statistics on the implied volatility skew, defined as
the difference between 80% and 120% strike implied volatilities, divided by the absolute difference in the corresponding
standardized moneyness measure d =In(K/S)/(IVy/T), where IV is the implied volatility at the relative strike K/S and time
to maturity =. The last row in each panel reports the correlation between the weekly index return and the corresponding
weekly changes in the implied volatility and skew series.

Maturity (months)
Statistics 1 3 6 12 24 36 48 60

Panel A. Implied Volatility Level

Mean 19.19 19.87 20.37 20.90 21.63 22.29 22.92 23.52
Median 18.31 19.26 19.83 20.66 21.39 22.05 22.64 23.28
Standard deviation 7.74 6.76 6.03 5.36 4.85 4.62 4.48 4.37
Minimum 8.46 10.43 11.09 11.88 13.04 13.85 14.54 14.90
Maximum 69.06 59.00 52.55 46.71 42.47 40.97 40.52 40.38
Correlation —-0.81 —-0.83 -0.82 -0.79 -0.73 —0.69 —0.65 —0.60
Panel B. Implied Volatility Percentage Skew

Mean 16.30 19.28 21.49 23.59 25.16 25.46 25.32 25.06
Median 16.32 19.17 21.27 23.29 24.86 25.53 25.38 24.98
Standard deviation 2.78 3.12 3.66 417 4.67 4.88 5.17 5.58
Minimum 7.85 10.69 11.32 12.82 13.96 12.88 14.40 12.34
Maximum 27.08 29.29 32.41 33.85 35.70 36.25 36.81 37.36
Correlation —0.11 —-0.34 —0.33 —0.21 —0.09 0.00 0.04 0.04

summary statistics on the 3-month OTC series with the corresponding statistics
in Panel A of Table 2 computed from listed SPX options, we observe very similar
behaviors.

From the OTC quotes at fixed relative strikes (K /.S), we also compute an im-
plied volatility skew measure by taking the difference between the 80% strike and
120% strike implied volatility, in percentage of the 100% strike implied volatility,
and scaling the difference by the absolute distance in the standardized moneyness
measure d =In(K/S)/(IV4/T), where IV denotes the implied volatility quote at
the relative strike (K /S) and time to maturity 7. Panel B of Table 3 reports the
summary statistics of the implied volatility skew at different maturities. The aver-
age skewness increases with the option maturity from 16.30% at 1-month maturity
to 25.06% at 5-year maturity, suggesting that the risk-neutral return distribution
becomes increasingly more negatively skewed at longer conditioning horizons.
The minimum skew estimates are positive across all option horizons, showing
that the risk-neutral index return distribution remains negatively skewed across all
conditioning horizons over the whole sample period. The last row reports the cor-
relation between weekly index return and weekly changes in the implied volatility
skew. Potentially due to cleaner OTC quotes and hence better skew measurements,
the correlation estimate at 3-month maturity is more negative at —0.34 than the
estimate from the listed options reported in Panel B of Table 2. As with the re-
turn correlation with the volatility level, the correlation estimates peak at 3-month
maturity and decline as the option maturity increases. The correlation becomes
virtually O after 3 years. If this negative correlation is induced by the self-exciting
behavior, the term structure pattern suggests that its impact on options is mainly
at intermediate maturities.
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D. Model Estimation and State Identification

The objective of the estimation is to identify the values of the structural pa-
rameters that govern the financial leverage and risky-asset dynamics and to extract
the levels of the three state variables (X,,v?,v;) at different time periods. The es-
timates for the structural parameters help our understanding of the dynamics and
interactions between the different risk sources, whereas the levels of the three
state variables at different sample periods shed light on the relative contribution
of each risk source at different historical times.

To estimate the model with the option observations, we cast the model into
a state-space form by treating the three state variables as hidden states and the
option observations as measurements with errors. Let V,= [)?,,vtz,vf ]T denote
the state vector at time ¢. We specify the state propagation equation based on a
Euler approximation of their statistical dynamics:

(20) Vi = fV:0)+V 08,

where ¢, denotes the standardized forecasting error vector; f(V,_;; ®) denotes the
conditional forecasts as a function of state vector V,_; and the parameter set ®,
given by

X, + X, "@x — k] Vo)A
21 f(Vt—l; 0) = k70, At + (1 —KEAI‘)U[Z_] s
K’J@JAZ""(] —K‘[]P)At)vtj_l

]T.

s

with At =7/365 denoting the weekly frequency of the data, k, = [Kxx,Kxz,Kx,
and Q,_, denotes the forecasting error covariance matrix, which is a diagonal
matrix with the three diagonal elements given by

X7 At
(22) Q1 = o At

200, 20,7
o;(v,-) v, At

The measurement equations are specified on the option observations, with
additive, normally distributed measurement errors:

(23) i = h(V;0)++VRe,

where y, denotes the time ¢ forward value of the out-of-the-money options com-
puted from the implied volatility, scaled by the Black—Scholes vega of the option,*
and & (V;; ®) denotes the corresponding model value as a function of the state vec-
tor V, and the parameter set ®. We assume that the pricing errors on the scaled
option prices are independent and identically distributed (IID) normal with zero
mean and constant variance.

