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Vanilla (standard European) options are actively traded on many underlying asset classes,
such as equities, commodities and foreign exchange (FX). The market quotes for these
options are typically used by exotic options traders to calibrate the parameters of the
(risk-neutral) stochastic process for the underlying asset. Barrier options, of many different
types, are also widely traded in all these markets but one important feature of the FX options
markets is that barrier options, especially double-no-touch (DNT) options, are now so actively
traded that they are no longer considered, in any way, exotic options. Instead, traders would,
in principle, like to use them as instruments to which they can calibrate their model. The
desirability of doing this has been highlighted by talks at practitioner conferences but, to our
best knowledge (at least within the realm of the published literature), there have been no
models which are specifically designed to cater for this. In this paper, we introduce such a
model. It allows for calibration in a two-stage process. The first stage fits to DNT options
(or other types of double barrier options). The second stage fits to vanilla options. The key to
this is to assume that the dynamics of the spot FX rate are of one type before the first exit time
from a ‘corridor’ region but are allowed to be of a different type after the first exit time. The
model allows for jumps (either finite activity or infinite activity) and also for stochastic
volatility. Hence, not only can it give a good fit to the market prices of options, it can also
allow for realistic dynamics of the underlying FX rate and realistic future volatility smiles and
skews. En route, we significantly extend existing results in the literature by providing
closed-form (up to Laplace inversion) expressions for the prices of several types of barrier
options as well as results related to the distribution of first passage times and of the
‘overshoot’.

Keywords: Lévy processes; Option pricing; Barrier options; Continuous time finance; Credit
models; Currency derivatives; Pricing of derivatives securities; Quantitative finance

1. Introduction

The option pricing framework of Black and Scholes

(1973) and Merton (1973) was a major breakthrough and,

when introduced, gained acceptance by market partici-

pants as the way to price and hedge options. However, it

cannot account for the effect of volatility smiles and

skews. More recently, models have been introduced which

can account for or be calibrated to volatility smiles or

skews observed in the market prices of vanilla (standard

European) options. These include local volatility models

(Derman and Kani 1994, Dupire 1994), stochastic vola-

tility models (e.g. Heston 1993), models with Poisson

jump processes (e.g. Merton 1976, Bates 1996, Kou 2002)

and models based on general classes of (possibly

time-changed) Lévy processes (Madan et al. 1998,

Barndorff-Nielsen and Shephard 2001, Carr et al. 2002,

2003, Schoutens 2003, Carr and Wu 2007). These models

can all be calibrated to the volatility smiles or skews

observed in the vanilla options markets.
One of the largest options markets in the world is the

market for foreign exchange (FX) options. This market is

very active and liquid. One feature of this market is that,

not only is there a very active market for vanilla options

but there is also simultaneously an active market for

barrier options. Many different types of barrier options

are traded (e.g. partial, window, double knockout calls

and puts, with or without rebates) but, by far, the

most actively traded type of barrier option, in the*Corresponding author. Email: johnc2205@yahoo.com
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inter-bank and inter-dealer broker markets, is the
double-no-touch (henceforth DNT) option. Thisy is an
exotic option which pays one unit of domestic currency if
the spot FX rate (quoted as the number of units of
domestic currency per unit of foreign currency), before
maturity, never trades equal to or above an upper barrier
and never trades equal to or below a lower barrier or it
pays zero otherwise.

It is well known (Dupire 1994) that the prices of vanilla
options only depend upon the terminal distribution of the
spot FX rate. On the other hand, the prices of DNT
options depend upon the full distribution of spot FX rates
at all times up to and including maturity. Hence, market
prices of DNT options contain finer information about
future spot FX rates (in the risk-neutral pricing measure).
In addition, since DNT options are so actively traded,
traders would like to be able to calibrate a model to the
prices of, not only, vanilla options, but also DNT
options—simply in order to closely match market
prices. The desirability of doing so has been highlighted
at practitioner conferences (Afaf 2007, Crosby 2007,
Kainth 2007) but it is easier said than done and, to our
best knowledge, no existing models in the literature are
specifically designed to facilitate this. This is the purpose
of the present paper.

The reason why calibrating models to the prices of both
DNT options and vanilla options is easier said than done
is due to the following well-known (Dupire 1994,
Schoutens et al. 2005) fact: It is possible to have more
than one model which can be calibrated to the prices of
vanilla options which will then give rise to different prices
for exotic options. For example, one could calibrate (a) a
Dupire (1994) local volatility model and (b) a Bates (1996)
model (stochastic volatility and jumps, perhaps, making
some parameters time-dependent) to the market prices of
vanilla options. However, one would then get two
different prices (perhaps very different (Schoutens et al.
2005)) for a DNT option—neither of which may coincide
with the market price. Furthermore, the discrepancy
between model and market prices might depend, say, on
the maturity—with one model being better for
short-dated DNT options and the other being better for
longer-dated DNT options. The question is then, which
model should one choose? This is by no means a
rhetorical question. Indeed, practitioners note (Lipton
and McGhee 2002) that local volatility models tend to
under-price DNT options and stochastic volatility models
tend to over-price DNT options, relative to the market
prices, when the respective models are calibrated to the
market prices of vanilla options.

We should mention that Lipton (2002) introduced into
the option-pricing literature an analytical result (up to
Laplace inversion) for the price of a type of barrier option
under a jump-diffusion process with exponentially dis-
tributed jumps. Kou and Wang (2003, 2004) and Sepp
(2004) price various types of barrier options within the

Kou (2002) double exponential jump-diffusion
(henceforth DEJD) model. Asmussen et al. (2007) price
a type of barrier option within the CGMY model of Carr
et al. (2002), by approximating the CGMY process with a
jump-diffusion process with a large, finite, but otherwise
essentially arbitrary number (in the limit that this number
tends to infinity, the approximation becomes exact in the
sense that one gets convergence in distribution) of sums of
double exponential processes (i.e. by hyperexponential
processes). Di Graziano and Rogers (2006) (see also
Jobert and Rogers 2006) price barrier options within their
regime-switching MMGBM model. Pricing barrier
options for arbitrary Lévy processes is far from trivial.
There are, in principle, some results (see Schoutens 2003
and the references therein) based on Weiner–Hopf
analysis, although they involve inversion of triple
Laplace transforms and it is open to debate as to whether
this could be done efficiently enough for use in a trading
environment. Some simplification occurs (Rogers 2000) if
the Lévy process is spectrally one-sided (i.e. jumps are
either always up or always down). This might, possibly,
be appropriate for currencies in emerging markets but it is
an unrealistic assumption for modelling major currency
pairs. A simplification also occurs if the jumps are of
phase-type (Asmussen et al. 2004, Pistorius 2004) which
includes double exponential jumps as a special case.

We will also present results (in appendix A2) related to
the distribution of first passage times and of the ‘over-
shoot’. We thank a referee for drawing our attention to
Jiang and Pistorius (2008) which contains some related
results (although our method of proof is very different to
theirs).

The rest of this paper is organized as follows. In
section 2 we introduce the model. In section 3 we explain
how we can calibrate our model to the market prices of
DNT options. In section 4 we show how we can price
vanilla options and hence, also, calibrate our model to the
market prices of vanilla options. In section 5 we summa-
rize our model, highlight its flexibility and illustrate its
ability to calibrate to both DNT options and vanilla
options by performing such calibrations on the market
prices of options on cable (USD/STG). Section 6 is a
short conclusion. All major proofs are relegated to the
appendix.

2. The model

We define today (the initial time) to be time t0 � 0.
We denote calendar time by t, with t� t0.

We assume frictionless markets and the absence of
arbitrage. The latter guarantees the existence of a
risk-neutral equivalent martingale measure. However,
because our model is incomplete, it is well known that
the risk-neutral equivalent martingale measure is not
unique. We shall calibrate our model to the market prices

yFor all the barrier options we consider in this paper, we will assume that the barriers are monitored continuously to see if the
relevant option has been knocked-in or out. This is, by far, the most common situation in the FX options markets. Barrier options
with discretely monitored barriers are traded occasionally but are much less liquid.
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of options and assume that the risk-neutral measure,
which we shall denote by Q, is fixed through these market
prices. This is a standard concept for incomplete markets.
In this paper, we shall only be concerned with the
dynamics of the spot FX rate in the risk-neutral
measure Q. We fix a probability space ð�,=,QÞ and an
information filtration ð=tÞt�t0 which we assume satisfies
the usual conditions. We denote by E

Q
t ½�� the expectation

operator, under Q, at time t.
We denote the spot FX rate, at time t, by S(t). It

is quoted as the number of units of domestic currency
per unit of foreign currency. We denote
logðSðtÞ=Sðt0ÞÞ � XðtÞ.

We assume that interest rates are constant and we
denote the continuously compounded domestic (respec-
tively, foreign) interest rate by rd (respectively, rf). We
denote the price, at time t0, of a zero coupon bond
dominated in domestic currency, maturing at time T, by
Pd (t0,T ). Hence, Pd (t0,T )¼ exp(�rd (T�t0)). It is possi-
ble to allow for term structures of interest rates (and we
briefly outline how in the appendix), but assuming that
interest rates are constant simplifies the exposition, whilst
aiding the understanding of the intuition behind our
modelling framework.

We introduce lower and upper barriers, denoted by L
and U respectively, which correspond to the barrier levels
of DNT optionsy to which we wish to calibrate our
model. We assume that 05L5S(t0)5U51. We will call
the region (L,U ) the ‘corridor’. We denote the first exit
time of the spot FX rate from the corridor by �, i.e. we
define

� � infft : S tð Þ � L or S tð Þ � Ug:

If the spot FX rate S(t), t� t0, has always been strictly
between L and U, i.e. the spot FX rate has never exited
from the corridor, then the convention is that we
set �¼1.

We will now proceed to specify the dynamics of the
spot FX rate S(t) by specifying two auxiliary stochastic
processes S1(t) and S2(t) whose dynamics are linked with
two key assumptions.

The first key assumption is that, at time t0, and until the
spot FX rate first exits from the corridor, the dynamics of
the spot FX rate are such that we can compute certain key
quantities of interest. These key quantities of interest are,
essentially, the probability density function of X(�)
conditional on X(�)4log(U/S(t0)) or on X(�)5log(L/
S(t0)) (see lemma 4.1), and the Laplace Transforms of the
joint probability distribution function of � and X(�)
(see equation (4.6)).

Remark 2.1: The key quantities of interest that we need
in our modelling framework can be computed in closed
form in the DEJD model of Kou (2002) and Kou and
Wang (2003). They can also be calculated in a
jump-diffusion model with an arbitrary number of sums
of double exponential jump processes. We also mention in
passing that a possible alternative for the dynamics might
be to assume that they follow the dynamics of the
regime-switching MMGBM model of Di Graziano and
Rogers (2006) (see also Jobert and Rogers 2006). We
conjecture that the key quantities of interest that we need
can be computed in this latter model, although we will not
pursue this possibility here. In this paper, we assume that
the dynamics follow a jump-diffusion model with an
arbitrary number of sums of double exponential jumps.
Furthermore, we also allow the diffusion volatility and
the intensity rates of the jump processes to be functions of
a continuous-time Markov chain with two states. Hence,
we allow for stochastic volatility (or stochastic
time-changes) as well as jumps. We will see in section 5
that allowing for a stochastic time-change improves the
model fit when calibrated to market data. We compute
the key quantities of interest that we need in lemma 4.1
and in the appendix. We christen these dynamics the
Chain Extended Exponential Double jump process
(henceforth the CEE2 process for brevity). This leads us
immediately to assumption 2.2.

Assumption 2.2: The dynamics, under the risk-neutral
measure Q, of the spot FX rate S(t), at time t, for t 2 ðt0, �Þ,
are constructed in terms of the auxiliary stochastic process
S1(t). Note that S1(t) is defined for all t 2 ½t0,1Þ and it is a
CEE2 process constructed as follows.

We introduce M Poisson (counting) processes, denoted
by Ni (t), i¼ 1, . . . ,M, with Ni ðt0Þ � 0. For notational
simplicity, we assume M is an even number. The Poisson
processes Ni (t), for 1� i�M/2, are associated with up
jumps and the Poisson processes Ni (t), for 1þM/
2� i�M, are associated with down jumps. Associated
with each Poisson process Ni(t), i¼ 1, . . . ,M, is an
exponentially distributed random variable � i with mean
1/bi (under Q). We assume 15 bi 51, for 1� i�M.
We introduce a standard Brownian motion, denoted by
z(t), with zðt0Þ � 0. We introduce a continuous-time
Markov chain �ðtÞ with two states, labelled 1 and 2.
Transitions take place between state j and state k of the
Markov chain, j¼ 1, 2, k¼ 1, 2, j 6¼ k with constant instan-
taneous jump rates "jk (under Q), where "jk40. Wez write
�ðt0Þ ¼ j0, where j0 is either 1 or 2. For each
i¼ 1, . . . ,M, the Poisson process Ni(t) has (under Q)

yThis statement provides the intuition behind the role of L and U. However, as we will see later, we can, in fact calibrate our model,
not only to DNT options with barrier levels L and U, but also to other DNT options and double barrier knockout options of other
types provided that they have lower barrier levels which are greater than or equal to L and upper barrier levels which are less than or
equal to U.
zWe thank a referee for commenting that, in theory, j0 is observable in the sense that (and we quote) ‘‘if the values of �ð�ðtÞÞ are
different for j0 ¼ 1, 2, then after a continuous observation [of the spot FX rate] of an infinitesimal length, calculation of the
quadratic variation reveals the state j0’’. When observations are not continuous, one can only estimate j0 with error. Hence, we will
take a more pragmatic view and regard j0 as latent and unobservable. We will leave the relative orderings of �ð1Þ and �ð2Þ and of
aið1Þ and aið2Þ, for each i, unspecified at this point. When we calibrate our model to market data, we can (without loss of generality)
choose j0 ¼ 1, say, and then our calibration to market data will implicitly choose the relative orderings.

