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Abstract. This paper is motivated by questions about averages of stochastic processes which
originate in mathematical finance, originally in connection with valuing the so-called Asian options.
Starting with [M. Yor, Adv. Appl. Probab., 24 (1992), pp. 509–531], these questions about expo-
nential functionals of Brownian motion have been studied in terms of Bessel processes using the
Hartman–Watson theory of [M. Yor, Z. Wahrsch. Verw. Gebiete, 53 (1980), pp. 71–95]. Conse-
quences of this approach for valuing Asian options proper have been spelled out in [H. Geman and
M. Yor, Math. Finance, 3 (1993), pp. 349–375] whose Laplace transform results were in fact re-
garded as a significant advance. Unfortunately, a number of difficulties with the key results of this
last paper have surfaced which are now addressed in this paper. One of them in particular is of a
principal nature and originates with the Hartman–Watson approach itself: this approach is in general
applicable without modifications only if it does not involve Bessel processes of negative indices. The
main mathematical contribution of this paper is the development of three principal ways to overcome
these restrictions, in particular by merging stochastics and complex analysis in what seems a novel
way, and the discussion of their consequences for the valuation of Asian options proper.
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1. Introduction. This paper addresses questions about exponential functionals
of Brownian motion and the integral of geometric Brownian motion in particular.
These questions reduce to the study of the quadratic variation processes A(ν) of geo-
metric Brownian motion which for any real drift ν are explicitly given by the integrals
over time

A
(ν)
t =

∫ t

0

e2(νw+Bw) dw, t ∈ [0,∞),

with B a standard Brownian motion. These processes have both a surprisingly rich
theory and manifold applications ranging from the physics of random media to math-
ematical finance and insurance. In fact, the insurance-motivated study of certain
perpetuities in [8] seems to have initiated this line of research. Here, the above in-
tegrals over the whole time axis are considered and shown to be distributed as the
reciprocals of certain gamma variables. Drawing on his probabilistic interpretation
of the Hartman–Watson identities in [27], Yor was able to extend this work and to

determine the law of the processes A(ν) in [29]. This approach, using the Laplace
transform and based on Bessel processes, has been found by Yor to open many sur-
prising vistas on the processes A(ν) and their applications; see in particular [32]. The

interest in these processes A(ν) is partially due to their importance in mathematical
finance, in particular for understanding the so-called Asian options.

Asian options are widely used financial derivatives. As discussed in Part I of this
paper, these options provide in general nonlinear payoffs on the arithmetic average
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BESSEL PROCESSES AND ASIAN OPTIONS 401

of the price of an underlying asset. A common objective in their valuation is to
derive an explicit expression for a certain functional of A(ν). The pursuit of this
objective has evolved over the last fifteen years as an interplay between theoretical and
computational perspectives; see [20] or [9], for instance. Yor’s work in [29] clarified the
structure of the Black–Scholes prices of Asian options by expressing them as certain
triple integrals. In contrast to this result, however, it was the Laplace transform
approach of [12], also based on the Hartman–Watson theory, which had far-reaching
consequences for the way Asian option valuation is seen today, and on which we focus
here from Part II onwards. This is essentially because a very explicit expression in
terms of Kummer’s confluent hypergeometric function resulted from this approach for
what has been regarded as the Laplace transform of the value of such options. From a
numerical point of view, this expression has proved to be amenable to computation by
numerical inversion; see [11] for a recent example. Also it seems fair to say that this
has led financial mathematicians toward a new interest in developing and applying
these techniques.

Unfortunately, some difficulties with this Laplace transform approach to valuing
Asian options have emerged. First, it turned out that the Laplace transforms com-
puted in [12] are not those of the Asian options’ value. This appeared to decrease
the relevance of this result to financial application. Luckily, it turned out that there
is a reduction of the original problem of valuing Asian options to the one considered
in [12]. All of this is discussed in Part II of this paper.

A difficulty of a more serious and more principal nature, however, originates
with the Hartman–Watson approach on which the Laplace transform computations
of [12] are based. Its idea is to analyze A(ν) using Bessel processes of indices ν, and
its applicability has limits if ν is negative because of the pathologies which Bessel
processes of such negative indices develop. Together with background material about
Bessel processes, we have thus given in Part III a new exposition of the analysis
in [12], which explicitly takes care of the nonnegativity restriction on the index ν.
Hereby, we have been encouraged by the kind support of Yor, and we have tried
to incorporate his tutorials and suggestions. In terms of financial mathematics, our
extension to negative ν in fact extends the analysis of Asian options from the zero
dividend situation originally considered in [12] to one of general real dividend yields,
and thus to one with general real risk-neutral drifts. In this setting, the condition
that ν is not negative translates into the postulation that risk-neutral drift is not less
than half the squared volatility. Unfortunately, this lower bound on the drift restricts
the financial applicability of the results. In fact, the greater the volatility is, the
greater the range of parameters is in which the nonnegativity condition on ν is violated
and in which the approach does not give the Laplace transforms. Unfortunately, it is
precisely due to high volatility of the underlying asset that Asian options are used in
the first place.

Thus, the third contribution of our paper is to remove these restrictions by show-
ing the existence of the desired Laplace transforms. In fact, we develop three ways for
removing these restrictions. More precisely, we develop three principal ways of coping
with the difficulties caused by Bessel processes of negative indices in the Hartman–
Watson approach. This can be seen as the main mathematical contribution of the
paper. The approaches of Parts IV and VI are based on an analysis of Bessel processes
in the spirit of Yor. Our first approach extends the analysis of [12] to the missing
cases using deeper properties of Bessel processes of negative indices. Our second ap-
proach gives a new uniform proof using zero index Bessel processes only. Our third
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402 P. CARR AND M. SCHRÖDER

approach, in Part V, extends that of [2] and merges stochastic and complex analytic
techniques. This appears to be a rather novel and promising line of attack as we are
able to largely dispense with Bessel processes and focus instead on Brownian motion.

Apart from all this, our extension of the Laplace transform approach of [12]
has made possible advances in valuing Asian options, some of which are sketched in
Part VII. Hence, it may be fair to say that the Laplace transform approach of [12]
has proved to be a rich source for new results and insights in both finance and math-
ematics.

Part I. Prologue

2. Black–Scholes modeling. The results to be discussed originate from the so-
called risk-neutral approach to the valuation of contingent claims. General equilibrium
treatments for this and other notions developed for the analysis of financial markets
and instruments can be found, for instance, in [6], [7], [13, Chaps. 1–4]. This analysis
is based on models of security markets, and this section aims to recall the most
fundamental of these, the Black–Scholes model of security markets.

In fact, we need only that particular case of the Black–Scholes model in which
there are only two securities, and we understanding that these are traded on markets
in which their prices are determined by equating demand and supply. First, there
is a riskless security, a bond, whose price β grows at the continuously compounding
positive interest rate r, i.e., for which we have βt = exp(rt) at any time t in [0,∞).
Then there is a risky security. The fundamental idea is that all uncertainties affecting
its price S yield a certain probability space. In fact, consider for this a complete
probability space equipped with the standard filtration of a standard Brownian motion
on the time set [0,∞). Giving expression to the fact that S comes as an equilibrium
price, we have the risk-neutral measure Q on this filtered space, a probability measure
equivalent to the given one. Also, with B being any standard Q-Brownian motion,
the exact modeling then is that S is the strong solution of the following stochastic
differential equation:

dSt = �St dt + σSt dBt, t ∈ [0,∞),

or equivalently, using Itô calculus,

St = S0e
(�−σ2/2) t+σBt , t ∈ [0,∞).

The positive constant σ is the volatility of S. The specific form of the otherwise
arbitrary constant � depends on the nature of the security modeled, which could
be a stock, a currency, a commodity, etc. For example, if S is the price of a stock
paying a dividend continuously so as to have constant dividend yield δ, then we have
� = r − δ.

3. Asian options and their equilibrium pricing. In the Black–Scholes
framework of section 2, fix any time t0 and consider the process J given for any
time t by

J(t) =

∫ t

t0

Su du.

The arithmetic-average Asian option written at time t0 with maturity T and strike
price K is then the stochastic process on the closed time interval from t0 to T paying
(J(T )/(T − t0) −K)+ := max{0, J(T )/(T − t0) −K} at time T and paying nothing
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BESSEL PROCESSES AND ASIAN OPTIONS 403

at all other times. As such it is a contingent claim on the time interval from t0 to T
with payoff (J(T )/(T − t0) −K)+.

It is one of the fundamental insights that, in the equilibrium framework of the
Black–Scholes model, any such contingent claim on a risky security has an equilib-
rium price which is equal to the discounted expectation of its payoff with respect
to the risk-neutral measure conditional on today’s information; see, for instance, [6,
section 22K, (47)], [7, section 8A], or [16, Corollary 5.1.1]. Applying this arbitrage
pricing principle, the price Ct of the Asian option at any time t between t0 and T is
given by the discounted Q-expectation conditional on the information Ft available at
time t:

Ct = e−r(T−t)EQ

[(
J(T )

T − t0
−K

)+ ∣∣∣Ft

]
.