Estimating the model on the OTC index options data involves 40 measure-
ment equations built on the 40 implied volatility series across 5 relative strikes at

“See, for example, Bakshi et al. (2008) for a detailed discussion on the rationale for the option
pricing transformation and scaling for model estimation.
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each maturity and 8 time to maturities. When we estimate the model on the listed
options for the 5 selected companies, the dimension of the measurement equation
varies over time as the number of option observations, as well as their relative
strikes and time to maturities, varies over time.

When the state propagation and the measurement equation are Gaussian lin-
ear, the Kalman (1960) filter provides efficient forecasts and updates on the mean
and covariance of the state vector and observations. Our state-propagation equa-
tions and measurement equations do not satisfy the Gaussian and linear condi-
tions. We use an extended version of the Kalman filter, the unscented Kalman
filter, to handle the deviations. The Internet Appendix provides the technical de-
tails on the procedure.

Although we assume IID measurement errors for model estimation, the ac-
tual pricing errors from the estimated model tend to show strong serial persistence.
Persistence in pricing errors makes economic sense. If the pricing errors are
caused by temporary supply—demand shocks, their dissipation takes time. In
general, systematic market movements tend to be more persistent than supply—
demand shocks. Thus, lower persistence for the pricing errors is an indication
of better performance for the model in separating systematic market movements
from idiosyncratic supply—demand shocks. Furthermore, because supply—demand
shocks in option contracts mainly dissipate via hedging with nearby contracts (Wu
and Zhu (2016)), the pricing errors of nearby contracts tend to show a positive
correlation, but the correlations tend to decline as the contract terms grow further
apart. We confirm these behaviors for the pricing errors from our estimated model
in the Internet Appendix.

Despite observations on pricing error persistence and cross correlation, we
maintain an I[ID measurement error structure in equation (23) for model estima-
tion. Bakshi and Wu (2010) and Bates (2000), among others, propose the use
of more general measurement error structures to accommodate these serial and
contemporaneous correlations. Our experience suggests that imposing a diagonal
measurement error variance structure for model estimation brings more numeri-
cal stability to the estimation procedure and the extracted states. The intuition is
similar in spirit to the idea of ridge regression. The Internet Appendix provides
more details on the rationale behind this choice.

Given the forecasted option prices y, and their conditional covariance ma-
trix X,,, obtained from the unscented Kalman filtering, we compute the quasi-log
likelihood value for each week’s observation on the option prices assuming nor-
mally distributed forecasting errors:

1 = 1 1
) L© = —slog[Tul-5(0=7) (Eu) (0 -F))-

We estimate the model parameters by numerically maximizing the sum of the
conditional log likelihood value on each date:

N
25 © = agmaxL(O.(y}). with LO.}L) = ) L)
) t=1

where N denotes the number of weeks in the sample.
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The model has nine parameters (p,k,,60,,0,,p,k;,0;,0,,v,) and three state
variables (X,,v”,v]) to price the equity and equity index options. The model pa-
rameters are estimated to match the average shape of the option-implied volatility
surfaces via the measurement in equation (23), with the three states capturing the
time variation of the volatility surface. In addition, the model has six parame-
ters (d,Kxx,Kxz,Kxs,k5,kF) to control the statistical dynamics, which dictate the
state propagation equation in (20) and are hence identified by the time-series be-
havior of the option-implied volatility series. The differences between (k) ,«%)
and (k,,«,) determine the market prices of the diffusion and jump variance risk
(y,y”), respectively.

IV. Economic Channels of Equity and Equity Index Variation

With the model estimated on both the index options and individual stock
options for the 5 selected companies, we first analyze the dynamic behaviors of
the three economic channels at the aggregate level and then examine how they
show up differently in different types of companies.

A. Aggregate Market Behaviors Extracted from Equity Index Options

Table 4 reports the model parameter estimates and their standard errors (in
parentheses) for the S&P 500 index. For ease of discussion, we group the pa-
rameters into three panels, with each describing the dynamics of one source of
volatility risk. Given the parsimony of the specification and the large amount of
data used for the model estimation, all parameters are estimated with strong sta-
tistical significance.

1. Disentangling Different Sources of Stochastic Volatility and Skew

Our model allows three distinct channels of volatility variation: i) the varia-
tion of the standardized ratio of equity to risky assets, ii) the variation of diffusion
risk in the risky-asset portfolio, and iii) the variation of discontinuous risk in the

TABLE 4
Maximum Likelihood Estimates of Model Parameters for the S&P 500 Index

Table 4 reports the maximum likelihood estimates of the model parameters and their standard errors (in parentheses) on
the Standard & Poor’s (S&P) 500 index. The parameters are grouped into three panels, each describing the dynamics of
one source of volatility risk.

Panel A. Leverage Effect

Estimates P Kxx Kxz KxJ ax
Coefficient 3.4922 0.0000 17.4087 —-0.0743 0.0009
Standard error (0.0084) (0.0000) (0.0537) (0.0000) (0.0000)

Panel B. Volatility Feedback

Estimates P Kz 67 oz yY
Coefficient —0.8879 3.0125 0.0251 0.5979 —17.8608
Standard error (0.0023) (0.0089) (0.0000) (0.0019) (0.0731)

Panel C. Self-Exciting Market Disruptions

Estimates vy Ky Kki0y 9y )
Coefficient 0.1951 0.0010 0.1155 5.6460 0.4513
Standard error (0.0000) (0.0000) (0.0000) (0.0107) (0.0006)
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aggregate market. The instantaneous return variance contributions from the three
sources are X; -, v7, and v2v/, respectively. Based on the sample averages of the
filtered state values and the parameter estimates on (p,v,), we compute the aver-
age return variance from each source at 0.0115, 0.0257, and 0.0168, respectively,
or at 10.73%, 16.04%, and 12.96% in volatility terms, respectively. Therefore, all
three sources contribute to a significant portion of the index return variance.