A class of Lévy process models with almost exact calibration 1117



intensity rate aið�ðtÞÞ, with 05 aið�ðtÞÞ51. The
Brownian motion has an associated volatility term
�ð�ðtÞÞ, with 05 �ð�ðtÞÞ51.

We assume that the dynamics, under the risk-neutral
measure Q, of the spot FX rate S(t), at time t, for
t 2 ðt0, �Þ, are: S(t)¼S1(t), where S1(t), for all t 2 ½t0,1Þ,
follows:

S1ðtÞ ¼ Sðt0Þ expððrd � rf Þðt� t0ÞÞ exp

�
�
1

2

Z t

t0

�ð�ðsÞÞ2ds

þ

Z t

t0

�ð�ðsÞÞdzðsÞ þ
XM
i¼1

�i
XNiðtÞ

n¼1

�ðnÞi

�

Z t

t0

XM
i¼1

aið�ðsÞÞbi
1

bi � �i
�

1

bi

� ��
ds

� �
ð2:1Þ

where �i ¼ 1 if 1� i�M/2 and �i ¼ �1 if 1þM/2� i�M
(the corresponding processes produce up and down
jumps respectively) and where, for each i¼ 1, . . . ,M, �ðnÞi

is the realized outcome of the random variable �i for the
nth jump of the ith Poisson process. Note that S(t0) and
S1(t0) are equal and known at time t0 and that, for all
t 2 ½t0, �Þ, the spot FX rate satisfies E

Q
t0 ½SðtÞ� ¼ E

Q
t0 ½S1ðtÞ� ¼

Sðt0Þ expððrd � rf Þðt� t0ÞÞ.

Remark 2.3: We know from Asmussen et al. (2007) that
we can approximate a CGMY process (in distribution) by
a jump-diffusion process with a large number of sums of
double-exponential processes. In fact, any Lévy process
whose Lévy density is (completely) monotonic as one
moves away from the origin can be approximated,
arbitrarily closely, in this way. This includesy not only
the CGMY process, but, also, other Lévy processes such
as the Generalized Hyperbolic process and the NIG
process. Hence, if we were to assume that

�2ð1Þ

�2ð2Þ
¼

a1ð1Þ

a1ð2Þ
¼ � � � ¼

aMð1Þ

aMð2Þ
,

then we can approximate a time-changed CGMY process,
or time-changed versions of these other Lévy processes,
where the stochastic time-change is driven by a two-state
Markov chain. However, clearly our CEE2 process can be
more flexible than that. Alternatively, we could, for
example, assume aið1Þ ¼ aið2Þ, for each i¼ 1, . . . ,M, and
hence just have a stochastic diffusion volatility term. The
DEJD model of Kou (2002) is a special case of our CEE2
process when M¼ 2 and the intensity rates and the
diffusion volatility are constants.

The first key assumption defined the dynamics of the
spot FX rate for t 2 ðt0, �Þ. The second key assumption is
that the dynamics of the spot FX rate can change at the
first exit time from the corridor.

Remark 2.4: At the instant t¼ �, at which the spot FX
rate first exits from the corridor, i.e. at the first exit time
when the spot FX rate is equal to or is strictly outside the
barriers, we assume that the dynamics of the spot FX rate,
under the risk-neutral measure Q, can change to a

different arbitrage-free stochastic process. The only
requirement from a practical modelling viewpoint is that
we will need to know, in closed form, the Laplace
transform (with respect to time) of the Characteristic
Function of (the log of) this process. Hence, we have the
flexibility to choose from a general class of (possibly
time-changed) Lévy processes (either finite or infinite
activity).

Assumption 2.5: The dynamics of the spot FX rate, for all
t 2 ½t0,1Þ, are constructed as follows. We have already
defined the stochastic process S1(t), for all t 2 ½t0,1Þ, via
equation (2.1). In particular, for all t 2 ½t0,1Þ, S1(t) satisfies

E
Q
t0 ½S1ðtÞ� ¼ S1ðt0Þ expððrd � rf Þðt� t0ÞÞ

¼ Sðt0Þ expððrd � rf Þðt� t0ÞÞ: ð2:2Þ

Now we define S2(t) to be an arbitrage-free stochastic
process which is such that vanilla option prices are linear
homogenous in S2(t) and strike and for which the Laplace
transform (with respect to time) of the Characteristic
Function of log(S2(t)) is known. In particular, for all t � �,
S2(t) satisfies

EQ
� ½S2ðtÞ� ¼ S2ð�Þ expððrd � rf Þðt� �ÞÞ: ð2:3Þ

Furthermore, we require

S2ð�Þ ¼ S1ð�Þ: ð2:4Þ

We assume that the dynamics, under the risk-neutral
measure Q, of the spot FX rate S(t), at time t, for
t 2 ½�,1Þ, are S(t)¼S2(t).

Hence, it is clear that the dynamics of the spot FX rate
S(t), for all t 2 ½t0,1Þ, are of the form

SðtÞ ¼ S1ðtÞIðt5 �Þ þ S2ðtÞIðt � �Þ, ð2:5Þ

where Ið�Þ denotes the indicator function. We remark that
the dynamics in our modelling framework are those of a
mixture model but with random weights governed by the
stopping time �. Note, it can easily be verified using the
optional stopping theorem and equation (2.4) that, for all
t 2 ½t0,1Þ,

E
Q
t0 ½SðtÞ� ¼ Sðt0Þ expððrd � rf Þðt� t0ÞÞ,

which is required in the absence of arbitrage.

2.1. Financial motivation for assumption 2.5

Whilst we would concede that the second key assumption
(assumption 2.5) is mostly made for mathematical con-
venience, there is a financial motivation for it. If a large
volume of barrier options have been traded with a
particular barrier level and that particular barrier level
is hit, it is often noted that there are significant changes in
the market as traders unwind or execute hedges, both
in the spot market and in the vanilla FX options market.
The former market often sees large jumps (which, whilst
observed in the real-world physical measure P, may also

yTo be precise, the CGMY process only has a monotonic Lévy density when the parameter Y � �1.
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be present in the risk-neutral measure Q). This is ofteny
attributed to large numbers of market-makers, who may
not have perfectly delta-hedged these barrier options
(they sometimes have large gammas and so traders can
incur significant transactions costs if they very frequently
rebalance their delta-hedges), executing stop-loss orders
immediately after a barrier level is hit. The latter market
often sees changes in the magnitude, and even the sign, of
risk-reversals. Traders (Afaf 2007) note that if an upper
(respectively, lower) barrier level is hit, risk-reversals
often become positive (or more positive) (respectively,
negative (or more negative)). This is an example of the
more general behaviour, detailed by Carr and Wu (2007),
that risk-reversals are stochastic and tend to be positively
correlated with the spot FX rate. In addition, the
risk-neutral dynamics of the spot FX rate could change
at the first exit time from the corridor because dQ/dP
changes. This might occur for two reasons. Firstly, barrier
levels are often chosen because they represent psycholog-
ically important levels. The breaching of these levels
might lead to speculators or liquidity-providers displaying
a different degree of risk-aversion. Secondly, since our
market is incomplete, barrier options may have an
important role to play in hedging other contingent
claims. The fact that, for example, DNT options are
knocked-out means these options no longer exist. Hence,
the universe of market-traded options available for
hedging other contingent claims has diminished (or
more formally, we have changed the set of securities
available for (partial) spanning of the Arrow–Debreu
state-space). This can lead to changes in Q without any
changes in P. We will have more to say about assump-
tion 2.5 later.

3. Calibration to the market prices of DNT options

We will want to calibrate our model to the market prices
of DNT options and vanilla options. In section 4, we will
explain how we calibrate our model to vanilla options.
In this section, we explain how to calibrate our model to
DNT options.

Kou and Wang (2003) and Sepp (2004) (see also
Asmussen et al. (2007)) explain how to price DNT options
within the Kou (2002) DEJD model. We extend these
results to the case when the dynamics of the underlying
spot FX rate are those of our CEE2 process (equation
(2.1)) in the appendix. It is now obvious that these results
are all we need to price DNT options whose barrier levels
are L and U. The change of dynamics in the spot FX rate
after the first exit from the corridor is irrelevant since, in
this case, the DNT option expires worthless.

Hence, we can immediately calibrate the model param-
eters in equation (2.1) to the market prices of DNT
options independently of any assumption about the

dynamics of the spot FX rate after the first exit time

from the corridor.
As already briefly alluded to, we can also, if we wish,

easily include, within our calibration, DNT options whose

barrier levels are inside the corridor (L,U ) because the

change of dynamics in the spot FX rate at the first exit

time from the corridor cannot affect their value. We

cannot use, within our calibration, DNT options which

have a barrier level (or both barrier levels) outside the

closed interval [L,U ]. To put this another way, all the

DNT options used within our calibration will have been

knocked out by the time that the dynamics of the spot FX

rate are allowed to change.

4. Calibration to the market prices of vanilla options

We would now like to calibrate our model to the market

prices of vanilla options. To do this, we need a way to

evaluate the price of a vanilla option. The first step is to

note that by ‘in-out’ parity, the price of a vanilla option is

equal to the price of a knockout option plus the price of a

knock-in option, where these barrier options have the

same strikes and maturities as the vanilla option.
Kou and Wang (2003) and Sepp (2004) explain how to

price double barrier knockout options within the Kou

(2002) DEJD model. Again (see the appendix), we extend

these results to the case when the dynamics of the

underlying spot FX rate are those of our CEE2 process

(equation (2.1)). As with DNT options, the change of

dynamics in the spot FX rate after the first exit time from

the corridor is irrelevant and, hence, we can immediately

price a double barrier knockout option, with barrier levels

L and U, with the same strike and maturity as the vanilla

option in question. Hence, by ‘in-out’ parity, all we need

to do to establish a pricing formula for vanilla options is

to price a knock-in option. To be more explicit, we need a

pricing formula for a double barrier knock-in option,

whose payoff is the same as that of a vanilla option if

either barrier is touched or breached before maturity and

whose payoff is zero otherwise. We denote by

CðSðtÞ,K,L,U,T� t,�ðtÞÞ the price, at time t, of such a

double barrier knock-in option, with strike K and lower

and upper barrier levels L and U respectively, and with

remaining time to maturity equal to T�t. We will consider

how to evaluate CðSðt0Þ,K,L,U,T� t0,�ðt0ÞÞ in this

next section.
Recall logðSðtÞ=Sðt0ÞÞ � XðtÞ and define

u � logðU=Sðt0ÞÞ, l � logðL=Sðt0ÞÞ: ð4:1Þ

It is important to understand the nature of the process at

the first exit time from the corridor. Specifically, the spot

FX rate can first exit in one of four possible ways.

yWe mention in passing that an alternative situation might be when a central bank targets the FX rate to stay within a semi-fixed
band. If the FX rate exits the band, there may be large jumps (both in the spot and in implied volatilities) as happened with Sterling
when it left the ERM in 1992. However, we only mention this situation for illustration as it is not the intended application of our
model.
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. Either (1): The spot FX rate diffuses through

the upper barrier, in which case S(�)¼U.
. Or (2): The spot FX rate jumps through (i.e.

overshoots) the upper barrier, in which

case S(�) is strictly greater than U. We write

Sð�Þ ¼ Sðt0Þ expðuþ xÞ, for some x40. We

know that, in this case, a jump must have

occurred in one (and, with probability one, only

one) of the Poisson processes Ni(t), with

1� i�M/2, i.e. for one, and only one, of the

i, 1� i�M/2, DNið�Þ � Nið�Þ �Nið��Þ ¼ 1.
. Or (3): The spot FX rate jumps through (i.e.

overshoots) the lower barrier, in which case S(�)
is strictly less than L. We write Sð�Þ ¼
Sðt0Þ expðlþ xÞ, for some x50. We know that,

in this case, a jump must have occurred in one

(and, with probability one, only one) of the

Poisson processes Ni (t), with 1þM/2� i�M,

i.e. for one, and only one, of the i, 1þM/

2� i�M, DNið�Þ � Nið�Þ �Nið��Þ ¼ 1.
. Or (4): The spot FX rate diffuses through the

lower barrier, in which case S(�)¼L.