However, following [12, section 3.2], we do not focus on this price but instead nor-
malize the valuation problem as follows. On factoring out the reciprocal of the length
T − t0 of the time period, we split the integral J(T ) into two integrals, one of which
is deterministic by time t and the other of which is random. We then couple the
deterministic integral with the new strike. For the random integral, we restart the
Brownian motion driving the underlying asset at time t, and then, using the scaling
property of Brownian motion, we change time so as to normalize its coefficient in the
new time scale to two. The precise result is the factorization

Ct =
e−r(T−t)

T − t0

4St

σ2
C(ν)(h, q),

which reduces the general valuation problem to computing

C(ν)(h, q) = EQ
[
(A

(ν)
h − q)+

]
,

the normalized time-t price of the Asian option. Herein, A(ν) is Yor’s process

A
(ν)
h =

∫ h

0

e2(Bw+νw) dw,

and the normalized parameters are as follows:

ν =
2�

σ2
− 1, h =

σ2

4
(T − t), q = kh + q∗,

where

k =
K

St
, q∗ = q∗(t) =

σ2

4St

(
K (t− t0) −

∫ t

t0

Su du

)
.

To interpret these quantities, ν is the normalized adjusted interest rate, h is the
normalized time to maturity , which is nonnegative, and q is the normalized strike
price. On a conceptual level, notice that valuing any Asian option in this way is
reduced to computing a single function C(ν), and that a similar notion of normalized
hedging of Asian options can be developed along these lines. On a structural level,
moreover, notice how q becomes affine linear in the time variable h with coefficients k
and q∗ depending only on quantities known at time t.
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404 P. CARR AND M. SCHRÖDER

4. A first reduction of the normalized valuation. There is now a dichotomy
in computing the normalized time-t price

C(ν)(h, q) = EQ
[(
A

(ν)
h − q

)+]
of the Asian option according to whether or not the normalized strike price q is posi-
tive. Indeed, if q is nonpositive, Asian options lose their option feature. Computing
the values C(ν)(h, q) is straightforward.

Lemma. If q � 0, we have C(ν)(h, q) = EQ[A
(ν)
h ] − q with EQ[A

(ν)
h ] = e2h(ν+1) −

1/(2(ν + 1)) for any real ν, and it is thus sufficient to compute C(ν)(h, q) if q > 0.
This can be proved on applying Fubini’s theorem, and the last expectation is seen

to be analytic in ν with its value at ν = −1 equal to h. It should be mentioned that
formulas for all moments of A(ν) have been derived at various instances over the last
fifty years; see for example [32, section 2.4.1, (4.d′), p. 33 and Postscript 3b, p. 54].

5. Yor’s integral representation for Asian option values. A closed form for
the normalized time-t prices C(ν) of Asian options can be obtained as a consequence
of Yor’s triple integral representation [29, (6.e), p. 528]. Recall the latter is based
on Yor’s characterization of the law of A(ν) in [29, (6.c), p. 527] and so is eventually
based on the Hartman–Watson theory of [27]. Furnishing a measure for the difficulty
of computing normalized prices, the precise form of Yor’s closed form is as follows.

Theorem. For any reals h, q > 0, and ν, we have

C(ν)(h, q) = cν,h

∫ ∞

0

xν

∫ ∞

0

e−(1+x2) y/2

(
1

y
− q

)+

ψxy(h) dy dx.

Herein the function ψa, for any positive real number a, is given by the following
integral:

ψa(h) =

∫ ∞

0

e−w2/(2h)e−a ch(w) sh(w) sin

(
π

h
w

)
dw ,

for any h > 0, and we abbreviate

cν,h =
1

π
√

2π3h
eπ

2/(2h)−ν2h/2.

While Yor’s formula seems to require ν to be bigger than at least minus one, it is
valid for all real ν. This is proved in [24, section 6].

One purpose of closed form expressions is to provide means for actually comput-
ing option prices. While Yor’s results above are the key to many insights into the
mathematical structure of A(ν), Yor’s formula of the theorem has a number of struc-
tural difficulties in this regard. First, it involves three integrations with seemingly
no further structure or further possibilities for simplification. Thus, methods for ex-
plicitly computing it will necessarily be rather complex. However, we have noticed
an apparently even bigger obstacle to computability. For instance, taking t0 = 0 and
� = r equal to 5%, we compute the factors cν,h as follows:

Table 1. cν,h as function of T and σ.

cν,h σ = 20% σ = 30% σ = 40%

T = 1 year 2 . 627 × 10213 2 . 265 × 1094 4 . 816 × 1052

T = 6 months 7 . 686 × 10427 5 . 717 × 10189 2 . 583 × 10106
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BESSEL PROCESSES AND ASIAN OPTIONS 405

As the examples of section 8 and section 24 will show, normalized prices of Asian
options are not too big. Yor’s formula thus expresses them as the product of a big
number times a triple integral. The latter has to be very small and must be computed
with very high accuracy to get reasonably accurate results. The Laplace transform
approach developed in [12] explicitly for the purpose of valuing Asian options was
seen to offer a way out of these difficulties.

Part II. Laplace Transform Results

6. The Laplace transform in option valuation. Working with continuous
functions on the nonnegative real line of at most exponential growth, the Laplace
transform L(f) of any such function f is defined by

L(f)(z) =

∫ ∞

0

e−zxf(x) dx

for any complex number z in a half-plane contained sufficiently deep within the com-
plex right half-plane.

The connection of this notion with option valuation in general and Asian option
valuation in particular is as follows. Fix any option type, such as section 3’s European-
style Asian call option, on a certain stock with price S. It will depend on a number of
parameters, such as strike price and maturity date. At a fixed point in time t, consider
the family which consists of all options on the market with all such parameters fixed
except maturity dates M . In the Asian option example thus consider the Asian
options of all maturities available at time t which have the same strike price. In this
way regard maturity date M as a real variable ranging from t to infinity. The value
of the option thus becomes a function of M .

However, it is normalized prices C(ν) we have to consider for the Asian option.
The normalizations of section 3 in fact turn C(ν) into a function of, in particular,
normalized time to maturity. As a function of maturity date M , normalized time to
maturity is explicitly given by h(M) = (σ2/4) (M − t). With M from t to infinity,
h(M) thus ranges from 0 to infinity. The normalized price of the Asian option so
becomes a function on the nonnegative real line. Call it fAO for the sake of emphasis.
Recalling from section 3 how the normalized strike price q depends in an affine linear
way on normalized time to maturity, we then have more precisely

fAO(x) = EQ
[(
A(ν)

x − (kx + q∗)
)+]

for any nonnegative real x.
At this point we should signal a difficulty with [12] which we have noticed in the

Fall of 1999. It is not the functions fAO this last paper is working with, but the
functions fGY,a given for any positive real a by

fGY,a(x) = EQ
[(
A(ν)

x − a
)+]

for any nonnegative real x. Notice that the function fAO has a nonconstant strike
price x �→ kx+ q∗, whereas any function fGY,a has the constant strike price a. So the
value function of the Asian option fAO is different from any function fGY,a, which
thus is the value function of a non-Asian option. Because of the injectivity of the
Laplace transform on continuous functions, the Laplace transform L(fAO) is different
from any Laplace transform L(fGY,a) too. The problem at this point concerns the
relevance of mathematics to financial application proper: Is there a way of relating
the valuation of Asian options to the valuation of the non-Asian options?
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406 P. CARR AND M. SCHRÖDER

7. Valuing Asian options using families of non-Asian options. The basic
idea is as follows. Try to reconstruct the normalized time-t price

C(ν)(h, q) = EQ
[(
A(ν)

x − (kx + q∗)
)+] ∣∣∣

x=h

of the Asian option from a family of auxiliary functions whose single members are
unrelated to the problem of valuing the Asian option but amenable to the analysis
of [12]. Given that the time dependency of the normalized strike price poses the prob-
lems, simply force this strike price to be constant. Thus we arrive, for any positive
real a, at section 6’s functions fGY,a on the positive real line recalled as given by

fGY,a(x) = EQ[(A
(ν)
x − a)+] for any positive real x. These are the functions consid-

ered in [12]. As we remarked in section 6, they are the values of certain non-Asian
options and, taken individually, they cannot be used to value the original Asian op-
tion. However, our finding is that as a whole they allow one to recover the normalized
time-t price. With the concepts of section 3 this key reduction is made precise in the
following lemma.

Lemma. If q = kh + q∗ is positive, computing the normalized time-t price
C(ν)(h, q) of the Asian option reduces to computing all fGY,a with a > 0. More pre-
cisely, C(ν)(h, q) is obtained by choosing the function fGY,kh+q∗ and evaluating it at h.