The three sources of stochastic volatility interact dynamically with the index
return and contribute to the implied volatility skew at different maturity ranges.
The financial leverage effect is captured by the power coefficient p. A coeffi-
cient of 0 would imply zero dependence of return variance on the financial lever-
age. The larger the estimate, the stronger the leverage effect. The estimate for the
power coefficient is 3.4922, suggesting a strong dependence of the index return
variance on the financial leverage level.

The volatility feedback effect is captured through the instantaneous correla-
tion (p) between the diffusion movement in the asset value and its variance rate.
The estimate for the correlation is highly negative at —0.8879, suggesting that
the volatility feedback effect is very strong at the market level. This feedback ef-
fect can generate a negative implied volatility skew at intermediate maturities. The
variance rate v/ is modeled as a mean-reverting square-root process, with «, mea-
suring the risk-neutral mean-reverting speed, 8, the risk-neutral long-run mean,
and o the volatility of the volatility coefficient. The estimate of x, =3.0125 in-
dicates that this variance-rate process is highly mean-reverting under the risk-
neutral measure. As a result, shocks on the variance rate v” dissipate quickly as
the option maturity increases. The mean estimate of 6, =0.0251 implies a return
volatility contribution of /8, =15.83% under the risk-neutral measure from this
particular variance rate. The estimate for the volatility of the volatility coefficient
is at 0, =0.5979, which contributes to the curvature of the implied volatility smile
at intermediate maturities.

Parameter estimates for the self-exciting downside jump dynamics are sum-
marized in Panel C of Table 4. The average size of the downside jump under
the risk-neutral measure is governed by v;, which is estimated to be at 19.51%.
The negative jump directly induces a negative skewness in the risk-neutral return
distribution and, accordingly, a negative implied volatility skew at short maturi-
ties. The self-exciting behavior of the downside jump extends its impact to longer
option maturities. The jump intensity v/ shows little mean reversion under the
risk-neutral measure because the mean-reversion speed estimate is very small at
k;=0.001. The slow mean reversion helps sustain the jump effect to long option
maturities. The degree of self-excitement is measured by o, which measures the
magnitude of the intensity of the upside jump per downside jump in the asset re-
turn. The large estimate of o, =5.6460 indicates that a downside jump in the asset
return evokes a very large upside jump in the jump intensity itself, highlighting
the significance of the self-exciting behavior.

2. Dissecting the Sample Variation of Different Sources of Volatility Risks

Figure 2 plots the time series of the three state variables extracted from the
equity index options data. The standardized financial leverage (X;) contributes
to the return variance through the transformed variance rate v} = X, *”, which is
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FIGURE 2
Time Series of the Three Sources of S&P 500 Index Return Variance

In Figure 2, the time series of the three variance rates (v}, vZ, v{’) are extracted from the observed Standard & Poor’s
(S&P) 500 index option-implied volatility quotes using the unscented Kalman filter under the estimated model parameters.
Each graph is for a single variance rate.
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plotted in Graph A. The time series for the diffusion variance rate v/ and the jump
intensity v’ are plotted in Graphs B and C, respectively.

Inspecting the time-series plots, we can trace various historical events to vari-
ations in the three variance rates. For example, the 1997 Asian crises were associ-
ated with a moderate spike in the diffusion variance rate (v/) and a small spike in
the jump arrival rate v/, followed by a downward drop in the financial-leverage-
induced variance rate v¥. These variations suggest that the Asian crises increased
perceived business risks in the United States in terms of both diffusion-type fluc-
tuations and downside jump risks. The heightened business risks were followed
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by an immediate deleveraging process that sharply lowered the level of financial
leverage and its associated volatility contribution.

The hedge fund crisis in late 1998 was also associated with a moderate
spike in the diffusion variance rate, but the associated spike in the jump inten-
sity v/ was much larger, surpassed only by the spike during the 2008 financial
meltdown, suggesting that market participants were highly concerned with the
potential impact of the hedge fund crisis on the U.S. financial system. The 1998
crisis was followed by a deleveraging process that resulted in another sharp drop
in the leverage-induced variance rate v*. After this, the leverage-induced variance
rate increased steadily and reached its maximum during mid-1999. This period of
increasing leverage was associated with declining perceived business risks of both
types (v7 and v/).

The burst of the NASDAQ bubble in early 2000 started a protracted delever-
aging process as vX started a slow downward trend. This trend was reverted in
mid-2007. The 2003 economic recession induced heightened levels for the diffu-
sion variance rate, but the market showed only moderate concern for downside
jump risk. The jump-risk concern stayed low during the extended period from
mid-2003 to 2007.

The 2008-2009 financial meltdown drew the largest spikes for both the dif-
fusion variance rate v7 and the jump intensity v’. The equity market went down so
much that despite market-wide deleveraging efforts, the aggregate financial lever-
age stayed high. The market experienced jitters in 2010 and 2011, amid European
debt crisis, before it finally started to calm down at the end of the sample period.