Let us denote by Pd ðt,T ÞVðSðtÞ,K,T� tÞ the price, at

time t, when the spot FX rate is S(t), of a vanilla option

with strike K and with remaining time to maturity equal

to T�t. In other words, VðSðtÞ,K,T� tÞ is the undis-

counted price of the vanilla option.
A double barrier knock-in option can be viewed as an

option which pays the holder a vanilla option at the time

it is knocked-in. Hence, by the law of total probability,

we can write

CðSðt0Þ,K,L,U,T� t0,�ðt0ÞÞ ¼ Pd ðt0,T Þ

Z T

t0

gðsÞ ds,

where

gðsÞ�PrðXð�Þ¼u&�2dsj�ðt0Þ¼ j0ÞVðSðt0ÞexpðuÞ,K,T��Þ

þ
XM=2
i¼1

Z 1
0þ

PrðDNið�Þ¼1&Xð�Þ¼uþx&�2dsj�ðt0Þ¼ j0Þ

	VðSðt0ÞexpðuþxÞ,K,T��Þdx

þ
XM

i¼1þM=2

Z 0�

�1

PrðDNið�Þ¼1&Xð�Þ¼ lþx&�2dsj�ðt0Þ¼ j0Þ

	VðSðt0ÞexpðlþxÞ,K,T��Þdx

þPrðXð�Þ¼ l&�2dsj�ðt0Þ¼ j0ÞVðSðt0ÞexpðlÞ,K,T��Þ:

ð4:2Þ

In equation (4.2), we have used the notation 0þ and

0� in the limits of the integrals on the second and third

lines to indicate that the barrier has been overshot. Hence

in the second line, x takes on only strictly positive values,

and in the third line, x takes on only strictly negative

values.
The key to making further progress in evaluating

equation (4.2) is the following lemma (a conceptually

similar result can be found in section 2 of Kou and Wang

(2003), for the special case of a single up barrier and a

Kou (2002) DEJD process).

Lemma 4.1: For 1� i�M/2 (and recalling x40 and

�i¼ 1),

PrðDNið�Þ¼1&Xð�Þ¼uþx&�2dsj�ðt0Þ¼ j0Þ

¼PrðDNið�Þ¼1&Xð�Þ4u&�2dsj�ðt0Þ¼ j0Þbi expð��ibixÞ,

and similarly for 1þM/2� i�M (and recalling x50 and

�i¼�1),

PrðDNið�Þ¼1&Xð�Þ¼ lþx&�2dsj�ðt0Þ¼ j0Þ

¼PrðDNið�Þ¼1&Xð�Þ5l&�2dsj�ðt0Þ¼ j0Þbi expð��ibixÞ:

ð4:3Þ

Proof: See the appendix.

Hence, using lemma 4.1, we have

gðsÞ¼PrðXð�Þ¼u&�2dsj�ðt0Þ¼ j0ÞVðSðt0ÞexpðuÞ,K,T��Þ

þ
XM=2
i¼1

Z 1
0þ

PrðDNið�Þ¼1&Xð�Þ4u&�2dsj�ðt0Þ¼ j0Þ
�

	bi expð��ibixÞVðSðt0ÞexpðuþxÞ,K,T��Þgdx

þ
XM

i¼1þM=2

Z 0�

�1

fPrðDNið�Þ¼1&Xð�Þ5 l&�2dsj�ðt0Þ¼ j0Þ

	bi expð��ibixÞVðSðt0ÞexpðlþxÞ,K,T��Þgdx

þPrðXð�Þ¼ l&�2dsj�ðt0Þ¼ j0ÞVðSðt0ÞexpðlÞ,K,T��Þ:

ð4:4Þ

Observing that the probability terms are now

independent of x, so that we can take them outside the

integrals, and using the linear homogeneity property

of vanilla option prices (which is certainly valid

by assumption 2.5), and substituting from equation

(4.1), we have

gðsÞ ¼ PrðXð�Þ ¼ u& � 2 dsj�ðt0Þ ¼ j0ÞVðU,K,T� �Þ

þ
XM=2
i¼1

PrðDNið�Þ ¼ 1&Xð�Þ4 u& � 2 dsj�ðt0Þ ¼ j0ÞR1
0þ bi expðð1� �ibiÞxÞVðU,K expð�xÞ,T� �Þdx

 !

þ
XM

i¼1þM=2

PrðDNið�Þ ¼ 1&Xð�Þ5 l& � 2 dsj�ðt0Þ ¼ j0ÞR 0�
�1

bi expðð1� �ibiÞxÞVðL,K expð�xÞ,T� �Þdx

0
@

1
A

þ PrðXð�Þ ¼ l& � 2 dsj�ðt0Þ ¼ j0ÞVðL,K,T� �Þ:

ð4:5Þ

Now we can make progress in evaluating

CðSðt0Þ,K,L,U,T� t0,�ðt0ÞÞ=Pd ðt0,T Þ ¼

Z T

t0

gðsÞ ds

by noticing that each of the Mþ 2 terms coming from

equation (4.5) is the form of a convolution. We denote the

Laplace transform operator by L½��, i.e. for any function

f(�) and for �40,L½ f ð�Þ� ¼
R1
0 expð���Þ f ð�Þ d�.
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Then, we have that the Laplace transform of
CðSðt0Þ,K,L,U,T� t0,�ðt0ÞÞ=Pd ðt0,T Þ is

L½CðSðt0Þ,K,L,U,T�t0,�ðt0ÞÞ=Pd ðt0,TÞ�

¼L½PrðXð�Þ¼u&�2dsj�ðt0Þ¼ j0Þ�L½VðU,K,�Þ�

þ
XM=2
i¼1

L½PrðDNið�Þ¼1&Xð�Þ4u&�2dsj�ðt0Þ¼ j0Þ�

L
R1
0þbiexpðð1��ibiÞxÞVðU,Kexpð�xÞ,�Þdx

h i !

þ
XM

i¼1þM=2

L½PrðDNið�Þ¼1&Xð�Þ5l&�2dsj�ðt0Þ¼ j0Þ�

L

R 0�
�1

bi expðð1��ibiÞxÞ

VðL,K expð�xÞ,�Þdx

" #0
B@

1
CA

þL½Pr Xð�Þ¼ l&�2dsj�ðt0Þ¼ j0ð Þ�L½VðL,K,�Þ�:

ð4:6Þ

The RHS of equation (4.6) involves a total of 2(Mþ 2)
Laplace transforms. We show in the appendix how it is
possible to evaluate all of them in a form suitable for
rapid computation. Hence, it is possible to evaluate
L½CðSðt0Þ,K,L,U,T� t0,�ðt0ÞÞ=Pd ðt0,T Þ�.

We can compute CðSðt0Þ,K,L,U,T� t0,�ðt0ÞÞ=
Pd ðt0,T Þ by inverting the Laplace transform and hence
obtain CðSðt0Þ,K,L,U,T� t0,�ðt0ÞÞ. This gives us the
price of a double barrier knock-in option. As we
explained at the start of this section, following Kou and
Wang (2003) and Sepp (2004), we can price double barrier
knockout options (see the appendix for details). Hence,
we can price vanilla options by ‘in-out’ parity. This is
what we set out to achieve.

5. Model summary, choice of dynamics and illustrative

calibrations

It should be clear that, what we now have is a very flexible
framework within which we can price both DNT options
(and, in fact, other types of barrier options) and vanilla
options. The dynamics of the spot FX rate after the first
exit time from the corridor can be any stochastic process
for which we know the Laplace transform of the
characteristic function. One of the simplest specifications
would be to assume that the dynamics of the spot FX rate
after the first exit time from the corridor are those of a
CEE2 process but with different parameters compared to
the process before the spot FX rate first exits from the
corridor (and possibly a different value of M). Alternative
specifications include Lévy processes such as variance
gamma (Madan et al. 1998), CGMY (Carr et al. 2002),
Generalized Hyperbolic, NIG and Meixner (Schoutens
2003) processes, which may, possibly, be time-changed
(Barndorff-Nielsen and Shephard 2001, Carr et al. 2003,
Carr and Wu 2007).

It is straightforward to see that the ‘recipe’ for
calibrating our model is as follows. Calibration is a
two-stage process.

. First stage: Before the first exit time from the
corridor, we assume that the spot FX rate
follows our CEE2 process (equation (2.1)) with
some chosen value of M. We can calibrate the

parameters of this model to the market prices
of DNT options (or, possibly, other types of
double barrier options). We then take these
parameters as given. We price double barrier
knockout options (with the same strikes and
maturities as the vanilla options to which we
will calibrate in the second stage) using these
estimated parameters. Subtracting these double
barrier knockout option prices from the market
prices of the corresponding vanilla options gives
us the prices of double barrier knock-in options
which we will use in the second stage of the
calibration.

. Second stage: We choose a specific stochastic
process (out of the wide class of possible Lévy
processes (with or without a stochastic
time-change)). We then, taking the parameters
of the first stage as given, calibrate the model
parameters of the chosen stochastic process to
the market prices of vanilla options using the
results we have derived in section 4 and the
prices of double barrier knock-in options
obtained in the first stage.

By separating the two stages of the calibration proce-
dure, we reduce the dimensionality of the optimization
problem of finding the model parameters. In addition, our
two-stage calibration procedure enables, by design, a
good calibration to the market prices of both DNT
options and to vanilla options.

In order to illustrate our modelling approach, we
obtained the market prices of DNT options and vanilla
options on cable (USD/STG) as of 31 May 2007 and as of
6 July 2007. We calibrated our model to these prices, as
just described, for various specifications of the dynamics
of the spot FX rate after the first exit time from the
corridor and we report the results in sections 5.1 and 5.2.
We should stress that our calibrations are designed to be
illustrative rather than exhaustive.

Before we proceed to discuss the calibrations, we should
briefly mention the numerical implementation of the
algorithms we used. For the sake of brevity, we have put
all the details into an on-line supplement (Ambrose et al.
2008) to this paper. As well as describing key aspects of the
numerical implementation, it also provides the market
data used for the calibration as of 6 July 2007 and some
intermediate steps used in some of the calibrations. It also
describes tests that we did (such as comparing prices
obtained against Monte Carlo simulation) to benchmark
the accuracy of our numerical implementation. For
Laplace transform inversion, we used the Gaver-Stehfest
algorithm (see, for example, Kou and Wang 2003 and
Sepp 2004). It is well known that the use of high-precision
arithmetic is very desirable when using this algorithm.
Unless otherwise stated, our calculations used ‘quad
double’ precision (that is to say, using 60–64 significant
figures of accuracy instead of the usual double precision
which offers 15–16 significant figures of accuracy). The
code to do this ‘quad double’ precision arithmetic was
written for us by Alan Ambrose to whom we, again,
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express our sincere thanks. His code was in turn based on
work by Bailey (1990) and Chatterjee (1998).

5.1. Calibration to market data as of 31 May 2007

In this sub-section, we calibrate our modelling approach to
the market prices of DNT options and vanilla options as of
31 May 2007. We used three different specifications of the
dynamics of the spot FX rate after the first exit time from
the corridor. These three specifications were as follows.

(1) Our CEE2 process (equation (2.1)) with M¼ 2 and
the intensity rates and the diffusion volatility
assumed to be constants which is the same as the
Kou (2002) DEJD model.

(2) The CGMY model of Carr et al. (2002) with the
addition of a Brownian motion component with
constant volatility.

(3) As with the first two specifications, specification (3)
also has a Brownian motion component with
constant volatility. In addition, it has a time-
changed Lévy process constructed as follows:
Firstly, we introduce two independent continuous-
time Markov chains, denoted by �1ðtÞ and �2ðtÞ,
each of which has two states, which we denote by N
(the ‘normal’ state) and A (the ‘abnormal’ state).
Our time-changed Lévy process used two indepen-
dent tempered stable processes (see chapter 5 of
Schoutens 2003), one of which produces only down
jumps and the other produces only up jumps.
Conditional upon the states of the two Markov
chains, the Lévy densities of the two tempered stable
processes are of the form

C1ð�1ðtÞÞ expð�Gð�xÞÞ

ð�xÞ1þY
,

for x50 (this process produces down jumps), and

C2ð�2ðtÞÞ expð�MxÞ

x1þY
,

for x40 (this process produces up jumps). The
parameters G, M and Y are all constants, with
G40, M40 and Y52. If the quantities C1ð�1ðtÞÞ
and C2ð�2ðtÞÞ were (positive) constants, then the
dynamics of the spot FX rate would be the same as
for specification (2). However, they are not con-
stant, but instead stochastic, which we know from
Carr et al. (2003) is equivalent to stochastically
time-changing the two tempered stable processes.
For each i¼ 1, 2, Cið�iðtÞÞ is a strictly positive
function of the respective Markov chain �iðtÞ, and it
can take on one of two possible values which we
denote by CN

i and CA
i , where the superscripts N

and A refer to the ‘normal state and the ‘abnormal’
state respectively. Transitions take place between
state j and state k, for Markov chain �iðtÞ, for each
i¼ 1, 2, j¼N,A, k¼N,A, j 6¼ k with constant
instantaneous jump rates �jki , where �jki 4 0. We
assume, without loss of generality, that, for each
i¼ 1, 2,CA

i � CN
i . To summarize specification (3),

we have two independent tempered stable pro-
cesses, one producing down jumps and the other
producing up jumps, each of which is indepen-
dently time-changed by a two-state Markov chain.
Hence, from Carr and Wu (2007), we know this
specification generates, not only stochastic volatil-
ity, but also stochastic skew. We would like our
specification to be able to model the empirically
observed behaviour (see the end of section 2 and
Afaf 2007) that if an upper barrier level is hit,
risk-reversals (often) become (more) positive,
whilst conversely, if a lower barrier is hit, risk-
reversals (often) become (more) negative. We can
achieve this by specifying that if the spot FX rate
first exits from the corridor through the lower
barrier, i.e. if S(�)�L, then �1ð�Þ ¼ A and
�2ð�Þ ¼ N, whereas if the spot FX rate first exits
from the corridor through the upper barrier, i.e. if
S(�)�U, then �1ð�Þ ¼ N and �2ð�Þ ¼ A. Hence this
specification is able to capture the aforementioned
empirically observed behaviour as well as to
capture stochastic skew, i.e. capture the fact that
the sign and magnitude of risk-reversals can vary
stochastically through time. Hence, specification
(3) is a very rich specification. Note that this
specification requires an obvious extension to
assumption 2.5 in that we now have a different
process if the upper barrier U is exited first com-
pared to if the lower barrier L is exited first. In
order to make for a more parsimonious calibration,
we assumed that CA

1 ¼ CA
2 , C

N
1 ¼ CN

2 , �
NA
1 ¼ �

NA
2 ,

�AN
1 ¼ �

AN
2 . Hence specification (3) has eight

parameters (namely the constant volatility of the
Brownian motion component as well as G, M, Y,
CA

1 � CA
2 , C

N
1 � CN

2 , �
NA
1 � �

NA
2 , �AN

1 � �
AN
2 ).

