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Abstract

We define the class of local Lévy processes. These are Lévy processes
time changed by an inhomogeneous local speed function. The local speed
function is a deterministic function of time and the level of the process
itself. We show how to reverse engineer the local speed function from
traded option prices of all strikes and maturities. The local Lévy
processes generalize the class of local volatility models. Closed forms for
local speed functions for a variety of cases are also presented. Numerical

methods for recovery are also described.

1. Introduction

Local volatility models (Derman and Kani 1994, Dupire
1994), were developed as a class of one-dimensional
Markov models with continuous sample paths that
reprice all the traded European options. These models
generalize the Black and Scholes (1973) and Merton
(1973) models by making the instantaneous volatility of
the stock returns a deterministic function of time and the
stock price. Such a function is called the local volatility
function. The risk neutral dynamics is fully specified on
setting the growth rate of the stock at the instantaneous
interest rate less the dividend yield. The resulting model
is widely used for pricing contingent claims written on
the stock price, including a variety of path dependent
options. For extensions of this approach to a jump
diffusion context we cite Andersen (2000) and Andersen
and Andreasen (1999).

> Author to whom correspondence should be addressed.

The local uncertainty of a local volatility model
is Gaussian with zero skewness and kurtosis equal to 3.
It seems desirable in this context to accommodate a local
uncertainty that allows for both skewness and excess
levels of kurtosis. Many researchers have already noted
for a variety of purposes, that one should introduce
the possibility of jumps (Bates 1996, Bakshi et al 1997).
We have argued in prior research that the use of a jump
process with infinite activity, i.e. one allowing infinitely
many jumps in any time interval, effectively subsumes
the need for an additional diffusion component (Carr
et al. 2002). We therefore replace the local diffusive risk
neutral dynamics by a local exposure to a Lévy process.
This class of processes is increasingly being used in the
study of financial market prices (Eberlein et al 1998,
Barndorff-Nielsen and Shephard 2001, Geman et a/ 2001,
Eberlein et al 2003).

Lévy processes offer a wide class of candidates for an
alternative representation. We wish to formulate in this
paper a class of local Lévy models that also reprice all the
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traded European options and provide a richer risk neutral
dynamics.

We view the local volatility model in its equivalent
formulation of modelling log prices as a Brownian motion
running at the speed of the square of the local volatility
function. Our essential idea is to replace Brownian motion
with a Lévy process running at what we call the local speed
function. Our local speed function is still a deterministic
function of the level of the stock price and time. The Lévy
process involved in this procedure is fixed through time
and it is only its speed that is space time dependent. This
generalizes the role of Brownian motion, a particular Lé
vy process, in the local volatility model.

In a direct analogy with the contribution of the local
volatility model, we show how to recover the local speed
function from quoted option prices. Our final results
are comparable to local volatility models, except that we
employ a transform of the calendar spread in place of the
calendar spread to infer the speed function.

We provide some explicit examples associated with
particular local Lévy models permitting closed form
recovery of local speed functions from option prices.
The recovery function can in these cases be seen as a
direct generalization of the comparable result for local
volatility models. For other Lévy processes we describe
procedures for numerical solutions, that still permit an
efficient recovery of the local speed function. We also
consider the ‘arithmetic’ (Bachelier) case where options
are written directly on a martingale, as opposed to a
positive, exponential martingale. These results could be
of financial interest in markets for options written on the
profit and loss distribution of a portfolio of hedge funds
directly.

The outline of the paper is as follows. Section 2
presents the details of the one dimensional Markov model
describing the risk neutral dynamics for the discounted
asset price and presents the general integral equation to
be solved for recovery of the local speed function. The
derivation for the local speed recovery procedure is given
in section 3. In section 4 we consider a specific local Lévy
process permitting closed form recovery. The arithmetic
case is developed in section 5. Numerical procedures are
presented in section 6. Section 7 concludes.