The time-series analysis shows that volatility variations at different sample
periods come from different risk sources. The 2003 recession is mostly associated
with an increase in diffusion-type economic uncertainty, whereas the 1998 hedge
fund crisis is perceived as having the potential of rocking the stability of the fi-
nancial system, as shown by the large spike in the jump intensity. The 2008—-2009
financial meltdown, however, induces the largest spikes in both types of varia-
tions. Furthermore, market-wide deleveraging often follows when the perceived
downside jump risk increases.

3. Differentiating Volatility Responses to Different Types of Economic Shocks

To understand how the volatility surface responds differently to shocks from
the three risk sources, we shock each of the three state variables ()N( ‘s vf, v,’ ) from
its mean level to the 10th percentile and 90th percentile, respectively, while hold-
ing the other two at their respective mean levels. Figure 3 plots the responses
of the volatility skew and term structure to shocks from the three risk sources,
with one source in each graph. In each graph, the left panel plots the response of
the 1-month implied volatility skew, and the right panel plots the response of the
at-the-money (100% relative strike) implied volatility term structure. The solid
lines represent the model-generated implied volatility values when evaluated at
the sample averages of the state variables, the dashed lines represent the model-
generated values when evaluated at the 90th percentile of the state variable, and
the dash-dotted lines represent responses to a shift to the 10th percentile for the
state variable.
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FIGURE 3
Shocks and Implied Volatility Responses on S&P 500 Index Options

The solid lines in Figure 3 represent implied volatilities generated from the estimated model on the Standard & Poor’s
(S&P) 500 index evaluated at the sample average of the state variables. The dashed lines are obtained by setting one
state variable to its 90th percentile while holding the other two to their averages. The dashed-dotted lines are obtained
by setting one state variable to its 10th percentile while holding the other two to their averages.
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When we shock the standardized equity-to-asset ratio X, from its sample
average to its 90th-percentile value, financial leverage is reduced, and its return
variance contribution (X; ) is reduced accordingly. Thus, the dashed lines in
Graph A of Figure 3 are below the corresponding solid lines. When the equity-to-
asset ratio is reduced to its 10th-percentile value, financial leverage increases,
and implied volatilities (dash-dotted lines) increase, moving above the solid
line. The left panel shows that shocks to X, affect the implied volatilities more
at-the-money than out-of-the-money. As a result, a positive shock to financial
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leverage increases the at-the-money implied volatility level while reducing the
implied volatility skew. The right panel shows that the responses of the at-the-
money implied volatilities to financial leverage variation are relatively uniform
across maturities. A shock in X, induces a near-parallel shift in the at-the-money
implied volatility term structure.

When the diffusion variance rate v? experiences a positive shock, its variance
contribution increases. In response, option-implied volatilities move up, but the
implied volatility skew declines due to the increase of the diffusion component
relative to the jump component. This effect shows up clearly in the left panel of
Graph B in Figure 3, where the dashed line is above the solid line but becomes
slightly less skewed. A negative shock, conversely, reduces the volatility level
but increases the steepness of the skew. The term structure plot on the right side
highlights the transient nature of v? due to its high risk-neutral mean-reversion
speed (kz=3.0125). Shocks to v” induce large responses at short maturities, but
the responses decline quickly as the option maturity increases.

When the arrival rate of the downside jump v experiences a positive shock,
return variance increases from the contribution of the jump component. Further-
more, a positive shock to v/ also increases the negative skewness of the in-
stantaneous return distribution. Thus, as shown in the left panel of Graph C in
Figure 3, a positive shock to v/ not only raises the implied volatility level but
also steepens the negative skew by raising the low-strike implied volatility more
than it raises the high-strike implied volatility. The right panel in Graph C shows
a hump-shaped term structure effect, where the response is the largest at 3- to
6-month maturities.

The response analysis shows that all three sources of variation contribute
to the return variance, but their contributions are quite different across different
strikes and maturities. Along the strike dimension, financial leverage (X,) vari-
ation affects at-the-money volatility more than out-of-the-money volatility, and
diffusion variance (v/) variation affects volatility at high strikes more than at low
strikes, but the jump-intensity (v;') variation affects volatility at low strikes more
than at high strikes. Across maturities, shocks from the diffusion variance rate
are the most transient, and thus their impacts are mostly on short-term options;
by contrast, both the self-exciting downside jumps and the leverage effect have
long-lasting impacts at both short and long maturities. These different response
patterns allow us to disentangle the three sources of risk by using options across
a wide span of strikes and maturities.

Linking the shock and response plots in Figure 3 to the index option sum-
mary behaviors in Table 3, we note that all three sources of variation contribute
to the negative correlation between the index return and changes in the implied
volatility level. The fact that the correlation declines with increasing option ma-
turity highlights the contribution of the transient volatility feedback effect. In
contrast, the self-exciting jump behavior contributes to the negative correlation
between the index return and changes in the implied volatility skew. In partic-
ular, the hump-shaped correlation term structure pattern is consistent with the
similar term structure pattern for the response function to the self-exciting risk
factor v/,
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4. Decomposing Different Sources of Equity Index Variance Risk Premium

Several studies (e.g., Bakshi and Kapadia (2003a), (2003b), Carr and Wu
(2009)) have documented strongly negative variance risk premiums on stock in-
dexes. Several ensuing studies propose explanations for the negative variance risk
premium (e.g., Bakshi and Madan (2006), Drechsler and Yaron (2011)) or explore
the variance risk premium as a predictor for other financial behaviors (e.g., Boller-
slev et al. (2011), Bollerslev et al. (2009), and Zhou (2010)). Missing from these
studies is the realization that variance risk and hence the variance risk premium
can come from several distinct sources. Our model decomposes the index return
into three risk sources (W,, Z,, J,), all contributing to the stochastic return variance
and thus the return variance risk premium. Based on the parameter estimates and
the extracted state variables, we calculate the average contribution of each risk
source to the variance risk premium.