A moment’s reflection will convince the reader that this is true by construc-
tion, and meanwhile, the particular case of the lemma, which we explained to Yor in
May 2000, can be found in [32, pp. 95–96]. Notice that our construction works in the
more general situation, where functions of the form h(y) = f(y, ϕ(y)) with a known
map ϕ have to be computed: compute the functions f and then intersect with the
graph of ϕ to get h. Also, to stress the main result again, as one consequence of this
technique we have at this point reduced valuing Asian options to valuing the family
of all non-Asian options.

8. Laplace transforms of the non-Asian option values fGY,a. The key
reduction of the preceding section shows the way to apply the Laplace transform
of [12] to value Asian options. Moreover, adopting the notation of section 3, consider
the family of all functions fGY,a with a > 0 that send any x > 0 to

fGY,a(x) = EQ
[
(A(ν)

x − a)+
]
.

Recall from section 7 that its single members are unrelated to valuing the Asian
option, but that as a whole, the family allows reconstruction of the normalized time-t
price C(ν)(h, q) of the Asian option. As a first step in actually computing the fGY,a,
try to compute their Laplace transforms FGY,a given by

FGY,a(z) =

∫ ∞

0

e−zxfGY,a(x) dx = L(fGY,a)(z).

Here the complex number z is to be taken in a half-plane sufficiently deep within the
right complex half-plane such that the integrals are finite. The function so obtained
is analytic. The precise conditions under which these integrals are finite is part of
our description of these generalized Geman–Yor Laplace transforms in the following
theorem.

Theorem. If the normalized strike price q is positive, the integrals FGY,a are
finite for any complex number z with Re(z) > max{0, 2(ν + 1)}, and we have

FGY,a(z) =
Dν(a, z)

z(z − 2(ν + 1))
,
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BESSEL PROCESSES AND ASIAN OPTIONS 407

where on choosing the principal branch of the logarithm

Dν(a, z) =
e−1/(2a)

a

∫ ∞

0

e−x2/(2a)xν+3 I√2z+ν2

(
x

a

)
dx.

Herein Iµ is the modified Bessel function with complex order µ, as discussed in [15,
Chap. 5]. Generalizing [12, (3.9), p. 363] the integral Dν(a, z) can be expressed using
the confluent hypergeometric function Φ discussed in [15, Chap. 9] as follows.

Corollary. For any complex z with Re(z) > max{0, 2(ν + 1)}, we have

Dν(a, z) = Γ

(
ν + 4 + µ(z)

2

)
1

Γ(µ(z) + 1)

×Φ

(
ν + 4 + µ(z)

2
, µ(z) + 1;

1

2a

)
(2a)(ν+2−µ(z))/2

e1/(2a)

on setting µ(z) =
√

2z + ν2.
We again stress that these Laplace transforms are not those of the Asian op-

tion price, but rather the Laplace transforms of the prices of auxiliary options. To
obtain Asian option prices, we have to invert these Laplace transforms and then pro-
ceed using section 7’s lemma; formally speaking, C(ν)(h, q) = L−1(FGY,q)(h). In full
mathematical generality, analytic inversion has been achieved in [21], and we come
back to this in section 23. Numerical inversions have also been accomplished. For ex-
ample, Fu, Madan, and Wang [11] computed the following seven cases as reproduced
in [9, Table 7.1]:

Table 2. Prices 2C(ν) for K = 2.0 and
t0 = t = 0 using numerical Laplace inversion.

Case r σ T S0 ν 2C(ν)

1 2% 10% 1 2.0 3 0.056
2 18% 30% 1 2.0 3 0.219
3 1.25% 25% 2 2.0 − 0 . 6 0.172
4 5% 50% 1 1.9 − 0 . 6 0.194
5 5% 50% 1 2.0 − 0 . 6 0.247
6 5% 50% 1 2.1 − 0 . 6 0.307
7 5% 50% 2 2.0 − 0 . 6 0.352

Obtaining our two results proceeds in two steps. In an initial probabilistic step, the
arguments of [12] are adapted to compute the modified Geman–Yor transforms FGY,a.
We give in Part III a new exposition of the argument incorporating the tutorials and
kind suggestions of Yor. The key idea is to factorize the geometric Brownian motion of
the underlying asset over a Bessel process of index ν. Pertinent notions are discussed in
section 9. This makes time stochastic in such a way that Yor’s process A(ν) now takes
the double role of both a stochastic clock and a control variable for the Asian option.
At first sight, this appears to complicate the original valuation problem. However, this
double role of A(ν) is especially suited to the Laplace transform. Indeed, in contrast
to the situation for the Asian option, the strike price a of the non-Asian option
with value function fGY,a is independent of time. This makes it possible to reduce
the computation of the Laplace transform FGY,a to the following problem: obtain
explicit expressions for the Bessel semigroup of index ν and for a certain conditional
expectation involving first passage times of Yor’s process A(ν).
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408 P. CARR AND M. SCHRÖDER

However, such results are available for both concepts only if the index ν is nonneg-
ative, an assumption which is explicit in [12, section 2]. This nonnegativity condition,
however, translates into the condition that the risk-neutral drift is not less than half
the squared volatility. Unfortunately, this places restrictions on the financial applica-
bility of the result. For example, if volatility is 30%, the arguments of [12, section 3]
are not valid if the difference between the risk-free rate and the dividend yield is less
than 4.5%, and then we do not have the Laplace transforms of the non-Asian options
either. Worse yet, the greater the volatility is, the greater is this range of parameters
in which we do not have the Laplace transforms. Unfortunately, it is precisely due to
high volatility that Asian options are used in the first place.

We have been a bit disconcerted by these findings. Luckily, however, we found
that in particular those results of Table 2, where ν is negative, were reproduced in [9]
using an alternative approach. Also, corroborating Weil’s [26, p. 457] dictum that
“theorems are proved by those who believe in them”, we are now able to discuss in
what follows three different ways for establishing the theorem and its corollary for
arbitrary real risk-neutral drifts ν.

The first of these, as discussed in Part IV, is inspired by [29], and we think Yor
could have given this argument had he been aware of the financial motivation for
letting the parameter ν be negative. In fact, the key idea is to try to bypass the
difficulties of Bessel processes of negative index ν by Girsanov transforming to the
simpler Bessel processes of index zero. This theme is developed also in the third
approach discussed in Part VI. Here, the idea is not to Girsanov transform Bessel
processes derived from the geometric Brownian motion driving the underlying asset.
Instead, Girsanov transform this geometric Brownian motion itself — an idea we
distilled from [27]. The effect of this is that zero drift Bessel processes enter right
from the beginning, and the result is a uniform argument based on these most natural
Bessel processes.

In comparison to these two approaches, our second approach discussed in Part V
seems somewhat novel. The idea is to combine stochastic methods with complex
analytic ones. The net effect here is that with an input of some standard result from
the latter area, such as the identity theorem, it is not Bessel processes which now
have to be dealt with but Brownian motion. For this we are, moreover, not required
to work on the process level, as it is sufficient to work on the level of expectations.
So this second approach seems to be an example of a rather promising methodology
for solving problems, which is to systematically enhance stochastic techniques with
complex analytic ones.

Part III. Laplace Transforms if ν � 0

9. Preliminaries on Bessel processes. As a preliminary to establishing the
Laplace transforms of section 8, this section collects a number of pertinent facts
from the theory of Bessel processes. This theory is patterned after the example of the
Bessel processes of integer dimension δ � 2, which are defined by taking the Euclidean
distance from the origin of a Brownian motion in dimension δ. Applying Itô’s lemma,
their infinitesimal generator A is seen to be given by

Af(x) =
1

2
f ′′(x) +

2ν + 1

2x
f ′(x)

for any function f in C2
b (R>0). This notion makes sense for any real number δ,

and the real-valued diffusion associated to A using the Volkonskii construction (see
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BESSEL PROCESSES AND ASIAN OPTIONS 409

for instance [14, Theorem 4.3.3, p. 91]) is the Bessel process R(ν) on [0,∞) with
index ν = (δ/2)− 1. While Bessel processes of nonnegative indices ν remain positive
if begun with a positive value at time zero, Bessel processes of negative indices ν
develop some pathologies. As explained in [19, XI, section 1], in this case they hit
zero. If −1 < ν < 0, they are thereupon instantaneously reflected and never become
negative. For ν = −1 they continue at zero.

This matters for the second way of defining Bessel processes of arbitrary dimen-
sion δ. In fact, the focus here is on squares of Bessel processes. Applying Itô’s lemma,
they are the continuous strong solutions of the stochastic differential equation

dρt = 2δ dt + 2
√
|ρt| dBt, ρ0 = 1

[19, XI, section 1]. These stochastic differential equations make sense for any real
number δ and have a unique continuous strong solution also if δ is smaller than two.
The obtained processes are studied in [30, section 3]. For nonnegative indices ν, they
coincide with the squares of the corresponding Bessel processes of index ν. They
develop some pathologies for negative indices ν. In this case, they hit zero if begun
with a positive value at time zero, and if ν < −1, they even continue negative. Notice
that in such situations their square roots are purely imaginary and so cannot coincide
with any of the Bessel processes constructed above. However, these two ways of
extending the notion of Bessel processes do coincide for processes begun at time zero
at a positive value up to the first time zero is hit. This essentially is the reason behind
the following Lamperti identity , which may nevertheless be surprising.