Specifications (1) and (2) both have five parameters.
The calibration to DNT options is the same for all three

specifications. The dynamics of the spot FX rate before
the first exit time from the corridor are assumed to be
those of our CEE2 process (equation (2.1)) with M¼ 2
and the intensity rates and the diffusion volatility
assumed to be constants, i.e. the same as the Kou
(2002) DEJD model. Hence, there are five parameters to
fit and we calibrated them to the mid-market prices of six
DNT options. The spot FX rate (mid-market) was
1.97575. The barrier levels of five of the DNT options
were 1.9200 and 2.0200. These correspond to the levels L
and U at which the dynamics of the spot FX rate change.
The maturities of these five DNT options were one month
(1m), six weeks (6w), three months (3m), six months
(6m) and nine months (9m). In addition, we used one
DNT option with a maturity of one month with barrier
levels at 1.9500 and 2.0000. The reason for using this
option was simply to provide some additional informa-
tion in the calibration. Since its barrier levels are inside
the corridor (L,U ), the change of dynamics in the spot FX
rate at the first exit time from the corridor cannot affect
its value. As we can see from table 1, the fit to the DNT
options is excellent.

1122 P. Carr and J. Crosby



We used 20 vanilla options in the second stage of the

calibration which consisted of options with five different

strikes (in order of increasing strike, they corresponded,

in line with the market convention (Carr and Wu 2007),

to put options with deltas of �0.10 and �0.25, a call

option at the strike corresponding to the delta-neutral

straddle (which roughly equates to a delta of 0.5) and call

options with deltas of 0.25 and 0.1) for options of four

different maturities (six months, nine months, twelve

months and two years). We could have used some

shorter-dated options in the calibration but we surmised

that the prices of very short-dated vanilla options would

have only a relatively small sensitivity to the parameters

of the process of the spot FX rate after the first exit time

from the corridor.
The calibration to vanilla options for each specification

is shown graphically in figures 1 to 4. Overall, the fits are

qualitatively not quite as good as for the DNT options but

are still very good. Note that the fits for each of the

specifications (1), (2) and (3) are qualitatively quite

similar—one has to view the figures quite closely to see

the differences. The residual pricing errors (calculated as

the sum of squares of proportional differences between

model and market prices) were 0.0285, 0.0265 and 0.0220

for specifications (1), (2) and (3) respectively. Hence, the

best overall fit is obtained with specification (3) (albeit it

also has the most parameters). Carr et al. (2002, 2003) and

Carr and Wu (2007) show how, in their ability to fit and

explain implied volatility surfaces, finite activity Lévy pro-

cesses are outperformed by infinite activity Lévy processes,

which, in turn, are outperformed by time-changed Lévy

processes. Our results are in broad agreement with this.
To illustrate the ability of our model to simultaneously

fit the market prices of both DNT options and vanilla

options, whilst also demonstrating how difficult this can

be to do for other models, we performed the following

two experiments.

. First experiment: In specification (1), the

dynamics of the spot FX rate are that of a

Kou (2002) DEJD model both before and after

the first exit time from the corridor. Only the

parameters of the process change. We took the
parameters obtained from the first stage of the
calibration and assumed that these parameters
were unchanged after the first exit time from
the corridor. We then re-priced the vanilla
options. In other words, we re-price the vanilla
options in the Kou (2002) DEJD model where
the parameters were obtained by fitting the
model to the market prices of DNT options.
The residual pricing error was 0.717 (compared
with 0.0285, 0.0265 and 0.0220 for specifica-
tions (1), (2) and (3) respectively). The fit to
vanilla options is also displayed in figures 1 to 4
(labelled ‘Using parameters implied from DNT
options’). It is striking how poor the fit is in our
experiment, in comparison with specifications
(1), (2) and (3).

. Second experiment: We then performed almost
the same experiment except in reverse. We
calibrated a Kou (2002) DEJD model (without
changing the dynamics at the first exit time
from the corridor) to the market prices of
vanilla options. Using the parameters obtained
from this calibration, we then re-priced the six
DNT options which we had used in the original
calibration of our model. The DNT prices
obtained are in table 1 (in the column labelled
‘Using implied parameters from vanillas in
second experiment’). The residual pricing error
was more than 470 times greater than when we
had actually calibrated to the market prices of
DNT options. Again, we can see how poor the
fit is in our experiment, compared to when we
had actually calibrated to the DNT options.

5.2. Calibration to market data as of 6 July 2007

In this sub-section, we calibrate our modelling approach to
the market prices of DNT options and vanilla options as of
6 July 2007. We used two different specifications of the
dynamics of the spot FX rate before the first exit time from
the corridor (labelled 2(i) and 2(ii)) and two different
specifications of the dynamics of the spot FX rate after the
first exit time from the corridor (labelled 2(1) and 2(2)).

Specifications 2(i) and 2(ii) (for the dynamics of the
spot FX rate before the first exit time from the corridor)
were as follows.

. 2(i): Our CEE2 process (equation (2.1)) with
M¼ 6 and the intensity rates and the diffusion
volatility assumed to be constants (which is
equivalent to the Markov chain only having one
state). In order to make for a more parsimoni-
ous calibration, we assumed that b3¼ b4 and
b1¼ b6¼ 3b4, b2¼ b5¼ 2b4 (there was no special
reason for choosing these multiples but, taking
our lead from Asmussen et al. (2007), they
seemed pragmatic choices). Hence, there are
eight parameters to calibrate, namely b4, a1(1),
a2(1), a3(1), a4(1), a5(1), a6(1), �(1).

Table 1. USD/STG 31 May 2007. Double-no-touch (DNT)
option prices. USD/STG 31/05/2007. Spot FX rate 1.97575.

Maturity Model price

Mid-

market Bid Offer

Using

implied

parameters

from

vanillas

in second

experiment

Barrier levels

1.92/2.02

1m 0.7542 0.76 0.745 0.775 0.8309

6w 0.6886 0.695 0.68 0.71 0.7787

3m 0.3268 0.34 0.325 0.355 0.4429

6m 0.0916 0.09 0.075 0.105 0.1660

9m 0.0256 0.045 0.03 0.06 0.0621

Barrier levels 1.95/2.00

1m 0.2466 0.245 0.23 0.26 0.3572
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Figure 1. USD/STG 31 May 2007. Implied volatilities (in percent) of vanilla options with a maturity of six months.
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Figure 2. USD/STG 31 May 2007. Implied volatilities (in percent) of vanilla options with a maturity of nine months.
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Figure 3. USD/STG 31 May 2007. Implied volatilities (in percent) of vanilla options with a maturity of 12months.
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Figure 4. USD/STG 31 May 2007. Implied volatilities (in percent) of vanilla options with a maturity of two years.
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. 2(ii): Our CEE2 process (equation (2.1)) with
M¼ 4. We assumed that the Markov chain was
in state 1 at time t0, i.e.�ðt0Þ ¼ 1. In order to
mimic a stochastic time-change (see remark 2.3),
we assumed that

�2ð1Þ

�2ð2Þ
¼

a1ð1Þ

a1ð2Þ
¼

a2ð1Þ

a2ð2Þ
¼

a3ð1Þ

a3ð2Þ
¼

a4ð1Þ

a4ð2Þ
:

Furthermore, we assumed that b2¼ b3 and b1¼ b4¼ 2b3
and further that "12 ¼ "21. Hence, there are again eight
parameters to estimate, namely a1(1), a2(1), a3(1), a4(1),
"12 ¼ "21, b3, �(1) and �

2ð1Þ=�2ð2Þ.
We now describe the calibration to the market prices of

DNT options for each of the specifications 2(i) and 2(ii).
The spot FX rate (mid-market) was 2.0060. We calibrated
to a total of 12 DNT options. The barrier levels of eight
of the DNT options were 1.9500 and 2.0500. These
correspond to the levels L and U at which the dynamics of
the spot FX rate change. The maturities of these eight
DNT options were one month (1m), two months (2m),
three months (3m), four months (4m), five months (5m),
six months (6m), nine months (9m) and twelve months
(12m). In addition, we used two DNT options with
maturities of one month and three months with barrier
levels at 1.9700 and 2.0400 and two further DNT options
with maturities of one week (1w) and one month with
barrier levels at 1.9800 and 2.0300, again, in order to
provide some additional information in the calibration.
As we can see from table 2(i) (for specification 2(i)) and
table 2(ii) (for specification 2(ii)), the fit to the DNT
options is excellent for both specifications. However, we
can see that the fit with specification 2(ii) is much better
than for specification 2(i) (the residual error for the latter
is more than 3.3 times that for the former). Since both
specifications have the same number of parameters, it
suggests that allowing for a stochastic time-change (as in
specification 2(ii)) as well as for jumps significantly
improves the accuracy of our calibration. This is in
broad agreement with calibrations to vanilla options by,
for example, Carr et al. (2003).

Since specification 2(ii) performed much better than
specification 2(i), we will focus on the former for the rest
of this sub-section. We took the parameters from the
calibration to DNT options for specification 2(ii) as given
and then calibrated to the market prices of vanilla options
for the two specifications, 2(1) and 2(2), of the dynamics
of the spot FX rate after the first exit time from the
corridor. Specifications 2(1) and 2(2) were constructed as
follows.

. 2(1): Our CEE2 process with M¼ 4 and the
same parameter restrictions as in specification
2(ii) that we used above (but with different
parameters compared to the dynamics of the
spot FX rate before the first exit time from
the corridor). We assumed that the Markov
chain started off in state 1 at the instant after
the first exit time from the corridor,
i.e. �ð�Þ ¼ 1. This specification has eight
parameters.

. 2(2): This specification is the same as that in

specification (3) that we used in the previous

sub-section. This specification also has eight

parameters.

As in the previous sub-section, we used 20 vanilla

options which consisted of options with five different

strikes (as before) for options of four different maturities

(as before, six months, nine months, twelve months and

two years). The results of the calibration are shown in

figures 5 to 8. Overall, the fits are very good. The residual

pricing errors were 0.0222 and 0.0266 for specifications

Table 2(i). USD/STG 6 July 2007, specification 2(i). Double-
no-touch (DNT) option prices. USD/STG 06/07/2007. Spot FX

rate 2.0060.

Maturity Model price Mid-market Bid Offer

Barrier levels
1.95/2.05

1m 0.79926 0.765 0.75 0.78
2m 0.52767 0.5 0.485 0.515
3m 0.34054 0.325 0.31 0.34
4m 0.22900 0.22 0.205 0.235
5m 0.15190 0.15 0.135 0.165
6m 0.09807 0.1 0.085 0.115
9m 0.02825 0.05 0.035 0.065
12m 0.00813 0.03 0.015 0.045

Barrier levels
1.97/2.04

1m 0.55560 0.515 0.5 0.53
3m 0.10412 0.115 0.1 0.13

Barrier levels 1.98/2.03
1w 0.87202 0.85 0.825 0.875
1m 0.26594 0.245 0.23 0.26

Table 2(ii). USD/STG 6 July 2007, specification 2(ii). Double-
no-touch (DNT) option prices. USD/STG 06/07/2007. Spot FX

rate 2.0060.