The standardized financial leverage factor X, generates an instantaneous
index return variance of v} =X, . The instantaneous risk-neutral drift of v
is n()?=p2p+1)(v})*, and the corresponding statistical drift is u(v})"=
pQ2p+ D) —2pw})*(dy —Kxx X, —Kxzv* —Kx,v]). The sample averages
of the two drifts are 0.0050 and 0.0089, respectively, generating a slightly
positive average risk premium of 0.0039. Thus, the observed negative vari-
ance risk premium does not come from the variance risk induced by financial
leverage variations.

The diffusive component of the asset return contributes to the instantaneous
index return variance by vZ, which follows a square-root diffusion dynamics, with
the instantaneous risk premium on v* given by y?o,v?. With a negative estimate
on the market price y’=—17.8608, the instantaneous risk premium averages at
—0.2746.

Finally, the jump component of the asset return contributes to the instan-
taneous index return variance by (v,)*v; under the risk-neutral measure and by
(v")?v/ under the statistical measure. The difference is induced by the market
price of jump risk y”7, which is estimated at ¥’ =0.4513. The sample averages of
the two variance series are 0.0168 (12.96% in volatility term) and 0.0142 (11.91%
in volatility term), respectively, thus generating a negative variance risk premium
of —0.0026. Furthermore, the market price of the jump risk also induces a differ-
ence between the statistical and risk-neutral drifts of the jump-intensity process
v/ at o, (v¥ —v,)v/, which averages at —0.0393.

With the results taken together, our model estimation confirms the existence
of a negative variance risk premium on the equity index, but it also highlights its
complex composition. The instantaneous variance risk premium is a combined re-
sult of four different types of risk premiums. When one investigates the variance
risk premium over different investment horizons and using different variance in-
struments (e.g., 1-month investment in 1-month variance swap as in Carr and Wu
(2009) or 2-month investment in 2- to 12-month variance swaps as in Egloff, Leip-
pold, and Wu (2010)), these four sources of instantaneous variance risk premium
further interact with the corresponding variance dynamics to determine the ex-
pected excess returns. Because the diffusion variance rate v/ is more transient
than the jump arrival rate v/, we expect the risk premium from the diffusion

t
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variance rate to dominate investments on short-term variance swap contracts. By
contrast, excess returns on long-term variance swap contracts can be dominated
by risk premiums from the persistent jump intensity v/ and the mean-repelling fi-
nancial leverage variation X,. This decomposition is consistent with the empirical
findings of Egloff et al. (2010) that short-term variance swap contracts generate
more negative risk premiums than do long-term variance swap contracts.

5. Detecting Aggregate Capital Structure Behaviors from Equity Index Options

The model uses four parameters to capture how the standardized equity-to-
asset ratio X, responds to the levels of financial leverage and the two types of
business risks, the diffusion risk v? and the downside jump risk v;/. Parameter kKxx
measures the dependence of the capital structure decision on the current leverage
level. A large positive estimate Ky x would suggest mean-reverting behavior in cap-
ital structure decisions, as proposed by, for example, Collin-Dufresne and Gold-
stein (2001). The maximum likelihood estimate for Ky is virtually 0, suggesting
that for the aggregate market, changes in the standardized financial leverage are
largely independent of its current level.

Parameter Ky, captures how the capital structure target responds to diffusion
business risk v7. Interestingly, the estimate is strongly positive at Kxz=17.4087,
suggesting that when the diffusion-type fluctuations increase, X, declines, and
hence the financial leverage actually increases. Conventional wisdom holds that
one wants to reduce financial leverage to mitigate risk when business risk in-
creases; however, our estimation suggests that for the aggregate market, financial
leverage does not decrease but rather increases when diffusion-type business risk
increases.

On the other hand, the capital structure response to jump business risk is es-
timated to be negative at Ky, =—0.0743. The market reduces financial leverage
when the expected downside jump risk increases but increases financial leverage
when the diffusion risk increases. Therefore, the main concern with using finan-
cial leverage is not normal daily business fluctuations but instead unexpected,
large downside jumps that can lead to a self-exciting spiral.

Traditional corporate finance often links financial leverage targets to the risk-
iness of the underlying business. Our model decomposes business risk into two
types and allows the financial leverage decision to respond differently to the two
types of business risk. Model estimation shows that the aggregate financial lever-
age in the U.S. market does not always decline with increased business risk.
Instead, financial leverage can actually increase with increasing business risk if
the risk is driven by small, diffusive market movements. Only when the perceived
risk of self-exciting market disruptions increases does the market become truly
concerned and start the deleveraging process.

B. Cross-Sectional Variation in Individual Stock Volatility Dynamics

Table 5 reports the model parameter estimates and standard errors when the
model is applied to match individual stock options on the 5 selected companies.
The cross-sectional variation in the parameter estimates highlight how the three
economic channels show up differently for different types of companies.
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TABLE 5
Maximum Likelihood Estimates of Model Parameters for Selected Companies

Table 5 reports the maximum likelihood estimates of the model parameters and their standard errors (in parentheses) for
selected companies, using options data on each company’s stock.