Lemma. For the index ν any real number, we have the factorization

eBt+νt = R(ν)
(
A

(ν)
t

)

for any t > 0, where A
(ν)
t =

∫ t

0
e2(Bw+νw) dw is Yor’s process.

For ν � 0 a proof is given in [28, section 2] while the general case is now contained
as exercise XI (1.28) on page 452 of the third edition of [19]. We are indebted to Yor
for this and for kindly supplying us with the following argument.

The idea is to apply the Itô rule to the square Zt of Yt = exp(νt + Bt) to get

Zt = 2(ν + 1)

∫ t

0

Zw dw + 2

∫ t

0

Zw dBw.

Time change the process using the inverse function τ(t) = inf{u|
∫ u

0
Zw dw > t} to

Yor’s process A(ν) to get

Zτ(t) = 2(ν + 1) t + 2

∫ τ(t)

0

Zw dBw.

To interpret the stochastic integral in this sum, apply the basic time change formalism
for stochastic processes as in [17, section 8.5] to obtain

∫ τ(t)

0

Zw dBw =

∫ t

0

Zw

√
τ ′(w) dWw,

where Wt is defined as the stochastic integral Wt =
∫ τ(t)

0

√
Zw dBw and is a Brownian

motion. Using the inverse function theorem of calculus, the derivative of τ is equal to
the reciprocal of the derivative with respect to time of Yor’s process A(ν) at time w.
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410 P. CARR AND M. SCHRÖDER

Hence it is equal to the reciprocal of Zw. On substitution we so identify the time-
changed process Z as a continuous solution to the stochastic differential equation for
the square of the Bessel process of index ν:

Zτ(t) = 2(ν + 1) t + 2

∫ t

0

√
Zw dWw.

Using the uniqueness of the solution of these stochastic differential equations, the
time-changed process Z is the square of the Bessel process of index ν. Reversing the
time change, this translates into

Y 2
t = (R

(ν)
t )2 (A

(ν)
t ).

To establish the identity of the lemma, we have to take square roots. This is not a
problem if ν is nonnegative since then the Bessel process takes nonnegative values
only. It does pose a problem if ν is negative. In this case, however, recall that the
Bessel process starts at time zero with a positive value. Since it is continuous by
hypothesis, it will remain positive until it first hits zero at time t∗ > 0. Since the
process A(ν) begins at zero at time zero, there is a latest point in time t∗∗, infinity
admitted, such that A(ν) is smaller than t∗ at all points in time t smaller than t∗∗.
Thus we have the required identity at least for all points in time t smaller than t∗∗.
Now Yt is never zero. Since the processes on both sides of the identity are continuous
in time, t∗∗ must be infinity, and the proof is complete.

10. Computing Laplace transforms if ν � 0. This section is the first step
in the proof of the integral representation of section 8’s theorem for the Laplace
transform

FGY,a(z) =

∫ ∞

0

e−zxfGY,a(x) dx = L(fGY,a)(z),

where, with the concepts of sections 3 and 6, we have fGY,a(x) = EQ[(A
(ν)
x − a)+]

for any positive real numbers a and x. We now explain why one needs to restrict the
probabilistic arguments of [12] and apply them mutatis mutandis in order to arrive
at the following lemma.

Lemma. The assertions of section 8’s theorem are valid if ν = 2σ−2� − 1 � 0.
We are very indebted to Yor for correspondence and discussions about this result,

and are very grateful for his kind support. In what follows, we want to indicate the
key steps of the proof following [12], while trying to incorporate his suggestions. We
hope that no pitfalls have remained undetected.

The basic idea is to make time stochastic using the Lamperti identity

eνw+Bw = R(ν)(A(ν)
w )

for all positive real numbers w, as has been discussed in the preceding section.
Here, R(ν) is the Bessel process of index ν with R(ν)(0) = 1.

On applying this Lamperti identity, A(ν) has the double role of both control
variable and stochastic clock. That the “strike price” a is independent of time now
becomes essential. It makes possible the transcription of the condition on the control
variable so that it is bigger than a as the inverse time change

τν,a = inf{u | A(ν)
u > a}
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BESSEL PROCESSES AND ASIAN OPTIONS 411

for the stochastic clock. This is the key idea for obtaining the representation

fGY,a(w) = EQ

[
e2(ν+1)[w−τν,a]+ − 1

2(ν + 1)
(R(ν)

a )2
]

for all w > 0. Indeed, fix any positive real number x, and consider the process A(ν)

at x on the set of all events, where τν,a takes values less than or equal to x. Break the
integral defining A(ν)(x) at τν,a. The first summand then is A(ν) at time τν,a and so
is equal to a. In the second summand, restart the Brownian motion in the exponent
of the integrand at τν,a, shifting the variable of integration accordingly. The second
integral then is the product of exp(2 (B(τν,a)+ντν,a)) times A(ν) at x−τν,a, by abuse
of language after having applied the strong Markov property. This last process is
such that it is independent of the information at time τν,a. Unraveling the definition
of τν,a, the first above factor is thus the square of the Bessel process R(ν) at time a.
Now taking the expectation conditional on the information at τν,a, we thus get

EQ
[(
A(ν)

x − a
)+ ∣∣Fτν,a

]
=

(
R(ν)

a

)2
EQ

[
A

(ν)
[x−τν,a]+

]
.

On substitution for the expectation of A(ν)(w) from section 4’s lemma or using [29,
section 4], the required expression for fGY,a follows.

At first sight this appears to complicate the problem. However, it is just what is
especially suited to the Laplace transform FGY,a of fGY,a, now given by

FGY,a(z) =

∫ ∞

0

e−zwEQ

[
e2(ν+1)[w−τν,a]+ − 1

2(ν + 1)
(R(ν)

a )2
]
dw.

Still, for computing this integral one wants to interchange the Laplace integral with the
expectation EQ. If z is real, it seems best to follow Yor’s proposal for justifying this.
Indeed, with the integrand of the double integral in question positive and measurable,
apply Tonelli’s theorem now but justify only in a later step that any of the resulting
integrals are finite. The case of a general argument z is reduced to this case by
considering the absolute value of the integrand, and the result is the identity

FGY,a(z) =
1

z(z − 2(ν + 1))
EQ

[
e−zτν,a(R(ν))2

]

of measurable functions for any complex number z with Re(z) > 2(ν + 1). The idea
for identifying the expectation in the numerator as Dν(a, z) then is to condition on
the Bessel process to obtain

Dν(a, z) =

∫ ∞

0

x2 EQ
[
e−zτν,a

∣∣R(ν)
a = x

]
pν,a(1, x) dx,

where pν,a is the time-a semigroup density of the Bessel process of index ν starting
at 1 at time zero. Following [12, p. 362] we make this integral explicit by making
the single factors of its integrand explicit. For this, work with the results recalled in
[12, section 2]. With respect to the conditional expectation factor, under the hypoth-
esis ν � 0, Yor has computed it at positive real arguments z in [27, Théorème 4.7,
p. 80] (see also [12, Lemma 2.1 and Proposition 2.6]). Using analytic continuation, the
validity of his result can be seen to extend to the arguments z in the right half-plane
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412 P. CARR AND M. SCHRÖDER

required in the present situation. This then gives for the conditional expectation
factor in Dν(a, z) the following expression as a quotient of I-Bessel functions:

EQ
[
e−z τν,a

∣∣R(ν)(a) = w
]

=
I√2z+ν2

Iν

(w
a

)
.

Explicit expressions for the Bessel semigroups pν,a have been known for ν > −1 for
some time; see [27, (4.3), p. 78] or [12, Proposition 2.2]. The density pν,a(1, w) of the
time-a Bessel semigroup with index ν and starting point 1 is

pν,a(1, w) =
wν+1

a
e−(1+w2)/(2a) Iν

(w
a

)
.

Nothing seemed to have been known about such densities if ν � −1 before [30].
However, the results proved there for ν < −1 still need to be handled with care, as
will be explained in section 14. The upshot is that, in accordance with [12, section 2],
the above decomposition of Dν(a, z) seems to give explicit results without further
qualifications only if ν � 0. Then, however, we have the required result

Dν(a, z) =
e−1/(2a)

a

∫ ∞

0

e−x2/(2a) xν+3 I√2z+ν2

(
x

a

)
dx.

There is a further technical point to be taken care of herein: choose the principal
branch of the logarithm to define the square root on the complex plane with the
nonpositive real line deleted.