Maturity Model price
Mid-
market Bid Offer

Using
implied

parameters
from vanillas
in second
experiment

Barrier levels
1.95/2.05

1m 0.75156 0.765 0.75 0.78 0.87750
2m 0.48389 0.5 0.485 0.515 0.68817
3m 0.31510 0.325 0.31 0.34 0.51895
4m 0.21993 0.22 0.205 0.235 0.40033
5m 0.15559 0.15 0.135 0.165 0.30634
6m 0.11013 0.1 0.085 0.115 0.23070
9m 0.04496 0.05 0.035 0.065 0.10390
12m 0.01954 0.03 0.015 0.045 0.04715

Barrier levels
1.97/2.04

1m 0.51154 0.515 0.5 0.53 0.74133
3m 0.10707 0.115 0.1 0.13 0.26720

Barrier levels
1.98/2.03

1 w 0.84506 0.85 0.825 0.875 0.94998
1m 0.24514 0.245 0.23 0.26 0.50202
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2(1) and 2(2) respectively. Hence, the best overall fit is

obtained by specification 2(1).
We also repeated the two experiments we did in the

previous sub-section.

. First experiment: We re-price the vanilla

options with our CEE2 process (assuming

absolutely no change in the stochastic processy

at the first exit time from the corridor) where

the parameters were obtained by fitting the

model to the market prices of DNT options

(with specification 2(ii)). The results (labelled
‘Using parameters implied from DNT options’)
are displayed in figures 5 to 8, where, again, we
see a very poor fit in our experiment.

. Second experiment: We calibrated our CEE2
process (assuming absolutely no change in
the stochastic process at the first exit time
from the corridor and using specification 2(ii)
with the same parameter restrictions) to the

5.600%

6.100%

6.600%

7.100%

7.600%

–0.1 put –0.25 put 0.5 call 0.25 call 0.1 call

Market

Specification 2(1) (CEE2)

Specification 2(2)

Using parameters implied
from DNT options

Figure 5. USD/STG 6 July 2007. Implied volatilities (in percent) of vanilla options with a maturity of six months.
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Using parameters implied
from DNT options

Figure 6. USD/STG 6 July 2007. Implied volatilities (in percent) of vanilla options with a maturity of nine months.
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Specification 2(2)

Using parameters implied
from DNT options

Figure 7. USD/STG 6 July 2007. Implied volatilities (in percent) of vanilla options with a maturity of 12 months.

yThis is a stronger statement than simply assuming that the parameters do not change. We are also saying that the Markov chain
does not switch state purely as a result of the spot FX rate exiting from the corridor.

1126 P. Carr and J. Crosby



market prices of vanilla options. Using the
parameters obtained from this calibration, we
then re-priced the 12 DNT options which we
had used in the calibration above. The DNT
prices obtained are in table 2(ii) (in the column
labelled ‘Using implied parameters from vanil-
las in second experiment’) and we can see that,
in all cases, they are much greater than the
market prices and, in some cases, they are
greater than the market prices by a factor of 2.
The residual pricing error was more than 280
times greater in our experiment than when we
had actually calibrated to the market prices of
DNT options which, again, shows how poor the
fit is in our experiment.

5.3. Further discussion of our illustrative calibrations

We have already remarked that our calibrations were
designed to be illustrative rather than exhaustive. With
only two days of data, it would be premature to draw
definitive conclusions. What we can say is that the
parameters obtained were, essentially, insensitive to
the starting point of the calibration and that, inspecting
the values of the parameters (see the on-line supplement
(Ambrose et al. 2008)), we consider them to be econom-
ically plausible. Furthermore, when existing models in the
literature are used, it is worthy of note that the poor fit in
all our experiments suggests how difficult it is to calibrate
effectively to the prices of both vanilla and DNT options.
By contrast, our model, by design, fits well to both DNT
and vanilla options.

We make one important comment on the second
experiment which we performed for each set of market
data. The price of a DNT option is essentially (modulo
discounting) the risk-neutral probability of not hitting
either of the barriers before maturity. In each of our
second experiments (see the right-hand most columns
(labelled ‘Using implied parameters from vanillas in
second experiment’) of table 1 and table 2(ii)), the prices
of DNT options are all much higher than the market
prices. This suggests that traders price DNT options in
the market as if the (risk-neutral) probability of hitting
either of the barriers prior to maturity is, in fact, much
higher than would be implied from the market prices of
vanilla options. Intuitively, this suggests that traders

believe that sudden moves in the spot FX rate are more
likely to happen than is implied by the market prices of
vanilla options, even in a Kou (2002) DEJD model or
with our CEE2 process which already account for the
possibility of such sudden moves by incorporating jumps.
This may provide tentative evidence to suggest that
traders price DNT options as if the risk-neutral dynamics
of the spot FX rate are different within the corridor (L,U )
or before the first exit time from the corridor compared to
after the first exit time from the corridor. This, in turn,
may provide tentative evidence to suggest that traders
(perhaps, unknowingly, or perhaps, knowingly, based on
heuristics and their own intuition) price FX options as if
the risk-neutral dynamics do change at the first exit time
from the corridor, as we assumed in section 2.

6. Conclusions

We have introduced a modelling framework which, by
design, can be efficiently calibrated to the market prices of
DNT options (or other types of barrier options) and
vanilla options. The framework is very flexible in that it
can allow for a reasonably wide-range of underlying
stochastic processes. The most important assumption is
that, at the instant that the spot FX rate first touches or
breaches either a lower barrier level or an upper barrier
level (i.e. at the first exit time from the corridor), the
risk-neutral dynamics of the spot FX rate can change.
Although we resist the temptation to draw definitive
conclusions from a limited set of data, we have provided
some evidence (at least working with our CEE2 process or
the Kou (2002) double-exponential jump-diffusion
(DEJD) model which is a special case of it) that traders
(perhaps, unknowingly, or perhaps, knowingly, based on
their own intuition) price FX options as if the risk-neutral
dynamics do change.

Finally, we briefly mention two possible areas for
future research. Firstly, we have assumed that the
risk-neutral dynamics of the spot FX rate can change at
the first exit time from the corridor (L,U ). It would be
possible to introduce multiple corridor levels

05LN 5 � � � 5L2 5L1 5Sðt0Þ5U1 5U2

5 � � � 5UN 51,
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6.100%
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7.600%

–0.1 put –0.25 put 0.5 call 0.25 call 0.1 call
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Specification 2(1) (CEE2)

Specification 2(2)

Using parameters implied
from DNT options

Figure 8. USD/STG 6 July 2007. Implied volatilities (in percent) of vanilla options with a maturity of two years.
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and every time the spot FX rate first exits from one of
the corridor levels, the dynamics can change. For each
of the corridors ðL1,U1Þ, ðL2,U2Þ, . . . , ðLN,UNÞ, one could
assume that the spot FX rate follows our CEE2 process

but with different parameters. After the first exit time
from the outer-most corridor levels, one could assume
that the spot FX rate follows a stochastic process in
accordance with assumption 2.5. We believe that our
modelling framework would still retain a measure of
tractability, although at possible risk of

over-complication and over-parameterization.
Secondly, one could apply the ideas of our modelling

framework to the simultaneous pricing of credit default
swaps, equity default swaps (which are a type of
single-touch barrier option) and other credit sensitive
instruments. In the same vein, one could also apply them
to the simultaneous pricing of sovereign credit default
swaps and barrier and vanilla FX options on emerging

market currencies. However, for the sake of brevity, we
leave these ideas for future research.
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Appendix A

The appendix is divided into four sections. In appendices
A1 and A2, we will evaluate the 2(Mþ 2) Laplace
transform terms on the RHS of equation (4.6). In
appendix A3, we will evaluate the prices of barrier
options when the dynamics of the spot FX rate follow
our CEE2 process (equation (2.1)). In appendix A4, we
will briefly consider how we can incorporate term
structures of interest rates into our modelling framework
and, also, how we can price other types of exotic options.

Appendix A1

In appendix A1, we focus on the (Mþ 2) ‘option price
like’ terms on the RHS of each line of equation (4.6).
Define

I0 � VðU,K, �Þ,

and for each i, 1� i�M/2,

Ii,1�i�M=2 �

Z 1
0þ

bi expðð1� �ibiÞxÞVðU,K expð�xÞ, �Þ dx,

and for each i, 1þM/2� i�M,

Ii,1þM=2�i�M�

Z 0�

�1

bi expðð1��ibiÞxÞVðL,Kexpð�xÞ,�Þdx,

IMþ1 � VðL,K, �Þ.
We will firstly consider how we can evaluate Ii,1� i�M/2,

for each i, 1� i�M/2. Define the characteristic function
�ðzÞ � E

Q
t0 ½expð

�jz logðS2ð�Þ=S2ðt0ÞÞÞ�, where �j ¼
ffiffiffiffiffiffiffi
�1
p

(we
have used the engineers’ notation �j for the imaginary unit
to avoid potential confusion with the subscript index i).
Note that S2(t) is as defined in assumption 2.5. In other
words, �ðzÞ is the characteristic function for the process
after the first exit time from the corridor. Then using

results of Lipton (2001), Lewis (2001) and Kangro et al.

(2004), and recalling that VðU,K expð�xÞ, �Þ represents
the undiscounted price, we can write

Ii,1�i�M=2

¼

Z 1
0þ

bi expðð1��ibiÞxÞ

	
1þ’

2

� �
Uexpð�ðrf� rd Þ�Þþ

1�’

2

� �
Kexpð�xÞ

� �
dx

�

Z 1
0þ

bi
	
expðð1��ibiÞxÞ

	Re

Z �jImðzÞþ1

0

�ð�zÞSðt0Þ
ðKexpð�xÞ=Sðt0ÞÞ

�jzþ1

z2� �jz
dz

 !
dx

,

where ’ ¼ 1 if the vanilla option is a call and ’ ¼ �1 if

the vanilla option is a put, Re and Im denote real and

imaginary parts respectively and where z is a complex

number whose imaginary part satisfies 05Im(z)51. We

can change the order of integration and evaluate the

integral with respect to x analytically. Then, by changing

the order of integration again, we can express the Laplace

Transform of Ii,1�i�M=2 in the form

L½Ii,1�i�M=2�

¼
1þ ’

2

� �
biU

ð�ibi � 1Þ

1

�þ rf � rd

� �
þ

1� ’

2

� �
K

�i

1

�

� �

�
Sðt0Þbi
	

Re

Z �jImðzÞþ1

0

� zð Þ
ðK=Sðt0ÞÞ

�jzþ1

ðz2 � �jzÞð�ibi þ �jzÞ
dz

 !
,

where �ðzÞ �
R1
0 expð���Þ�ð�zÞd� is the Laplace trans-

form of the characteristic function and is available in

closed form for Lévy models and also for some time-

changed Lévy models.
As in Lewis (2001) and Kangro et al. (2004), we can

evaluate the integral with respect to z by integrating along

the line z ¼ uþ �j=2, where u is real. This means that we

can evaluate L½Ii,1�i�M=2� with a single numerical

integration.
We can derive expressions for L½I0�, L½Ii,1þM=2�i�M� and

L½IMþ1� in an almost identical fashion. We obtain

L½I0� ¼
1þ ’

2

� �
U

�þ rf � rd

� �
þ

1� ’

2

� �
K

�

� �

�
Sðt0Þ

	
Re

Z �j ImðzÞþ1

0

�ðzÞ
ðK=Sðt0ÞÞ

�jzþ1

ðz2 � �jzÞ
dz

 !
,

L½Ii,1þM=2�i�M�

¼
1þ’

2

� �
biL

ð1��ibiÞ

1

�þ rf� rd

� �
þ

1�’

2

� �
K

ð��iÞ

1

�

� �

�
Sðt0Þbi
	

Re

Z �jImðzÞþ1

0

�ðzÞ
ðK=Sðt0ÞÞ

�jzþ1

ðz2� �jzÞð��ibi� �jzÞ
dz

 !
,

L½IMþ1� ¼
1þ ’

2

� �
L

�þ rf � rd

� �
þ

1� ’

2

� �
K

�

� �

�
Sðt0Þ

	
Re

Z �jImðzÞþ1

0

�ðzÞ
ðK=Sðt0ÞÞ

�jzþ1

ðz2 � �jzÞ
dz

 !
:
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Notice how all (Mþ 2) integrals with respect to z have a
very similar form. We can exploit this fact to optimize our
computer code. Note that, if we allow for the possibility
that the dynamics change to a different process if the
upper barrier U is exited first compared to if the lower
barrier L is exited first (as in specifications (3) and 2(2) of
section 5), we simply use the respective two different
characteristic functions in the above equations.

The above results enable us to evaluate the (Mþ 2)
‘option price like’ terms on the RHS of each line of
equation (4.6) whenever the dynamics of the spot FX rate
after the first exit time from the corridor are such that we
know the Laplace transform of the characteristic func-
tion. However, it will be necessary to perform the above
integrals numerically, which experience leads us to believe
is the most CPU-intensive part of the algorithm. A major
simplification occurs when the dynamics of the spot FX
rate after the first exit time from the corridor are those of
our CEE2 process (with different parameters and,
possibly, a different value of M compared to those
before the first exit time from the corridor) or special
cases of it such as the Kou (2002) DEJD model. In this
case, we can compute the Laplace transforms of I0,
Ii,1�i�M=2, for each i, 1� i�M/2, Ii,1þM=2�i�M, for each i,
1þM/2� i�M, and IMþ 1 in closed form (see appendix
A3 and especially remark A.7 for more details).