Coef. GE WMT JPM DUK XOM

Panel A. Leverage Effect

o 3.8216 26433 1.6368 1.1315 05777
(0.0011) (0.0099) (0.0008) (0.0029) (0.0008)
Ko 0.0002 0.0617 0.7465 0.0000 0.0038
(0.0028) (0.0011) (0.0118) (0.0000) (0.0029)
Kz 18.5264 —2.1296 15.6550 20.2717 4.5964
(0.0331) (0.2682) (0.0059) (2.5409) (1.2206)
Kx —0.0901 —0.0976 -0.1386 ~0.0917 -0.0983
(0.0000) (0.0319) (0.0420) (0.2292) (0.0634)
ax 0.0003 0.0000 0.0000 0.0000 0.0026
(0.0013) (0.0000) (0.0000) (0.0000) (0.0001)

Panel B. Volatility Feedback

» —0.2333 —0.4619 —0.4542 —0.3610 —0.9637
(0.0029) (0.0027) (0.0012) (0.0044) (0.0010)
Kz 3.6640 0.2143 1.4070 7.2309 6.6415
(0.0147) (0.0131) (0.0023) (0.0402) (0.0198)
0, 0.0286 0.0793 0.0485 0.0174 0.0091
(0.0001) (0.0002) (0.0001) (0.0002) (0.0000)
oz 0.6285 0.2204 0.5541 1.0610 0.9138
(0.0033) (0.0029) (0.0013) (0.0084) (0.0011)
» —15.2698 —15.4399 ~6.9716 ~0.0159 —11.8360
(0.2768) (0.4942) (0.1438) (0.2696) (0.0495)

Panel C. Self-Exciting Market Disruptions

v 0.1728 0.2581 0.5043 0.3885 0.2856
(0.0003) (0.0003) (0.0000) (0.0000) (0.0000)
Ky 0.0008 0.0077 0.0004 0.0000 0.0023
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Kyby 0.1055 0.1926 0.2797 0.2149 0.4811
(0.0002) (0.0028) (0.0008) (0.0025) (0.0007)
o 50776 29.2038 18.9226 12.3199 19.8787
(0.0290) (0.0412) (0.0016) (0.0024) (0.0002)
v 0.4565 0.1073 0.7829 2.3948 0.3964
(0.0022) (0.0100) (0.0030) (0.1229) (0.0034)

1. Cross-Sectional Variation of Capital Structure Decisions and the Leverage
Effect

From the estimates on the leverage effect coefficient p in Panel A of Table 5,
we observe that the financial leverage effect is the strongest for the manufacturing
company GE, with p=3.8216. The leverage effect remains strong for the retail
company WMT at p=2.6433 but is markedly weaker for the bank holding com-
pany JPM at p=1.6368. Among the three companies, JPM has the highest finan-
cial leverage but the lowest leverage effect. Manufacturing companies tend to have
the same debt for a long period of time, without active rebalancing on their capi-
tal structures. As a result, their financial leverage tends to vary passively with the
stock price fluctuation, generating the classic leverage effect as described by Black
(1976). By contrast, financial firms tend to actively manage their capital structures
according to changes in market conditions. Bank holding companies also need to
maintain a certain level of financial leverage to satisfy regulatory requirements.
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These active financial leverage management practices mitigate Black’s leverage
effect.

The leverage effect is even weaker for the utility company DUK at p=
1.1315. Given the regulated business, utility companies tend to have stable profit
streams and stable stock prices. The financial leverage variation is small as a
result. The weakest financial leverage effect comes from XOM, which does not
have much debt to begin with.

The 5 companies also show distinct behaviors in terms of how they vary
their financial leverage according to risk conditions. Among the 5 companies, the
bank holding company JPM is the only one that shows strong mean-reverting
behavior, with xyy =0.7465, consistent with regulatory requirements on capital
ratio targets.

Four out of the 5 companies increase their financial leverage when the diffu-
sion risk increases, with large positive estimates on .. The only exception is the
noncyclical company WMT, with ky, = —2.2196. The different estimates suggest
that it is possible that companies alter their financial leverage not only based on
their own firm-specific situations but also with general market conditions.

Conversely, all 5 companies generate negative estimates for ky,, suggest-
ing that they all reduce their financial leverage when the perceived crash risk in-
creases. This response is particularly strong for the bank holding company JPM.
Thus, reducing leverage in the presence of increased crash risk is not only a mar-
ket behavior but is also applicable to the situation of each individual company.

2. Cross-Sectional Variation of Volatility Feedback and Self-Exciting Behaviors

Panel B of Table 5 reports parameter estimates related to the volatility feed-
back effect and the diffusion variance dynamics. The correlation coefficient p
captures the volatility feedback effect. The correlation estimates for all 5 compa-
nies are less negative than that for the equity index, confirming our argument that
the volatility feedback effect is stronger for the equity index than for an average
individual company due to the effect of diversification. Only systematic shocks
induce changes in the cost of capital and generate the volatility feedback effect.
Although shocks to the equity index are mostly systematic, idiosyncratic shocks
to individual companies do not induce the feedback effect. The different degrees
of the volatility feedback effect from different types of companies highlight their
different contributions to the market risk. Among the 5 selected companies, the
correlation estimate is the most negative, at —0.9637, for the energy company
XOM, suggesting that shocks to energy can have reverberating effects on the ag-
gregate economy.