To complete the Tonelli argument proposed to us by Yor and to complete the
proof, we have to establish the finiteness of this integral for any fixed complex num-
ber z with Re(z) > 2(ν + 1). This is a consequence of the convergence analysis of
these integrals by the proposition in section 11, and granting this result, the proof of
the lemma is complete.

11. Integrability analysis. In terms of the concepts of section 3, this section
studies finiteness of the integrals

Dν(a, z) =
e−1/(2a)

a

∫ ∞

0

e−x2/(2a)xν+3 I√2z+ν2

(
x

a

)
dx

for any real a > 0 in terms of their complex parameters ν and z. The precise result
is the following proposition.

Proposition. Let ε � 0 be any real number. If | Im(ν)| � ε, the integrals Dν(a, z)
are finite for any complex z with real part Re(z) > 2ε2.

The proposition depends on the following result about the complex square root
associated to the principal branch of the complex logarithm.

Lemma. Let ε � 0 be any real number. For any complex ν with | Im(ν)| � ε we
have Re(

√
2z + ν2) > |Re(ν)| for any complex z with Re(z) > 2ε2.

A proof of the lemma based on a close analysis of the square root can be found
in [2, section 10]. To prove the proposition, finiteness of Dν(a, z) under the condi-
tions of the proposition follows by combining the above square root lemma with the
asymptotic behavior of the Bessel function factor of its integrand near the origin and
towards infinity. Indeed, setting

µ =
√

2z + ν2,
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BESSEL PROCESSES AND ASIAN OPTIONS 413

from [15, section 5.11] recall that Iµ is a continuous function on the positive real line,
in particular whose asymptotic behavior for large real arguments is

Iµ(ξ) ≈ eξ√
2πξ

as ξ → ∞.

Hence the factor exp(−x2/(2a)) dominates the asymptotic behavior of the integrand
of Dν(a, z) with x to infinity, whence we obtain its integrability away from the origin.
On the other hand, from [15, section 5.7] we have for real arguments near zero

Iµ(ξ) ≈ ξµ

2µΓ(1 + µ)
as ξ ↓ 0.

Thus, if the real part of µ + ν + 4 is positive, or equivalently, if we have

Re(µ) > −(Re(ν) + 4),

no integrability problems arise for x near the origin. Under the conditions of the
proposition, on the other hand, the above lemma gives Re(µ) > |Re(ν)|. Since this
last inequality implies the former, the proof of the proposition is complete.

Part IV. Laplace Transforms in the General Case:
Using Girsanov Transforms of Bessel Processes

12. Further preliminaries on Bessel processes. Our first way of extending
the results of section 10 to negative indices ν requires further preliminaries on Bessel
processes from [29, section 2]. Recall that Bessel processes, where the index ν is
any real number, are the real-valued diffusions whose infinitesimal generators A are
given by

Af(x) =
1

2
f ′′(x) +

2ν + 1

2x
f ′(x)

for any function f in C2
b (R>0). To describe the law Pµ,u on C(R�0,R�0) of R(ν) if

this process begins at the nonnegative real u, let ρ be the canonical process on the
space C(R�0,R�0); recall it operates as an evaluation map: ρa(f) = f(a). If R is
the canonical filtration with Ra equal to the sigma algebra generated by the ρs with
s � a, we then have the mutual absolute continuity relation.

Lemma. If the Bessel process of any real index ν is begun at any nonnegative
real u, its law is related to that of the zero index Bessel process started at u as follows:

Pµ,u|Ra∩{a<T0} =

(
ρa
u

)µ

exp

(
− µ2

2

∫ a

0

ds

ρ2
s

)
P0,u |Ra

,

where T0 is the first passage time of ρ to zero.
This is proved as an application of Girsanov’s theorem by exchanging drifts in

the stochastic differential equation of section 9, and it has the following corollary.
Corollary. For any complex z with positive real part and any nonnegative

real r,

E0
u

[
exp

(
− z

∫ a

0

ds

ρ2
s

) ∣∣∣ ρa = r

]
=

I√2z

I0

(
ur

a

)
,

where the expectation is taken with respect to the law P0,u.
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414 P. CARR AND M. SCHRÖDER

The corollary is proved in two steps. If z is any nonnegative real, T0 = ∞,
and we have the explicit expressions for the densities pµ,a(u, r) of the Bessel semi-
groups already encountered in section 10 and related to the law via Pµ,u(a, dr) =
pµ,a(u, r) dr, i.e.,

pµ,a(u, r) =

(
r

u

)µ
r

a
exp

(
− 1

2a
(u2 + r2)

)
Iµ

(
ur

a

)
,

then for any nonnegative reals u, a > 0 and r. Thus the corollary follows on taking
expectations in the absolute continuity relation of the lemma. Observing that both
sides of the identity to be proved are analytic functions in z on the right half-plane,
the general case then follows by analytic continuation as a second step.

13. First proof of the Laplace transform using Bessel processes. Resum-
ing the discussion of section 10, we are now able to complete the proof of section 8’s
theorem in the way it might have been envisaged by Yor: based on a careful analy-
sis of Bessel processes. Recall that we still need to explicitly compute, for negative
normalized risk-neutral drifts ν, the risk-neutral expectations

EQ
[
e−zτν,a

(
R(ν)

a

)2]
,

where a > 0 and Re(z) is positive and sufficiently large in particular. From the time
change part of the argument in section 9, recall that τν,a as the inverse time change
of the process A(ν) at time a is given by

τν,a =

∫ a

0

ds

(R
(ν)
s )2

.

Again using section 9’s Lamperti relation

eBw+νw = R(ν)
(
A(ν)

w

)
,

which is valid for w � 0, the point now is that a is smaller than the first passage time
to zero T0 of the Bessel process R(ν). Put differently, this Bessel process, which starts
in 1 at time zero, still is positive at time a. Using the absolute continuity relation of
section 12’s lemma, we have

EQ
[(
R(ν)

a

)2
e−zτν,a

]
= E0

1

[
ρ2
a exp

{
− z

∫ a

0

ds

ρ2
s

}
ρνa exp

{
− ν2

2

∫ a

0

ds

ρ2
s

}]
.

Conditioning on the index-0 Bessel process thus gives

EQ
[
e−zτν,a

(
R(ν)

a

)2]

=

∫ ∞

0

E0
1

[
exp

{
−
(
z +

ν2

2

) ∫ a

0

ds

ρ2
s

} ∣∣∣∣ ρa = ρ

]
ρν+2 p0,a(1, ρ) dρ.

With the explicit form of the semigroup recalled in section 12, applying section 12’s
corollary gives

EQ
[
e−zτν,a

(
R(ν)

a

)2]
=

1

a
e−1/(2a)

∫ ∞

0

I√2z+ν2

(
ρ

a

)
ρν+3 e−ρ2/(2a) dρ

as desired. An application of section 11’s proposition shows finiteness of this integral
if z0 = Re(z) is positive and larger than 2(ν + 1), and the first proof of section 8’s
theorem is complete. Note that meanwhile the argument of [32, pp. 97–99] seems to
corroborate our statement that this proof is very much in the spirit of Yor.
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BESSEL PROCESSES AND ASIAN OPTIONS 415

14. Vista on the use of Bessel processes. The strategy of the preceding
argument is to bypass the difficulties brought about by Bessel processes with negative
indices by Girsanov transforming to Bessel processes of index zero. One could ask
about a direct attack in the spirit of section 10. This would require possession of
explicit expressions for both the densities of the respective Bessel semigroups and
the pertinent conditional expectations of exp(−zτν,a). The recent work of Göing-
Jaeschke and Yor in [30] in particular now provides certain analytic expressions for
the densities. However, it is not Bessel processes, as considered in section 12, which
are studied there, but rather processes obtained as strong solutions to the stochastic
differential equations of squared Bessel processes, as mentioned in section 9. Recall
that for negative indices, the latter processes become negative and their square roots,
which should give the Bessel processes, are then purely imaginary. Still, the two
notions of Bessel processes thus obtained coincide on their respective positive ranges.
There, we have Bessel semigroup densities based on those derived in [30, section 3,
Proposition 2, p. 21]. For indices ν < −1 and time-0 starting values y > 0, they are
given by

pν,t(x, y) = h(x, y, δ, t) exp

(
y − x

2t

)∫ 1

0

(1 − w)2(µ−1)

wµ
exp

(
1

2t

(
xw − y

w

))
dw,

defining

h(x, y, δ, t) =
1

Γ2(µ− 1)

(xy)(µ−1)

22−δ(2 − δ)
tδ−3,

and with δ = 2(1 + ν) < 0 and µ = 1 − ν. However, these densities are in terms of
new classes of special functions. The clarification of their relations to those for Bessel
processes of nonnegative indices is but one of the problems that require further study.