Appendix A2

In appendix A2, we focus on the terms on the LHS of
each line of the RHS of equation (4.6), i.e. we focus on the
(Mþ 2) ‘probability like’ terms. We will also prove lemma
4.1. Before we give the derivations, we need to define
some additional notation and prove a preliminary lemma.

Firstly, for notational convenience, we define
N � 2Mþ 2. In the following two lines, j indicates the
state of the Markov chain:


ð j Þ � rd � rf �
1

2
�2ð j Þ �

XM
i¼1

aið j Þ

ð1� �i=biÞ
þ
XM
i¼1

aið j Þ,

for j ¼ 1, 2,

f ð , j Þ �
1

2
�2ð j Þ 2 þ 
ð j Þ � ��

XM
i¼1

aið j Þ

þ
XM
i¼1

aið j Þ

ð1�  �i=biÞ
, for j ¼ 1, 2: ðA:1Þ

We will need the following preliminary lemma.

Lemma A.1: Let  i, i ¼ 0, 1, . . . ,N,Nþ 1, be the (Nþ 2)
roots of the (Nþ 2)th-order polynomial equation in  ,

ð f ð , 1Þ � "12Þð f ð , 2Þ � "21Þ ¼ "12"21: ðA:2Þ

Suppose (solely for the purpose of proving this lemma—
this is not necessary anywhere else in this paper) that we
order (without loss of generality) the mean jump amplitudes
of the Poisson processes Ni(t), those producing up jumps

(1� i�M/2) and those producing down jumps (1þM/

2� i�M), in such a way that

�15�bM5 � � �5 �bM=2þ1505bM=25 � � �5b151:

Then the roots of the polynomial in equation (A.2) are

all real and can be ordered as follows:

�15 Nþ1, N5 �bM5 N�1,, N�2

5 � � �5 N=2þ4, N=2þ35 �bM=2þ15 N=2þ2, N=2þ1

505 N=2, N=2�15bM=25 N=2�2, N=2�3 � � �5 3, 2

5b15 1, 051:

Proof: Firstly, we can show (by a modest extension of

the arguments in lemma 2.1 of Kou and Wang (2003))

that the polynomials f ð , 1Þ � "12 ¼ 0 and

f ð , 2Þ � "21 ¼ 0 each have Mþ 2 real roots ordered as

�15 1
Mþ15 �bM5 1

M5 � � �5 1
M=2þ25 �bM=2þ1

5 1
M=2þ1505 1

M=25bM=25 1
M=2�1 � � �5 1

1

5b15 1
051,

and as

�15 2
Mþ15 �bM5 2

M5 � � �5 2
M=2þ25 �bM=2þ1

5 2
M=2þ1505 2

M=25bM=25 2
M=2�1 � � �5 2

1

5b15 2
051,

respectively. Hence we must be able to write

equation (A.2) in the form

gð Þ � k

ð � 1
0Þð � 

2
0Þð � 

1
1Þð � 

2
1Þ . . .

ð � 1
Mþ1Þð � 

2
Mþ1Þ

( )

QM
i¼1 ð1� �i=biÞ

h i2 ¼ "12"21,

for some positive constant k.
If we consider firstly the interval ½b1,1Þ, then it is

clear that gð Þ ! 1 when  !1 and that gð Þ ! 1
when  ! b1þ. Suppose that  1

0 and  2
0 are not equal,

then gð Þ must be negative for minð 1
0, 

2
0Þ5

 5 maxð 1
0, 

2
0Þ. Hence, since "12"21 is positive, the

polynomial gð Þ ¼ "12"21 must have two real roots in

the interval ½b1,1Þ. In the event that  1
0 and  

2
0 are equal,

then the polynomial gð Þ ¼ 0 must have repeated roots,

i.e. gð Þ touches zero at  ¼  1
0 ¼  

2
0. Hence, again, the

polynomial gð Þ ¼ "12"21 must again have two real roots

in the interval ½b1,1Þ.
We can apply a similar line of reasoning to

each interval ½b2, b1�, . . . , ½bM=2, bM=2�1�, ½0, bM=2�,

½�bM=2þ1, 0�, . . . , ð�1, �bM� in turn and conclude that

in each of these Mþ 2 intervals, the polynomial

gð Þ ¼ "12"21 must have two real roots. But the poly-

nomial gð Þ ¼ "12"21 is of order Nþ 2¼ 2(Mþ 2) and so

it has exactly 2(Mþ 2) roots. Hence, the lemma is

proven. œ

We now proceed to evaluate the (Mþ 2) ‘probability

like’ terms on the LHS of each line of the RHS of

equation (4.6). We calculate them by, firstly, computing,

L½PrðXð�Þ � u& � 2 dsj�ðt0Þ ¼ j0Þ�,

1130 P. Carr and J. Crosby



for each i, 1� i�M/2,

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ uþ x& � 2 dsj�ðt0Þ ¼ j0Þ�,

where x40, for each i, 1þM/2� i�M,

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ lþ x& � 2 dsj�ðt0Þ ¼ j0Þ�,

where x50,

L½PrðXð�Þ � l& � 2 dsj�ðt0Þ ¼ j0Þ�

in theorem A.2. Note that the first (respectively, the last)
term is the Laplace transform of the first passage time
density to the upper (respectively, lower) barrier regard-
less of whether the process X(t) diffuses through or jumps
through (i.e. overshoots) the upper (respectively, lower)
barrier.

Some related results, in the case of a single upper
barrier level and a Kou (2002) DEJD process, can be
found in Kou and Wang (2003). We extend these results
to the case when there is both a lower barrier level and an
upper barrier level and the dynamics follow our CEE2
process in theorem A.2.

Firstly, we define a set of parameters �$ ¼
f$0,$1, . . . ,$M,$Mþ1g, whose values will shortly be
specified. The reader is warned that we are overloading
our notation, so that the precise values of �$ ¼
f$0,$1, . . . ,$M,$Mþ1g will depend upon the relevant
probability whose Laplace transform we are trying to
calculate.

Then define the parameters Ckð �$Þ, k ¼
0, 1, . . . , 2Nþ 2, 2Nþ 3, to be the solutions of the
following 2Nþ 4 by 2Nþ 4 system of linear simultaneous
equations:

XNþ1
i¼0

Cið �$Þ expð iuÞ ¼ $0,
XNþ1
i¼0

CiþNþ2ð �$Þ expð iuÞ ¼ $0,

ðA:3Þ

XNþ1
i¼0

Cið �$Þexpð iuÞ

ðð i=bmÞ��mÞ
¼$m,

XNþ1
i¼0

CiþNþ2ð �$Þexpð iuÞ

ðð i=bmÞ��mÞ
¼$m, for eachm¼ 1, . . . ,M=2,

ðA:4Þ

XNþ1
i¼0

Cið �$Þexpð ilÞ

ðð i=bmÞ��mÞ
¼$m,

XNþ1
i¼0

CiþNþ2ð �$Þexpð ilÞ

ðð i=bmÞ��mÞ
¼$m, for eachm¼ 1þM=2, . . . ,M,

ðA:5Þ

XNþ1
i¼0

Cið �$Þ expð il Þ ¼ $Mþ1,

XNþ1
i¼0

CiþNþ2ð �$Þ expð il Þ ¼ $Mþ1, ðA:6Þ

Ckð �$Þð f ð k, 1Þ � "12Þ þ "12CkþNþ2ð �$Þ ¼ 0,

for each k, k ¼ 0, 1, . . . ,N,Nþ 1:
ðA:7Þ

Theorem A.2: For the case, L½PrðXð�Þ � u& � 2
dsj�ðt0Þ ¼ j0Þ�, set $0 ¼ 1,

and $m ¼ �1=�m, for m ¼ 1, . . . ,M=2 and

$m ¼ 0, for m ¼ 1þM=2, . . . ,M and $Mþ1 ¼ 0:

ðA:8Þ

For the case L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ uþ x& � 2
dsj�ðt0Þ ¼ j0Þ�, for x4 0, for each i, 1 � i �M=2, set

$i ¼ �bi expð��ibixÞ and

for m 6¼ i, $m ¼ 0, m ¼ 0, 1, . . . ,M,Mþ 1: ðA:9Þ

For the case L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ lþ x& � 2
dsj�ðt0Þ ¼ j0Þ�, for x5 0, for each i, 1þM=2 � i �M,

set $i ¼ bi expð��ibixÞ and

for m 6¼ i, $m ¼ 0, m ¼ 0, 1, . . . ,M,Mþ 1: ðA:10Þ

For the case L½PrðXð�Þ � l& � 2 dsj�ðt0Þ ¼ j0Þ�, set

$0 ¼ 0,

and $m ¼ 0, for m ¼ 1, . . . ,M=2 and $m ¼ �1=�m,

for m ¼ 1þM=2, . . . ,M and $Mþ1 ¼ 1:

ðA:11Þ

Then, we have that

L½PrðXð�Þ � u& � 2 dsj�ðt0Þ ¼ j0Þ�,

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ uþ x& � 2 dsj�ðt0Þ ¼ j0Þ�,

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ lþ x& � 2 dsj�ðt0Þ ¼ j0Þ�,

L½PrðXð�Þ � l& � 2 dsj�ðt0Þ ¼ j0Þ�,

are, in each case, equal to

XNþ1
k¼0

Ckð �$Þ if j0 ¼ 1 or
XNþ1
k¼0

CkþNþ2ð �$Þ if j0 ¼ 2,

with the appropriate choices of �$ ¼ f$0,$1, . . . ,

$M,$Mþ1g as indicated above.

Proof: It is conceptually somewhat similar to the case, in

Kou and Wang (2003), of a single upper barrier when the

dynamics follow a Kou (2002) DEJD process and so we

simply outline the proof.
We consider, firstly, the case L½PrðXð�Þ �

u& � 2 dsj�ðt0Þ ¼ j0Þ�. We write

L½PrðXð�Þ � u& � 2 dsj�ðt0Þ ¼ j0Þ� � Pj0 � Pj0ðX Þ,

where j0 is equal to 1 or 2.
We know (following Kou and Wang (2003) and Di

Graziano and Rogers (2006)) that P1 and P2 must satisfy
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the following coupled system of OIDEs:

1

2
�2ð1ÞP1

XXþ
ð1ÞP
1
X� �þ

XM
i¼1

aið1Þ

 !
P1þ "12ðP

2�P1Þ

þ

Z 1
0

XM=2
i¼1

P1ðXþJÞaið1Þbi expð��ibiJ ÞdJ

þ

Z 0

�1

XM
i¼1þM=2

P1ðXþJÞaið1Þbi expð��ibiJ ÞdJ¼ 0,

1

2
�2ð2ÞP2

XXþ
ð2ÞP
2
X� �þ

XM
i¼1

aið2Þ

 !
P2þ"21ðP

1�P2Þ

þ

Z 1
0

XM=2
i¼1

P2ðXþJÞaið2Þbi expð��ibiJ ÞdJ

þ

Z 0

�1

XM
i¼1þM=2

P2ðXþJÞaið2Þbi expð��ibiJ ÞdJ¼ 0: ðA:12Þ

We postulate solutions of the form

P1ðX Þ ¼
XNþ1
k¼0

Ck expð kX Þ, P2ðX Þ ¼
XNþ1
k¼0

CkþNþ2 expð kXÞ,

ðA:13Þ

in the region l5X5 u, where the Ck terms are

independent of X and are parameters to be determined.

We impose the boundary conditions that when X � u,

P1 ¼ 1, P2 ¼ 1 and that when X � l, P1 ¼ 0, P2 ¼ 0.