The diffusion variance dynamics also show cross-sectional variation. Among
the 5 companies, the diffusion variance for the noncyclical company WMT shows
the most risk-neutral persistence with the smallest «, estimate, at 0.2143, and the
smallest instantaneous variation with the smallest o, estimate, at 0.2204.

Panel C of Table 5 reports the parameter estimates that govern the self-
exciting market disruptions. Although we regard the self-exciting behavior as an
aggregate market behavior, its effect shows up in all 5 selected individual com-
panies. The estimates for the average crash size v, range from 17.28% for GE to
as high as 50.43% for JPM. The estimates for the degree of self-excitement o,
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are also very large for all 5 companies, ranging from 5.0776 for GE to 29.2038
for WMT. As is the case for the stock index, the estimates for the risk-neutral
mean-reversion speed «; are close to 0 for all 5 companies. The near-zero mean-
reversion estimates help propagate the effect of the self-exciting crash risk to long
option maturities.

C. Comparing Option-Implied Financial Leverage to Accounting
Measures

The model decomposes equity variation into variations in financial leverage
and asset value. With options but without actual financial leverage data, the es-
timation cannot fully identify the equity-to-asset ratio X, and can identify only
a standardized version of it, which standardizes the equity-to-asset ratio by its
volatility scale 8, i, =X,/8"?. To examine how much we can infer about the
actual financial leverage variation from options data, we compare the X, time se-
ries extracted from stock and stock index options to alternative financial leverage
measures computed from accounting and financial data.

Table 1 computes three alternative measures of financial leverage based on
accounting and financial data, with A; measuring X using book values of total
debt and total asset, A, measuring X using book values of total debt and mar-
ket capitalization, and A; proxying a standardized version of X using Merton’s
(1974) distance to default measure. Table 6 reports the correlation estimates, both
in levels (Panel A) and in annual changes (Panel B), between the option-implied
X series and the three alternative accounting measures A;—A; for each of the 5
selected companies and the S&P 500 index. The last column reports the average
correlation across the 5 companies and the index.

The average correlation between X and A, is positive but small at 11% both
in levels and in annual changes. On levels, the correlation estimates are posi-
tive for GE, WMT, and XOM; negative for DUK; and virtually O for JPM and
the index. On annual changes, the correlation estimates are all positive except
for DUK. The low and sometimes negative correlation estimates suggest that

TABLE 6
Linking Option-Implied Financial Leverage to Alternative Accounting Measures

Table 6 reports the correlation between the option-implied standardized equity-to-asset ratio measure X and three alter-
native accounting measures, A;—As, both in levels (Panel A) and in annual changes (Panel B). Measure A; approximates
X using book values of total debt and total assets, A, approximates X using book values of total debt and market
capitalization, and A; proxies the standardized ratio X with Merton’s distance-to-default measure. The last column re-
ports the average of the correlation estimates across the 5 selected companies and the Standard & Poor’s (S&P) 500
index.

Statistics

Measures GE WMT JPM DUK XOM SPX Average

Panel A. Correlation between X and Alternative Accounting Measures

A 0.19 0.47 0.04 —-0.28 0.26 -0.02 0.1
A 0.34 0.26 0.45 —0.00 0.01 -0.12 0.16
As 0.59 0.23 0.78 0.77 0.68 0.65 0.62

Panel B. Correlation between Annual Changes in X and Alternative Accounting Measures

Ay 0.07 0.52 0.04 -0.19 0.15 0.07 0.11
A 0.19 0.32 0.42 0.14 0.10 0.08 0.21
As 0.34 0.33 0.51 0.53 0.61 0.46 0.46
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the option-implied X series do not line up well with this book-value leverage
measure.

When we use the book value of total debt but the market value of equity
to define the second measure A,, the average correlation becomes higher at 16%
on levels and 21% on annual changes. In particular, the correlation estimates on
annual changes become universally positive for all 5 companies and the index,
suggesting that option-implied leverage is closer to leverage measures defined
with market values of equity.

Finally, in A;, we use Merton’s (1974) distance-to-default measure as a proxy
for the standardized leverage measure that is adjusted for volatility. As Table 6
shows, this adjustment makes a big difference in increasing its correlation with
the option-implied series. The correlation estimates are positive for all 5 compa-
nies and the index, both on levels and on annual changes. The correlation esti-
mates average at 62% on levels and 46% on annual changes. The option-implied
series X is a standardized leverage measure that adjusts for its volatility. When the
volatility varies over time, the time variation in the scaling can reduce the correla-
tion between the X and unadjusted measures such as A; and A,. The much higher
correlation estimates with the standardized measure A; suggest that the volatil-
ity scale adjustment is important in lining up the accounting- and option-implied
leverage measures.

Figure 4 compares the time series of the standardized equity-to-asset ratio
X extracted from options (in solid line) to the time series of the three alternative
measures A; (dotted line), A, (dash—dottgd line), and A; (dashed line), all rescaled
to match the average level and scale of X. Each panel plots the time series for one
company, with the last panel for the S&P 500 index.

For GE, the option-implied series show some variations in the early part of
the sample that are not matched by the alternative measures, but all measures
reveal a gradual build-up of financial leverage leading to the 2008 financial crisis
and a gradual deleverage process since then.