Part V. Laplace Transforms in the General Case:
Combining Stochastics and Complex Analysis

15. Remarks on general philosophy. The discussion up to now has focused in
particular on extension at the process level. The actual valuation problem, however,
is not at the process level but at the expectation level. From this point of view,
section 10 has identified two functions, f and g, in the variable ν and has proved
them to be equal for ν nonnegative. One would like to have this equality also for
negative ν, and thus extend the validity of the identity f = g from the nonnegative
real line to the whole real line. Such situations quite commonly appear in problems
in analysis and are addressed there using analytic continuation. However, functions
become amenable to complex analytic methods only on open subsets of the complex
plane. Thus the identity theorem of complex analysis asserts that two functions on a
connected open subset of the complex plane are equal if they are analytic and agree
on a convergent sequence there only. So it is in fact no longer possible to stick to
real numbers only. As a subset of the complex plane they are closed with an empty
interior. At this stage, however, nothing is known about the functions of section 10
if ν is outside the nonnegative real line. In particular, it is not known if they exist
at all, and this needs to be established together with their analyticity properties. Of
these two functions, Dν(a, z) is already given as an explicit analytic expression, while
the other function is not. In fact, it is not explicit at all, as it is defined as the Laplace
transform of a certain expectation. The question to be tackled here is then how to
get explicit analyticity properties from such nonexplicit stochastic concepts. In the
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416 P. CARR AND M. SCHRÖDER

present situation, we attack this in two stages. First, establish analyticity properties
of the expectation. Then, in a second step, study how these are preserved on taking
Laplace transforms. As it turns out, using standard results from complex analysis, we
find that it is not Bessel processes which enter into the analysis but simply Brownian
motion. All of this may be regarded as an instance of why enhancing stochastics by
complex analytic methods seems quite an interesting and promising line of thought.

16. First step: Analyticity of the function Dν(a, z). As an initial step
in the analytic continuation argument, this section studies the analytic properties of
the generalized first Weber integral Dν(a, z) of section 8’s theorem. On choosing the
square root associated to the principal branch of the logarithm, recall that

Dν(a, z) =
e−1/(2a)

a

∫ ∞

0

e−x2/(2a) xν+3 I√2z+ν2

(
x

a

)
dx

is finite for any positive real number a and for any complex numbers z and ν such that
the real part of ν + 4 + (2z + ν2)1/2 is positive as a consequence of the integrability
analysis of section 11’s proposition. Using the confluent hypergeometric function Φ
discussed in [15, section 9.9], the precise analyticity result to be proved is the following.

Proposition. Let a be any positive real and ε any nonnegative real. For any
complex number ν with | Im(ν)| � ε, we have

Dν(a, z) = Γ

(
ν + 4 + µ

2

)
1

Γ(µ + 1)

×Φ

(
ν + 4 + µ

2
, µ + 1;

1

2a

)
e−1/(2a) (2a)(ν+2−µ)/2

if z is any complex with Re(z) > 2ε2 setting µ =
√

2z + ν2.
Corollary. Let a be any positive real and let ε be any nonnegative real. For

any complex number z with Re(z) > 2ε2, sending ν to Dν(a, z) defines an analytic
map on the set of all complex numbers ν with | Im(ν)| � ε.

Both results are based on the proposition of section 11, which gives finiteness
of Dν(a, z) under their conditions on ν, a, and z. Combining this with the analyticity
properties of Φ discussed in [15, section 9.9] and those of the Gamma function, the
corollary follows from the proposition. The proof of the proposition then reduces to
explicitly computing Dν(a, z). For this we modify the quite typical discussion in [25,
section 13.3, p. 393f] of Hankel’s generalization of Weber’s first integral. The idea is
to expand the modified Bessel function in the integrand of

I =

∫ ∞

0

e−x2/(2a) xν+3 Iµ

(
x

a

)
dx

into its series of [15, section 5.7] and integrate term by term. Using [15, section 9.9]
this is justified by the absolute convergence of the series for the resulting confluent
hypergeometric series, and we get

I =
1

(2a)µ

∞∑
n=0

1

Γ(µ + 1 + n)

(2a)−2n

n!

∫ ∞

0

e−x2/(2a)xν+3+µ+2n dx.

Changing variables y = (2a)−1x2, compute any nth integral as∫ ∞

0

e−x2/(2a)xν+3+µ+2n dx =
1

2
Γ

(
ν + µ + 4

2
+ n

)
(2a)(ν+µ+4)/2+n.
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BESSEL PROCESSES AND ASIAN OPTIONS 417

Extracting the series of the pertinent confluent hypergeometric function, we thus get

I =
1

2

Γ((ν + 4 + µ)/2
)

Γ(µ + 1)
Φ

(
ν + 4 + µ

2
, µ + 1;

1

2a

)
(2a)(ν−µ+4)/2.

Multiplying this expression by exp(−(2a)−1)/a, the proposition follows.

17. Second step: Analyticity of the functions fGY,a. Establishing analyti-
city results in ν about the Laplace transform of the expectation defining non-Asian
option prices combines insights from stochastics with insights of an analytic nature.
We establish this result in two steps. First, in this section we consider any of the
auxiliary functions fGY,a of section 7 as a function in the variable ν,

L(x, ν) = EQ
[(
A(ν)

x − a
)+]

,

for any fixed positive real numbers a and x. Using section 10’s lemma, we know it
is defined for nonnegative real numbers ν. However, this has been achieved in a very
indirect way only: for these values of ν the Laplace transforms of the corresponding
functions fGY,a have been shown to be finite. Now more is true indeed and we have
the following statement.

Lemma. For any x > 0, the function ν �→ L(x, ν) extends to a function on the
complex plane, which is analytic at each point, and for which we have the majorization

|L(x, ν)| � ex Im2(ν)/2 EQ[A(Re(ν))
x ].

For the proof of the lemma we now set f(w) = (w − a)+. Applying Girsanov’s
theorem such that Wx = νx+Bx becomes a standard Brownian motion, and dropping
the reference to this new measure, we get

L(x, ν) = E
[
f
(
A(0)

x

)
eνWx

]
e−xν2/2.

For establishing the analyticity statement of the lemma, it is thus sufficient to show
that the expectation factor is analytic in any complex number ν. This is true by
definition if we have the convergent series

E
[
f
(
A(0)

x

)
eνWx

]
=

∞∑
m=0

νm

m!
E
[
f
(
A(0)

x

)
Wm

x

]

for all ν. For this it is sufficient to show that the series is absolutely convergent for
all ν. Using the Cauchy–Schwarz inequality, this is implied by the convergence of

∞∑
m=0

|ν|m
m!

√
E[f2(A

(0)
x )]

√
E
[
W 2m

x

]

for all ν. Herein E[f2(A
(0)
x )] is majorized by the second moment of Yor’s zero drift

process A(0) at x and so is finite from [29, section 4]. Since the factors E[W 2m
x ]

are majorized by π−1/2 (2x)m m! for all m � 0, convergence follows using the ratio
test. Actually, we have established yet another upper bound to the price of the Asian
option.
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418 P. CARR AND M. SCHRÖDER

To establish the majorization of the lemma, taking absolute values inside the
expectation in the above Girsanov representation of L(x, ν) gives

|L(x, ν)| � E
[
f
(
A(0)

x

) ∣∣eνWx
∣∣ ] ∣∣e−xν2/2

∣∣.
The absolute value of the exponential factors are the exponentials of the real parts of
the respective arguments. Majorizing the function in Yor’s zero drift process by this
process itself, we get

|L(x, ν)| � ex Im2(ν)/2 E
[
A(0)

x eRe(ν)Wx

]
e−xRe2(ν)/2.

Reversing the Girsanov transformation completes the proof of the lemma.

18. Third step: Analyticity of the transforms FGY,a. While in the pre-
ceding section we studied the expectations

L(x, ν) = EQ
[(
A(ν)

x − a
)+]

for any fixed positive real numbers a and x as functions in the complex variable ν
only, in this section we treat x as a variable. If ν is any nonnegative real number, we
have from section 10’s lemma that the integrals of the Laplace transforms

F (ν)(z) =

∫ ∞

0

e−zxL(x, ν) dx

are finite if Re(z) > 2(ν + 1). In this section we give an independent proof of the
following more general statement.

Proposition. For any complex number z with a positive real part, the map
sending ν to F (ν)(z) is analytic in all complex numbers ν with real parts Re(z) >
1
2 Im2(ν) + 2(Re(ν) + 1).

The proof of the proposition is based on the following lemma.
Lemma. For any complex ν, the Laplace transform F (ν)(z) is finite for any

complex z with Re(z) > max{0, 1
2 Im2(ν) + 2(Re(ν) + 1)}.