These imply equations (A.3) and (A.6). Substituting our

candidate solution into equation (A.12) and, computing

the integral terms analytically, implies that

XNþ1
k¼0

expð kX Þ

�
Ck

�
1

2
�2ð1Þ 2

kþ
ð1Þ k���
XM
i¼1

aið1Þ� "12

	

þ "12CkþNþ2

�
þ
XNþ1
k¼0

XM
m¼1þM=2

Ckamð1Þfexpð kX Þ

� expð klÞexpð��mbmðl�X ÞÞg=ðð k=bmÞ��mÞ

þ
XNþ1
k¼0

XM=2
m¼1

Ckamð1Þfexpð kuÞexpð��mbmðu�X ÞÞ

� expð kX Þg=ðð k=bmÞ��mÞ

þ
XM=2
m¼1

amð1Þexpð��mbmðu�X ÞÞ=�m¼ 0

and

XNþ1
k¼0

expð kX Þ

�
CkþNþ2

�
1

2
�2ð2Þ 2

k þ 
ð2Þ k � �

�
XM
i¼1

aið2Þ � "21

	
þ "21Ck

�

þ
XNþ1
k¼0

XM
m¼1þM=2

CkþNþ2amð2Þ

�
expð kX Þ � expð kl Þ

	 expð��mbmðl� X ÞÞ

�

ðð k=bmÞ � �mÞ

þ
XNþ1
k¼0

XM=2
m¼1

CkþNþ2amð2Þfexpð kuÞ expð��mbmðu� X ÞÞ

�expð kX Þg=ðð k=bmÞ � �mÞ

þ
XM=2
m¼1

amð2Þ expð��mbmðu� X ÞÞ=�m ¼ 0:

Many terms cancel in view of equations (A.4) and

(A.5) (with the relevant values of $j). If we equate

coefficients of expð kX Þ, then, with some minor algebraic

rearrangement, we have that, for each k,

k ¼ 0, 1, . . . ,N,Nþ 1,

1

2
�2ð1Þ 2

k þ 
ð1Þ k � ��
XM
i¼1

aið1Þ þ
XM
i¼1

aið1Þ

ð1�  k�i=biÞ
� "12

" #

	 Ck þ "21CkþNþ2 ¼ 0,

"12Ck þ
1

2
�2ð2Þ 2

k þ 
ð2Þ k � ��
XM
i¼1

aið2Þ

"

þ
XM
i¼1

aið2Þ

ð1�  k�i=biÞ
� "21

#
CkþNþ2 ¼ 0: ðA:14Þ

If we view equation (A.14) as a 2 by 2 system of linear

simultaneous equations in Ck and CkþNþ2, then, for a

solution to exist, its determinant must vanish which

immediately yields that the  k terms are indeed the roots

of the characteristic polynomial in equation (A.2).

Furthermore, we see that the Ck and CkþNþ2 terms, for

each k, k ¼ 0, 1, . . . ,N,Nþ 1, must satisfy equation (A.7).

Hence, we have verified the validity of our candidate

solution.
Since we normalized so that Xðt0Þ � 0, we evaluate P1

and P2 at X¼ 0. This yields the stated results for the case

L½PrðXð�Þ � u& � 2 dsj�ðt0Þ ¼ j0Þ�.
The only significant difference to the above in

computing

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ uþ x& � 2 dsj�ðt0Þ ¼ j0Þ�

� Pj0 � Pj0 ðX Þ,

where j0 is equal to 1 or 2, is to note that P1 and P2 must

vanish at X¼ u and for X� l. Furthermore, for X4u, P1

and P2 must equal �ðuþ x� X Þ�ðDNið�Þ � 1Þ, where �
denotes the Dirac delta function. The remaining two cases

can be handled analogously. œ

We now state proposition A.3. This proposition will

enable us to compute M of the ‘probability like’ terms in

equation (4.6).

Proposition A.3: For the case L½PrðDNið�Þ ¼ 1&

Xð�Þ4 u& � 2 dsj�ðt0Þ ¼ j0Þ�, for each i, 1 � i �M=2,
set $i ¼ �1=�i and

for all m 6¼ i, $m ¼ 0, m ¼ 0, 1, . . . ,M,Mþ 1: ðA:15Þ

For the case L½PrðDNið�Þ ¼ 1&Xð�Þ5
l& � 2 dsj�ðt0Þ ¼ j0Þ�, for each i, 1þM/2� i�M, set

$i ¼ �1=�i and

for all m 6¼ i, $m ¼ 0, m ¼ 0, 1, . . . ,M,Mþ 1: ðA:16Þ

Then, for each i, 1� i�M/2,

L½PrðDNið�Þ ¼ 1&Xð�Þ4 u& � 2 dsj�ðt0Þ ¼ j0Þ�,

and for each i, 1þM/2� i�M,

L½PrðDNið�Þ ¼ 1&Xð�Þ5 l& � 2 dsj�ðt0Þ ¼ j0Þ�,

are, in each case, equal to

XNþ1
k¼0

Ckð �$Þ if j0 ¼ 1 or
XNþ1
k¼0

CkþNþ2ð �$Þ if j0 ¼ 2:

1132 P. Carr and J. Crosby



Furthermore, for each i, 1� i�M/2,

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ uþ x& � 2 dsj�ðt0Þ ¼ j0Þ�

¼ bi expð��ibixÞL½PrðDNið�Þ

¼ 1&Xð�Þ4 u& � 2 dsj�ðt0Þ ¼ j0Þ�: ðA:17Þ

For each i, 1þM/2� i�M,

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ lþ x& � 2 dsj�ðt0Þ ¼ j0Þ�

¼ bi expð��ibixÞL½Pr DNið�Þð

¼ 1&Xð�Þ5 l& � 2 dsj�ðt0Þ ¼ j0Þ�: ðA:18Þ

Proof: Because of the linearity of the Laplace transform

operator,

L½PrðDNið�Þ

¼1&Xð�Þ4u&�2dsj�ðt0Þ¼ j0Þ�

¼

Z 1
0þ

L½PrðDNið�Þ¼1&Xð�Þ¼uþx&�2dsj�ðt0Þ¼ j0Þ�dx

and

L½PrðDNið�Þ¼1&Xð�Þ5l&�2dsj�ðt0Þ¼ j0Þ�

¼

Z 0�

�1

L½PrðDNið�Þ¼1&Xð�Þ¼ lþx&�2dsj�ðt0Þ¼ j0Þ�dx:

Notice that, in equations (A.9) and (A.10), all the $m

terms are equal to zero except for when m ¼ i, in which

case $i ¼ �bi expð��ibixÞ (equation (A.9)) or $i ¼

bi expð��ibixÞ (equation (A.10)). Then, since
R1
0þ �

bi expð��ibixÞ dx ¼ �1=�i and
R 0�
�1

bi expð��ibixÞ dx ¼
�1=�i, equations (A.15) and (A.16) must follow from

linearity.
By a similar line of reasoning,

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ uþ x& � 2 dsj�ðt0Þ ¼ j0Þ�

L½PrðDNið�Þ ¼ 1&Xð�Þ4 u& � 2 dsj�ðt0Þ ¼ j0Þ�

¼
�bi expð��ibixÞ

�1=�i

and

L½PrðDNið�Þ ¼ 1&Xð�Þ ¼ lþ x& � 2 dsj�ðt0Þ ¼ j0Þ�

L½PrðDNið�Þ ¼ 1&Xð�Þ5 l& � 2 dsj�ðt0Þ ¼ j0Þ�

¼
bi expð��ibixÞ

�1=�i
:

Since, for each i, 1� i�M/2, �i ¼ 1 and for each i,

1þM/2� i�M, �i ¼ �1, the last two equations are

equivalent to equations (A.17) and (A.18) and hence the

proposition is proven. œ

We now state corollary A.4 which will enable us to

compute the two remaining ‘probability like’ terms in

equation (4.6).

Corollary A.4: For the case L½PrðXð�Þ ¼ u& � 2
dsj�ðt0Þ ¼ j0Þ�, set $0 ¼ 1, and

$m ¼ 0, for all m ¼ 1, . . . ,Mþ 1: ðA:19Þ

For the case L½PrðXð�Þ ¼ l& � 2 dsj�ðt0Þ ¼ j0Þ�, set

$m ¼ 0, for all m ¼ 0, . . . ,M and $Mþ1 ¼ 1: ðA:20Þ

Then,

L½PrðXð�Þ ¼ u& � 2 dsj�ðt0Þ ¼ j0Þ�

and

L½PrðXð�Þ ¼ l& � 2 dsj�ðt0Þ ¼ j0Þ�

are, in each case, equal to

XNþ1
k¼0

Ckð �$Þ, if j0 ¼ 1 or
XNþ1
k¼0

CkþNþ2ð �$Þ, if j0 ¼ 2:

Proof: Since

PrðXð�Þ¼u&�2dsj�ðt0Þ¼ j0Þ¼PrðXð�Þ�u&�2dsj�ðt0Þ¼ j0Þ

�
XM=2
i¼1

ðPrðDNið�Þ¼1&Xð�Þ4u&�2dsj�ðt0Þ¼ j0ÞÞ

and

PrðXð�Þ

¼ l&� 2 dsj�ðt0Þ ¼ j0Þ ¼PrðXð�Þ � l&� 2 dsj�ðt0Þ ¼ j0Þ

�
XM

i¼1þM=2

ðPrðDNið�Þ ¼ 1&Xð�Þ5 l&� 2 dsj�ðt0Þ ¼ j0ÞÞ,

we can exploit linearity and, straightforwardly, obtain the
form of the parameters �$ ¼ f$0,$1, . . . ,$M,$Mþ1g

from the form of those already calculated. We obtain
equations (A.19) and (A.20).

Proof of lemma 4.1: It follows immediately from taking

the inverse Laplace transform (which is unique for
continuous functions) of both sides of equations (A.17)

and (A.18). We remark that Kou and Wang (2003) prove
the same result in the special case of a Kou (2002) DEJD

process using a very intuitive argument based on the
memory-less property of exponentially distributed

random variables. Our extension to our CEE2 process
has an equally intuitive probabilistic interpretation.

Indeed, our lemma can be proven directly, without
resorting to Laplace transform methods.

Appendix A3

In appendix A3, we will give the prices of barrier options
when the dynamics of the spot FX rate follow our CEE2

process. In order to shorten our exposition, we will give
the prices of several types of option simultaneously in

proposition A.5.
We wish to evaluate the price, at time t, of a double

barrier knockout option whose payoff at time T, if the
spot FX rate never exits the corridor (L,U ), is

maxð’ðSðT Þ � K Þ, 0Þ if the option has a vanilla-style
payoff, or Ið’SðT Þ � ’K Þ if the option has a binary cash-

or-nothing-style payoff.
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If the spot FX rate touches or breaches the lower
barrier level L (respectively, upper barrier level U ) first

prior to maturity T, the option pays a rebate RL

(respectively, RU) at time T. In the above, Ið�Þ denotes

the indicator function, ’ ¼ 1 if the option is a call and
’ ¼ �1 if the option is a put, K is the strike, L � K � U,
and L5SðtÞ5U.

We set s ¼ T� t, y � logðSðtÞ=K Þ, yl � logðL=K Þ,
yu � logðU=K Þ, j � �ðtÞ, where j is equal to 1 or 2. We
write the price of the option, at time t, in the form

KPd ðt,T ÞH
j ð y, sÞ. In other words, Hj ð y, sÞ is the

undiscounted price, normalized by the strike, if the
Markov chain is in state j, at time t. We give the price

of the option in proposition A.5.

Proposition A.5: The price of the option, at time t, is

KPd ðt,T ÞH
j ð y, sÞ, where: in the case that j¼ 1: If y50,

L½H1ð y, sÞ� ¼
XN=2
i¼0

Di expð iyÞ þ
XNþ1
i¼0

Ei expð iyÞ

þ Ay50 expð yÞ þ By50, ðA:21Þ

else if y� 0,

L½H1ð y, sÞ� ¼
XNþ1

i¼1þN=2

Di expð iyÞ þ
XNþ1
i¼0

Ei expð iyÞ

þ Ay�0 expð yÞ þ By�0; ðA:22Þ

in the case that j¼ 2: If y50,

L½H2ð y, sÞ� ¼
XN=2
i¼0

DiþNþ2 expð iyÞ þ
XNþ1
i¼0

EiþNþ2 expð iyÞ

þ Ay50 expð yÞ þ By50, ðA:23Þ

else if y� 0,

L½H2ðy,sÞ� ¼
XNþ1

i¼1þN=2

DiþNþ2 expð iyÞþ
XNþ1
i¼0

EiþNþ2 expð iyÞ

þAy�0 expðyÞþBy�0, ðA:24Þ

where Dk, k ¼ 0, 1, . . . , 2Nþ 2, 2Nþ 3, solve the 2Nþ 4 by
2Nþ 4 system of linear simultaneous equations