For WMT, the plot shows that WMT took on additional debt in mid-1999,
leading to a sudden drop in both the option-implied measure X and the three al-
ternative accounting measures. The book-value-based A; measure shows the most
sudden drop, whereas the distance-to-default measure A; shows only a gradual
decline due to interactions with volatility. On the other hand, the plateaus around
2006 for both X and A; are potentially driven more by a decline in volatility than
by actual raw accounting leverage change.

For JPM, the different financial leverage measures share a common cycle of
levering up before a recession or crisis and deleveraging right after, highlighting
the more active capital structure management behavior of the bank. Among the
different lines, the book-valued-based A; measure is somewhat lagged behind
other market-based measures.

A somewhat similar cycle also shows up for DUK, except that the recent
deleveraging process shows up only in the two standardized measures X and A,
but not much in A; and A,. For XOM, because the actual leverage is very low,
the option-implied standardized equity-to-asset ratio is much higher than that for
other companies. Furthermore, because the time-series variations of the two raw
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FIGURE 4
Comparing Option-Implied Financial Leverage to Alternative Accounting Measures

Each graph in Figure 4 compares the time series of the standardized equity-to-asset ratio X; extracted from options (solid
line) to three alternative accounting measures: A; (dotted line) using book value of total debt and total assets, A, (dash-
dotted line) using book value of total debt and market capitalization, and A; (dashed line) using Merton’s standardized
distance-to-default measure.
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leverage measures A; and A, are small, the variations of the two standardized
measures X and A, may reflect more variations in volatilities.

For the equity index in the last panel, the two raw leverage measures A; and
A, show little variation in the early 2000s but show a build-up of financial leverage
leading to the 2008 financial crisis, and then a prolonged deleveraging process
after the crisis. The two standardized measures also show similar variations. In
addition, the two standardized measures go up between 2004 and 2007, whereas
the two raw measures stay flat, potentially due to the effect of muted volatility
during this quiet period.

There are many reasons that the standardized leverage ratio extracted from
options can deviate from the various accounting measures. On the one hand, X,
extracted from options can proxy option movements not related to financial
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leverage or its volatility. On the other hand, the accounting measures may not
truly reflect a company’s financial leverage, especially for companies with com-
plex capital structures. Our preliminary analysis, however, suggests that using
market values of equity and standardizing the leverage by historical volatility can
generate standardized leverage measures that match the option-implied leverage
series reasonably well. This observation provides future direction on how account-
ing leverage measures can be incorporated into option pricing. In particular, the
option price behavior does not depend directly on the equity or equity index level,
as suggested by the local volatility model of Dupire (1994), nor does it depend
directly on the raw debt-to-equity ratio; instead, it reflects the risk induced by
financial leverage and its interaction with business risk variation.

V. Concluding Remarks

The variation of equity index volatility and its interaction with the index
return can come from three distinct economic channels. First, the index return
volatility increases with financial leverage, the variation of which is dictated by
the market’s aggregate capital structure decisions. Second, positive shocks to
systematic risk increase the cost of capital and reduce the valuation of future
cash flows, generating a negative correlation between the market’s return and its
volatility, regardless of the financial leverage level. Finally, large negative market
disruptions show self-exciting behaviors. This article develops an equity index
dynamic that accommodates all three sources of volatility variation and proposes
to disentangle the three sources of variation through the variation in equity index
options across a wide range of strikes and maturities. Model estimation shows that
the volatility feedback effect reveals itself mainly in the variations of short-term
options, the self-exciting behavior affects both short-term and long-term option
variations, and the financial leverage variation has its largest impact on long-dated
options.

The disentangling of the volatility variation reveals economic insights that
one would not be able to obtain from the estimation of a standard reduced-form
stochastic volatility model. In particular, the model estimation reveals how the
market capital structure responds to different types of risks. Contrary to conven-
tional wisdom, financial leverage does not always decline with increased business
risk. Instead, companies respond differently to different types of business risk. The
financial leverage can increase with increasing business risk if the risk increase is
due to small, diffusive market movements. Only when the self-exciting downside
jump risk increases do companies become concerned and start the deleveraging
process.

When applied to individual companies, the three economic channels show
up differently and to different degrees in companies with different business types
and different capital structure behaviors. The leverage effect’s contribution to the
negative return volatility relation is stronger for companies with passive capital
structure behaviors and weaker for bank holding companies that actively man-
age their capital structures to satisfy regulatory requirements. The volatility feed-
back effect is stronger for companies that experience mostly systematic shocks
or shocks that generate reverberating impacts on the aggregate economy, and it is
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weaker for companies with mostly idiosyncratic shocks. Finally, the self-exciting
behavior is more of an aggregate behavior due to cross-company propagation of
negative shocks through structurally connected or related businesses.

Although we estimate the model using only options, the standardized finan-
cial leverage series extracted from the options data do show co-movements with
various accounting financial leverage measures, especially when we standard-
ize the leverage measures by volatility, as in the distance-to-default measure of
Merton (1974). Future research could explore incorporating financial leverage
measures in model estimation to achieve better separation of leverage varia-
tion and business risk fluctuation. The analysis could also be expanded to the
large cross section of individual companies both theoretically and empirically.
Theoretically, both systematic and idiosyncratic shocks could be incorporated in
the modeling of individual companies. Empirically, the cross-sectional variation
of stock option behaviors could be linked to differences in firm characteristics.
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