Proof of the lemma. As the first step in proving the lemma, we establish for any
complex number ν the majorization

|F (ν)(z)| �
∫ ∞

0

exp

{
−
(

Re(z) − 1

2
Im 2(ν)

)
x

}
EQ

[
A(Re(ν))

x

]
dx

for any complex number z in the sense of measurable functions. Indeed, majorize the
absolute value of F (ν)(z) by taking the absolute value inside the defining integral. The
absolute value of the exponential factor then is equal to exp(−Re(z)x). Majorizing
the absolute value of L(x, ν) using section 17’s lemma, the estimate follows.

Setting ν0 = Re(ν), now let Re(z) be positive and such that ξ0 = Re(z)−Im2(ν)/2
is larger than 2(ν0 + 1). We compute the Laplace transform of the right-hand side of
the above inequality using section 4’s lemma. If ν0 is different from minus one, then

∫ ∞

0

e−ξ0xEQ[A(ν0)
x ] dx =

1

ξ0(ξ0 − 2(ν0 + 1))
,

using that ξ0 is larger than 2(ν0 + 1) to compute the improper integrals. It converges
to ξ−2

0 with ν0 going to minus one. Thus it is seen to coincide with the Laplace
transform for the case ν0 = −1.
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BESSEL PROCESSES AND ASIAN OPTIONS 419

The Laplace transforms are finite if ξ0 is positive and larger than 2(ν0 + 1), and
then F (ν)(z) is finite a fortiori. The proof of the lemma is complete.

Proof of the proposition. To prove the proposition, fix any complex z with a
positive real part and then choose any complex ν0 satisfying the resulting inequality
of the proposition. In fact, the validity of this inequality then extends to all ν in a
compact neighborhood V of ν0. As a consequence of section 17’s lemma, fz(x, ν) =
exp(−zx)L(x, ν) is, for any x > 0, analytic in ν on V in particular. Since V is compact,
the argument of the lemma, moreover, shows that its absolute value is majorized by
an integrable function g on the real line. The function ν �→ F (ν)(z) is thus continuous
on V being obtained by integration of fz over the positive real line. To show that it
is analytic on the interior of V , we want to apply Morera’s theorem [18, 10.17, p. 208]
and to show that ∫

∂∆

F (ν)(z) dν = 0

for any triangle ∆ in the interior of V . Indeed, since we have shown fz to be integrable,
applying Fubini’s theorem gives

∫
∂∆

F (ν)(z) dν =

∫ ∞

0

∫
∂∆

fz(x, ν) dν dx.

Recalling that ν �→ fz(x, ν) is analytic from section 17’s lemma, the inner integral
herein is zero by Cauchy’s theorem for ∆, see [18, 10.13, p. 205]. Thus the whole
double integral is zero as shown. This completes the proof of the proposition.

19. Final step: Second proof of the Laplace transform using analytic
extension. It remains to pull things together and show how the results of Part V
give a second proof of the two results of section 8 by using analytic extension.

First notice that section 8’s corollary is implied by section 8’s theorem using the
computation of Dν(a, z) in section 16’s proposition. Thus we are reduced to proving
section 8’s theorem.

The proof of section 8’s theorem is by analytic continuation using the identity
theorem, see [18, Corollary to 10.18, p. 209]. As a consequence of section 10’s lemma
it remains to establish the identity in section 8’s theorem for negative indices ν only.
It will turn out that the existence of the Laplace transform on all complex numbers z
with positive real part required in the theorem then has essentially been proved in
section 18’s proposition.

For establishing the crucial Laplace transform identity of section 8’s theorem, first
let z be any complex number with real part Re(z) > 4 and choose 0 < ε < 1. Using
section 16’s corollary, the generalized first Weber integral

Dν(a, z) =
e−1/(2a)

a

∫ ∞

0

e−x2/(2a)xν+3 I√2z+ν2

(
x

a

)
dx

is analytic in ν on the ε-thickened real line Aε, which consists of all complex numbers ν
with | Im(ν)| < ε. Picture Aε as the band of height 2ε symmetric with respect to the
real axis. If we choose ε so small that Re(z) > 2(2 + 2ε), we claim to have analyticity
of the Laplace transform

F (ν)(z) =

∫ ∞

0

e−zxL(x, ν) dx
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420 P. CARR AND M. SCHRÖDER

Fig. 1. The ε-thickened half-line Bε.

as a function in ν on the ε-thickened half-line Bε, which is the subset of Aε consisting
of all complex numbers ν with | Im(ν)| < ε and Re(ν) < ε. Indeed, if Re(ν) < ε, we
have

2(2 + 2ε) > 2ε + 2(Re(ν) + 2).

If | Im(ν)| < ε, we have 2ε > Im2(ν)/2 since ε < 1. Any ν in Bε satisfies the inequality
Re(z) > Im2(ν)/2 + 2(Re(z) + 2) of section 18’s proposition, and the claim follows.

The functions F (ν)(z) and D∗
ν(a, z) = Dν(a, z)(z(z− 2(ν +1)))−1 are analytic as

functions in ν on the ε-thickened half-line Bε. It is now a consequence of section 10’s
lemma that we have

F (ν)(z) = D∗
ν(a, z) for all ν � 0

such that 2(ν + 1) < Re(z). With Re(z) > 4 this holds a fortiori for all ν � 0
such that 2(ν + 1) < 4, i.e., for all nonnegative real numbers ν smaller than 1.
With ε smaller than 1 we have F (ν)(z) = D∗

ν(a, z) for any ν in the subinterval (0, ε)
of Bε. With Bε open and connected, the identity theorem literally applies to give
that F (ν)(z) = D∗

ν(a, z) for all ν in Bε. This identity then holds a fortiori for all real
numbers ν in Bε, i.e., for all ν < ε. This gives section 8’s theorem for any z with
Re(z) > 4.

To lift this last restriction on Re(z), notice that section 18’s lemma implies F (ν)
for any fixed real ν to be analytic on the half-plane {Re(z) > 2(ν + 1)}; this is seen
by using a Morera-type argument, as used for proving section 18’s proposition. On
the other hand, applying section 16’s corollary, D∗

ν(a, z) as a function of z is analytic
on the intersection of this last half-plane with the right half-plane. The validity of
the identity F (ν)(z) = D∗

ν(a, z) thus can be analytically continued from complex
numbers z with Re(z) > 4 to complex numbers z with Re(z) positive and larger
than 2(ν + 1), and the second proof of section 8’s theorem is complete.

Part VI. Laplace Transforms in the General Case:
A Uniform Proof

20. Remarks on general philosophy. The question may arise of whether or
not there is a uniform way to compute the Laplace transforms in section 8’s theorem
without requiring a two-step procedure. The Lamperti factorization

eBw+νw = R(ν)
(
A(ν)(w)

)
of section 9’s lemma may in fact offer a clue. The idea of the two arguments discussed
up to now is to focus on the Bessel process side of this identity. It is the problems
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BESSEL PROCESSES AND ASIAN OPTIONS 421

with Bessel processes that transcribe into their two-step approach. A possible remedy
would be to bring in Bessel processes not at the earliest stage but as late as possible.
The Lamperti factorization suggests focusing on the geometric Brownian motion of
its left-hand side. While Yor has already made extensive use of this device, we explain
in what follows what seems to be a most natural adaptation of the Girsanov tech-
nique to the Lamperti factorization approach for explicitly computing the Laplace
transforms FGY,a with a > 0.

21. Third proof of the theorem: A uniform argument. This section
sketches a uniform way to compute the Laplace transforms FGY,a, with a any pos-
itive real, and thus provides a third proof of section 8’s theorem. Recall that these
transforms are defined by

FGY,a(z) =

∫ ∞

0

e−zxfGY,a(x) dx

for any complex z, with Re(z) sufficiently large, and where fGY,a(x) = EQ[f(A(ν)(x))]
setting f(x) = (x − a)+. The key idea is to apply Girsanov’s theorem such that
Wx = νx+Bx becomes a Brownian motion and, by suppressing reference to this new
measure, to transcribe fGY,a in terms of Yor’s zero drift process A(0) as follows:

fGY,a(x) = E
[
f
(
A(0)

x

)
e−ν2x/2+νWx

]
.

With τ0,a = inf{u |A(0)(u) > 0} being the inverse time change to A(0) at time zero,
the computations of section 10 thus prove fGY,a(x) = 0 on the set of all events where
x � τ0,a. Also on the set of all events, where x � τ0,a we now have the representation

f(A(0)) =
(
R(0)

a

)2
A

(0)
x−τ0,a ,

which applies to express fGY,a(x) as the following iterated expectation:

fGY,a(x) = E
[(
R(0)

a

)2
E
[
A

(0)
x−τ0,ae

−ν2x/2+νWx

∣∣∣Fτ0,a

]]
.

Applying Laplace transforms to both sides of this identity then gives

FGY,a(z) = E

[(
R(0)

a

)2
e−(z+ν2/2) τ0,aE

[ ∫ ∞

0

e−zxA(0)
x e−ν2x/2+νWx+τ0,a dx

∣∣∣Fτ0,a

]]
.