XN=2
i¼0

Di �
XNþ1

i¼1þN=2

Di ¼ ðAy�0 � Ay50Þ þ ðBy�0 � By50Þ,

ðA:25Þ

for each m, m ¼ 1, . . . ,M,

XN=2
i¼0

Di

ðð i=bmÞ � �mÞ
�

XNþ1
i¼1þN=2

Di

ðð i=bmÞ � �mÞ

¼
ðAy�0 � Ay50Þ

ðð1=bmÞ � �mÞ
�
ðBy�0 � By50Þ

�m
, ðA:26Þ

XN=2
i¼0

Di i �
XNþ1

i¼1þN=2

Di i ¼ ðAy�0 � Ay50Þ, ðA:27Þ

XN=2
i¼0

DiþNþ2 �
XNþ1

i¼1þN=2

DiþNþ2

¼ ðAy�0 � Ay50Þ þ ðBy�0 � By50Þ, ðA:28Þ

for each m, m ¼ 1, . . . ,M,

XN=2
i¼0

DiþNþ2

ðð i=bmÞ � �mÞ
�

XNþ1
i¼1þN=2

DiþNþ2

ðð i=bmÞ � �mÞ

¼
ðAy�0 � Ay50Þ

ðð1=bmÞ � �mÞ
�
ðBy�0 � By50Þ

�m
, ðA:29Þ

XN=2
i¼0

DiþNþ2 i �
XNþ1

i¼1þN=2

DiþNþ2 i ¼ ðAy�0 � Ay50Þ

ðA:30Þ

and

Dkð f ð k, 1Þ � "12Þ þ "12DkþNþ2 ¼ 0, for each k,

k ¼ 0, 1, . . . ,N,Nþ 1, ðA:31Þ

and where Ek, k ¼ 0, 1, . . . , 2Nþ 2, 2Nþ 3, solve the

2Nþ 4 by 2Nþ 4 system of linear simultaneous equations

XNþ1
i¼0

Ei expð iyuÞ ¼
Ru

�
�

XNþ1
i¼1þN=2

Di expð iyuÞ � By�0

� Ay�0 expð yuÞ,

for each m, m ¼ 1, . . . ,M=2,

XNþ1
i¼0

Ei expð iyuÞ

ðð i=bmÞ � �mÞ
¼ �

Ru

�
�

XNþ1
i¼1þN=2

Di expð iyuÞ

ðð i=bmÞ � �mÞ

þ By�0 �
Ay�0 expð yuÞ

ðð1=bmÞ � �mÞ
,

for each m, m ¼M=2þ 1,M,

XNþ1
i¼0

Ei expð iyl Þ

ðð i=bmÞ � �mÞ
¼

Rl

�
�
XN=2
i¼0

Di expð iyl Þ

ðð i=bmÞ � �mÞ
� By50

�
Ay50 expð yl Þ

ðð1=bmÞ � �mÞ
,

XNþ1
i¼0

Ei expð iyl Þ ¼
Rl

�
�
XN=2
i¼0

Di expð iyl Þ � By50

� Ay50 expð yl Þ

and

XNþ1
i¼0

EiþNþ2 expð iyuÞ ¼
Ru

�
�

XNþ1
i¼1þN=2

DiþNþ2 expð iyuÞ

� By�0 � Ay�0 expð yuÞ,

for each m, m ¼ 1, . . . ,M=2,

XNþ1
i¼0

EiþNþ2 expð iyuÞ

ðð i=bmÞ � �mÞ
¼ �

Ru

�
�

XNþ1
i¼1þN=2

DiþNþ2 expð iyuÞ

ðð i=bmÞ � �mÞ

þ By�0 �
Ay�0 expð yuÞ

ðð1=bmÞ � �mÞ
,
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for each m, m ¼M=2þ 1,M,

XNþ1
i¼0

EiþNþ2 expð iyl Þ

ðð i=bmÞ � �mÞ
¼

Rl

�
�
XN=2
i¼0

DiþNþ2 expð iyl Þ

ðð i=bmÞ � �mÞ
� By50

�
Ay50 expð yl Þ

ðð1=bmÞ � �mÞ

XNþ1
i¼0

EiþNþ2 expð iyl Þ ¼
Rl

�
�
XN=2
i¼0

DiþNþ2 expð iyl Þ � By50

� Ay50 expð yl Þ

and Ekð f ð k, 1Þ � "12Þ þ "12EkþNþ2 ¼ 0, for each k ¼
0, 1, . . . ,N,Nþ 1. And where:

If the option has a vanilla-style payoff
maxð’ðSðT Þ � K Þ, 0Þ,

Ay�0 ¼
ð1þ ’Þ

2ð�þ rf � rd Þ
, Ay50 ¼

ð’� 1Þ

2ð�þ rf � rd Þ
,

By�0 ¼ �
ð1þ ’Þ

2�
, By50 ¼

ð1� ’Þ

2�
,

and if the option has a binary cash-or-nothing-style payoff
Ið’SðT Þ � ’K Þ,

Ay�0¼ 0, Ay50¼ 0, By�0¼
ð1þ’Þ

2�K
, By50¼

ð1�’Þ

2�K
:

In the special case that we are pricing an option where
there are, in fact, no barriers present (i.e. the limit as L! 0
and U!1), then the price of the option, at time t, is
KPd ðt,T ÞH

j ð y, sÞ, where L½Hj ð y, sÞ� is again as in
equations (A.21) to (A.24), the Dk terms, k ¼
0, 1, . . . , 2Nþ 2, 2Nþ 3, again solve equations (A.25) to
(A.31) but now the Ek terms, k ¼ 0, 1, . . . , 2Nþ 2, 2Nþ 3,
are all identically equal to zero.

Proof: In the absence of arbitrage and following Sepp
(2004) and Di Graziano and Rogers (2006), we know that
Hj � Hj ð y, sÞ satisfies the following coupled system of
PIDEs:

1

2
�2ð1ÞH1

yyþ
ð1ÞH
1
y�

XM
i¼1

aið1Þ

 !
H1þ "12ðH

2�H1Þ�H1
s

þ

Z 1
0

XM=2
i¼1

H1ðyþJÞaið1Þbi expð��ibiJ ÞdJ

þ

Z 0

�1

XM
i¼1þM=2

H1ðyþJ Þaið1Þbi expð��ibiJÞdJ¼ 0,

1

2
�2ð2ÞH2

yyþ
ð2ÞH
2
y�

XM
i¼1

aið2Þ

 !
H2þ "21ðH

1�H2Þ�H2
s

þ

Z 1
0

XM=2
i¼1

H2ðyþJ Þaið2Þbi expð��ibiJÞdJ

þ

Z 0

�1

XM
i¼1þM=2

H2ðyþJÞaið2Þbi expð��ibiJÞdJ¼ 0: ðA:32Þ

We take the Laplace transform of equation (A.32) and
substitute in our candidate solution (equations (A.21) to
(A.24)). The rest of the proof closely follows theorem A.2
and so we omit the details, save to mention that equations
(A.25), (A.27), (A.28) and (A.30) follow from the

requirement that the solution be continuous and have a
continuous first derivative at y¼ 0. œ

Remark A.6: Note that, in terms of our general pricing
formula, we can price DNT options by treating them as
having a binary cash-or-nothing-style payoff and setting
K¼L, ’ ¼ 1 and RL ¼ RU ¼ 0.

Remark A.7: Since (as we note at the end of the
statement of proposition A.5) we can compute the
Laplace transform of vanilla option prices, we can
immediately compute L½I0� and L½IMþ1� (see appendix
A1), without the necessity of performing a Fourier
inversion, when the dynamics of the spot FX rate after
the first exit time from the corridor are those of our CEE2
process. In fact, in this special case, we can also
analytically compute L½Ii,1�i�M=2� and L½Ii,1þM=2�i�M�
(see appendix A1) by substituting the appropriate
solution (equations (A.21) to (A.24)) and performing
the relevant integrations analytically. We omit the full
details since it only requires high-school calculus, save to
mention that when U5K, for the case of computing
L½Ii,1�i�M=2�, and when L4K, for the case of computing
L½Ii,1þM=2�i�M�, we need to split the relevant integrals into
two parts according to whether (in the notation of
proposition A.5) y50 or y� 0.

Appendix A4

As in the Black and Scholes (1973) world, introducing
term structures of interest rates (and/or volatilities) into
our model significantly complicates finding analytical
results for the pricing of barrier options and for the
distribution of first passage times. In appendix A4, we will
briefly indicate how one might proceed to introduce term
structures of interest rates as well as, possibly, time-
dependent volatilities, Poisson jump intensity rates and
Markov chain transition rates. In addition, we briefly
examine how we can price other types of exotic options.

We consider the pricing of options with maturity T
and fix a sequence of times t0 � T0 5T1 5
T2 5 � � � 5TN � T. We assume that over each interval
½Tn�1,TnÞ for each n¼ 1, 2, . . . ,N, interest rates (consis-
tent with the common market practice of using log-linear
interpolation of discount factors), volatilities, Poisson
jump intensity rates and Markov chain transition rates
are all piecewise constant.

We can simulate the transition times of the Markov
chain and then the jump times of the Poisson processes.We
then form the superset of these simulated times and of
fT0,T1,T2, . . . ,TNg. In between these times, the log of the
spot FX rate evolves as Brownian motion (essentially the
same idea can be found in Glasserman 2004). If we wish to
price, for example, a DNT option with barrier levels at L
and U (with continuously monitored barriers), we can use
results in Potzelberger and Wang (2001) concerning the
probability of a Brownian bridge process hitting either of
the barrier levels. For pricing other types of option, we can
use similar results to simulate whether the spot FX rate has
exited the corridor (L,U ) and, if so, simulate when it exited
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(see, for example, Buchmann 2004). If it has, then we can,
starting from the simulated first exit time, simulate the
process which we assume the FX rate follows after the first
exit time from the corridor. Using these ideas, we can price
a wide range of exotic options, even in the presence of time-
dependent parameters. On the other hand, it would mean
that we are completely reliant on Monte Carlo simulation
for pricing. This in turn might make calibration rather
slow. There is one special case in which we could have term
structures of interest-rates and still retain analytic expres-
sions (up to Laplace transform inversion) in our modelling
framework.

This special case is as follows. We denote time-
dependent parameters by using a superscript t. We are
given term structures of interest rates where we assume
that rtd and rtf are piecewise constants. Firstly, we consider
the case where t0 � t5 �, i.e. when the spot FX rate has
not exited from the corridor (L,U ). Suppose that we
assume that the diffusion volatility, the Poisson jump
intensity rates and the Markov chain transition rates are
such that there exist constants �rd, �rf, ��ð1Þ, ��ð2Þ, �"12, �"21 and
�aið1Þ, �aið2Þ, for each i¼ 1, . . . ,M, satisfying

rtd � rtf
�t2ð1Þ

¼
rtd � rtf
�t2ð2Þ

¼
�rd � �rf
��2ð1Þ

¼
�rd � �rf
��2ð2Þ

,

rtd� rtf
atið1Þ

¼
rtd� rtf
atið2Þ

¼
�rd� �rf
�aið1Þ

¼
�rd� �rf
�aið2Þ

, for each i¼ 1, . . . ,M,

and

rtd � rtf
"t12

¼
rtd � rtf
"t21

¼
�rd � �rf

�"12
¼

�rd � �rf
�"21

: ðA:33Þ

In other words, all the parameters �t2ð1Þ, �t2ð2Þ, atið1Þ,
atið2Þ, "

t
12, "

t
21 have to be time-dependent in such a way that

they always have a constant scaling to rtd � rtf. Then, we
define a new time variable �s, via ��2ð1Þ�s �

R s
t0
�u2ð1Þ du, and

define

�
ð j Þ � �rd � �rf �
1

2
��2ð j Þ �

XM
i¼1

�aið j Þ

ð1� �i=biÞ

þ
XM
i¼1

�aið j Þ, for j ¼ 1, 2:

It is then easy to see that, for example, the coupled
system of PIDEs in equation (A.32) with time-dependent
parameters can be expressed in the form

1

2
��2ð1ÞH1

yyþ �
ð1ÞH1
y�

XM
i¼1

�aið1Þ

 !
H1þ �"12ðH

2�H1Þ�H1
�s

þ

Z 1
0

XM=2
i¼1

H1ðyþJ Þ �aið1Þbi expð��ibiJÞdJ

þ

Z 0

�1

XM
i¼1þM=2

H1ðyþJ Þ �aið1Þbi expð��ibiJÞdJ¼ 0,

1

2
��2ð2ÞH2

yyþ �
ð2ÞH2
y�

XM
i¼1

�aið2Þ

 !
H2þ �"21ðH

1�H2Þ�H2
�s

þ

Z 1
0

XM=2
i¼1

H2ðyþJ Þ �aið2Þbi expð��ibiJÞdJ

þ

Z 0

�1

XM
i¼1þM=2

H2ðyþJ Þ �aið2Þbi expð��ibiJÞdJ¼ 0:

We see that, with time-dependent parameters of the

special form of equation (A.33), we have reduced the

problem to one with constant parameters again. Hence,

all our previous results, mutatis mutandis, are valid. The

same conclusion holds for all our results in appendix A2.
Secondly, we consider the case where � � t � T, i.e.

after the first exit time from the corridor (L,U ). With the

assumption of time-dependent, but piecewise constant,

parameters, the results of appendix A1 are essentially still

valid, albeit that the Laplace transform of the character-

istic function will now have a rather more

complicated form.
A final comment is in order. Rapisardi (2005) shows

how, in the Black and Scholes (1973) world when

valuing a barrier option with term structures of interest

rates, one can, as a first-order approximation, use the

spot interest rates to the maturity of the option. This is

the approach we used in our illustrative calibrations in

section 5. Whilst in practice, this should, intuitively, give

a very good approximation to the price of a barrier

option, it also introduces an internal inconsistency when

pricing barrier options of different maturities. In our

modelling framework, if we make all the relevant

parameters time-dependent in such a way that they

satisfy equation (A.33), this internal inconsistency is

removed and we can, without approximation, account

for term structures of interest rates in both the domestic

and the foreign currency. However, the quid pro quo is

that one has to artificially introduce time-dependent

volatilities, Poisson jump intensity rates and Markov

chain transition rates in order to retain analytical

tractability. To the extent that using the spot interest

rates to the maturity of the option is a good first-order

approximation when valuing barrier options, one would

expect that artificially introducing time-dependent vola-

tilities, Poisson jump intensity rates and Markov chain

transition rates would have little or no effect (either

positive or negative) on the quality of the calibration to

DNT options whilst exactly accounting for term

structures of interest rates.
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