In the conditional expectation, restart the Brownian motion at time τ0,a. To the
resulting additional νth power of exp(Wτ0,a), apply the corresponding Lamperti fac-
torization and interpret it as being equal to the νth power of the zero index Bessel
process at time a. Collecting powers of this last process, we have

FGY,a(z) = E

[(
R(0)

a

)ν+2
e−(z+ν2/2) τ0,aE

[ ∫ ∞

0

e−zxA(0)
x e−ν2x/2+νWx dx

∣∣∣Fτ0,a

]]
.

The strong Markov condition used here also makes the whole integrand in the con-
ditional expectation independent of time-τ0,a information. Reversing the Girsanov
transformation in this inner expectation, we have

FGY,a(z) = E

[(
R(0)

a

)ν+2
e−(z+ν2/2) τ0,aE

[ ∫ ∞

0

e−(z+ν2/2) x A(ν)
x dx

]]
.

This puts us into the situation of section 10. Partially reversing the Tonelli argument,
the inner expectation is equal to the first moment of the drift-ν process A(ν) at time x
recalled in section 4’s lemma. Computing the Laplace transform, we thus arrive at

FGY,a(z) =
1

2(ν + 1)

(
1

1 − 2(ν + 1)
− 1

z

)
E
[(
R(0)

a

)ν+2
e−(z+ν2/2) τ0,a

]D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 2

16
.1

65
.1

19
.4

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



422 P. CARR AND M. SCHRÖDER

if Re(z) is larger than at least max{0, 2(ν+1)}. In this way we are reduced to comput-
ing the expectation factor. This, however, proceeds as in section 10 by conditioning
on the corresponding Bessel process. The main point is that this time conditioning is
not on a Bessel process of an arbitrary index but on a Bessel process of index zero.
Observing how ν enters now via the exponent of the index zero Bessel process and
via a shifting factor for the time change τ0,a, we arrive at

E
[(
R(0)

a

)ν+2
e−(z+ν2/2) τ0,a

]
=

e−1/(2a)

a

∫ ∞

0

e−x2/(2a) xν+3 I√2z+ν2

(
x

a

)
dx

for any z with sufficiently large positive real part. Using section 11’s proposition, this
integral is finite if Re(z) is positive and larger than 2(ν + 1). So this third proof of
section 8’s theorem is complete.

Part VII. Epilogue

22. Consequences for Asian options: Hermite functions. Having perse-
vered to this point, the reader may wonder about the nature and the quality of the
implications of the mathematics developed up to now. Indeed, going back to the start-
ing point of the journey, it seems that the Laplace transform approach makes possible
significant improvements in understanding section 3’s normalized prices C(ν)(h, q) of
Asian options themselves. These improvements are on a structural level and as such
make possible advances on computing C(ν) as a consequence. This is essentially by
being able to establish new links of Asian option valuation with a well-studied class
of special functions, i.e., the Hermite functions to be reviewed in this section.

Following [15, section 10.2ff], to which we refer for details, Hermite functions Hµ

are analytic on the complex plane as functions of both their variable z and their
degree µ. If the real part Re(µ) of µ is larger than −1, they have the integral repre-
sentation

Hµ(z) =
2µ+1

√
π

ez
2

∫ ∞

0

e−x2

xµ cos

(
2zx− 1

2
µπ

)
dx.

Thus they specialize to the µth Hermite polynomials if µ is any nonnegative integer,
whence H0 = 1, H1(z) = 2z, H2(z) = 4z2 − 2, H3(z) = 8z3 − 12z, for example. If the
real part of µ is negative, however, Hermite functions change their character. Then
they have the integral representation

Hµ(z) =
1

Γ(−µ)

∫ ∞

0

e−u2−2zuu−(µ+1) du

and specialize via (2/
√
π)H−1(z) = exp(z2) Erfc(z) to the complementary error func-

tion Erfc recalled as given by

Erfc(z) =
2√
π

∫ ∞

z

e−ξ2

dξ.

For any complex µ, Hermite functions can be expressed in terms of the Kummer
confluent hypergeometric function Φ by

Hµ(z) =
2µ Γ(1/2)

Γ((1 − µ)/2)
Φ

(
− µ

2
,

1

2
; z2

)
+ z

2µ Γ(−1/2)

Γ(−µ/2)
Φ

(
1 − µ

2
,

3

2
; z2

)

for any complex z. From this representation one can see how Hermite functions
are connected to the parabolic cylinder functions Dµ and to the Kummer confluent
hypergeometric function of the second kind Ψ.
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23. Consequences for Asian options: New integral representations.
Hermite functions as recalled in the previous section appear naturally in the closed
form solution for section 3’s normalized price C(ν)(h, q) of the Asian option we have
developed in [21]. If the normalized strike price q is positive, it expresses this value
as the sum of integral representations which have a product structure. They are ob-
tained by integrating products of Hermite functions Hµ with weighted error functions
as follows.

Theorem. If q is positive, the normalized price C(ν)(h, q) of the Asian option is
given by the following difference:

C(ν)(h, q) = ce2h(ν+1) Sν+2 − c Sν ,

where the Sξ are three-term sums

Sξ = Ctrig,ξ(ρξ) + Chyp, ξ(ρξ) + Chyp,−ξ (ρξ)

whose single summands are integrals that depend on parameters ρξ � 0, but which as
a whole are independent of these.

In terms of section 3’s concepts, c is given by

c = c(ν, q) =
Γ(ν + 4) (2q)(ν+2)/2

2π (ν + 1) e1/(2q)
,

recalling ν = 2�/σ2 − 1. With ρ any nonnegative real, the trigonometric terms
Ctrig,ξ(ρ) with ξ equal to ν or ν + 2 are the integrals

Ctrig,ξ(ρ) =

∫ π/2

0

Re

(
H−(ν+4)

(
− ch(ρ + iφ)√

2q

)
Eξ(h)(ρ + iφ)

)
dφ

over the real parts of products of Hermite functions times certain functions Eb(h),
and the hyperbolic terms Chyp, ξ(ρ) with ξ equal to ±ν or ±(ν + 2) are the integrals

Chyp, ξ(ρ) =

∫ ∞

ρ

Im

(
H−(ν+4)

(
− sh(y)√

2q
i

)
Eξ(h)

(
y + i

π

2

))
dy

over the imaginary parts of such products. Herein Eξ(h) are the weighted comple-
mentary error functions for any complex w given by

Eξ(h)(w) = ewξ Erfc

(
w√
2h

+
ξ

2

√
2h

)
.

Remark. If ρ equals zero, the trigonometric terms specialize to

Ctrig,ξ(0) = 2

∫ π/2

0

H−(ν+4)

(
−cos(φ)√

2q

)
cos(ξφ) dφ.

Compared to the formula of section 5, the above formula is given as a sum of
single integrals whose integrands have a structural interpretation as products of two
functions. It identifies the higher transcendental functions occurring as factors in
these products and shows how they are given by or built up from Hermite functions.

24. Epilogue. On a technical level, the differences just noted between section 5’s
and section 23’s formulas can be regarded as consequences of the different mathemati-
cal approaches for proving the valuation formula. In fact, section 5’s formula originates
from Yor’s direct attack on the law of the integral of geometric Brownian motion. In
contrast, section 23’s is eventually based on the indirect enveloping construction of
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section 7. In fact, to obtain Asian option prices, first analytically invert section 8 the-
orem’s Laplace transforms FGY,a, then proceed using the key reduction of section 7’s
lemma; formally speaking, C(ν)(h, q) = L−1(FGY,q)(h).

However, there are not only structural differences between section 5’s and sec-
tion 23’s formulas. Finally, deriving benchmarks for the normalized prices C(ν)(h, q)
of Asian options seems to be one of the main practical application of such formulas.
As we have already mentioned, Yor’s formula seems impracticable for this purpose in
particular because of the gigantic size of the numbers it involves. For instance, con-
sider valuing Asian options with annual interest rates r equal to 9%, with maturities
of one year, with K = S0, with t0 = 0, and with a volatility of σ = 30%. These values
require coping with numbers of order 10100. Our formula improves on this aspect as
well. In the above situation, for instance, the four hyperbolic terms have orders 107

and the two trigonometric terms have orders 10−2. Sharpening results of [20], it thus
became possible to derive in [23, Chap. 5] the following first time benchmark values
for normalized Asian option prices:

Table 3. Normalized prices C(ν)(h, q) of the Asian option for T = 1.

σ Maximal error C(ν)(h, q)

20% 4 . 9727 × 10−16 0 . 00074155998788343

30% 4 . 9687 × 10−16 0 . 00217354504625037

40% 4 . 9157 × 10−16 0 . 00478100328341654

50% 4 . 9461 × 10−16 0 . 00890942045213227

All of this may be seen as a consequence of the Laplace transform approach to valuing
non-Asian options initiated in [12]. In retrospect, [12] appears to be a rich source for
new results in both mathematics and finance.
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