2. Local Lévy Models

We begin by recalling briefly the local volatility model
and the associated procedure for recovering the local
volatility function from traded option prices. Let S(7)
denote the price of the stock at time 7, 0 << H.
Suppose the continuously compounded interest rate
is r and the dividend yield is 7, also continuously
compounded. The risk neutral dynamics for the stock
price in the local volatility model is given by the following
stochastic differential equation

dS = (r — n)Sdz + o(S, HSAW (1) (1)

where W = (W(¢),0 <t < H) is a standard Brownian
motion and o(S, 7) is the local volatility function.

The relevance of the formulation (1) is quite extensive
from the perspective of constructing Markov processes
that match the marginals of general stochastic processes.
Gyongy (1986) showed that one could associate with a
general Ito process a one dimensional Markov process
of the type (1) with a view to matching marginals. This
question has also been studied from other perspectives
in Madan and Yor (2002).

Let C(K,T) denote the price at time zero, of a
European call option of maturity 7" and strike K. Dupire
(1994) and Derman and Kani (1994) showed that one
may recover the local speed function from the prices of
traded options using the formula

Cr +nC+(r—nKCkg

2
K.T)=2
o (K. T) K2Cxx

)

We generalize (1) by allowing for jumps in the stock price.
We denote the size of the jump in the log price at any
time by x. The Lévy measure k(x) dx specifies the arrival
rate of jumps of size x per unit time. In analogy with the
local volatility function, we introduce a local speed
function a(S, ) that measures the speed at which the
Lévy process is running at time # when the stock price is at
the level S.

In addition to the exposure to the Brownian motion,
our stock price process is also exposed to the compen-
sated jump martingale with compensator

v(dx, du) = a(S(u), u)k(x) dx du. 3)

The risk neutral dynamics for the stock price are now
given by

dS = (r—n)S(t)dt + S(t)o(S(2), £) dW (1)
+ /00 S(t2)(e* — D(m(dx, du) — v(dx, du)) (4)

—0Q0
where m(dx, du) is the counting measure associated with
the jumps in the logarithm of the stock price.

The formulation of the compensator in (3) alters local
volatility by running the Lévy process at a speed that
is a deterministic function of the stock price and time.
Alternatively, one could scale the jump sizes instead. In
the case of Brownian motion, scaling and time changing
are equivalent operations by the scaling property of
Brownian motion, but for general Lévy processes these
are different operations. Time changing leads to tractable
results while scaling is much more complicated.

The objective of this paper is to show how one may
recover the local speed function a(S, 7) from traded option
prices in the context of a known local volatility function
o(S,t). Of particular interest is the case of pure jump
processes, i.e. o =0. In this case the stock has no
diffusion exposure. The solution for the local speed
function employs in a critical way a convolution trans-
form with the ‘double exponential tail’ of the Lévy
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measure. We now define the double exponential tail of
a Lévy measure.
We start by defining the double tail of a Lévy

measure k(x) as
/ / k(uydudx z <0

/_ / k(u)ydudx z>0

where we suppose in addition the integrals are finite. The
double tail integrates the tail of the Lévy measure in both
directions twice and hence we refer to it as the double tail.
It is important as it measures quadratic variation, which
may be observed on applying integration by parts two
times, and we have

/ Y(z)dz = = / x%k(x)dx

and we suppose finiteness of the integral on the right
hand side. The double exponential tail ¥.(z) employs
an exponential weighting and we have

/; dxe* /x k(uydu z<0
/:‘dxevé k(u)du z>0

Equivalently we may write

¥(z) = )

Ve(2) =

/ (e —eYk(x)dx z<0
Ve(z) =1 " (6)
/ (e —eHk(x)dx z> 0
The exponential double tail may be viewed as the price
of instantaneous out-of-the-money call and put options
struck at e°.

The solution for the local speed function is

b(In(K), T)

a(K,T)= K2Crx

(7
where the convolution transform of » with the exponen-
tial double tail is
00 2(ak T
[ D= pay=crtnet (- 0+ 5D
€. T)
B Clie
k —Def ln(K)

C(ks T) —Def C(eks T)

We see that in (7) the local speed function is related
to calendar spreads and butterfly spread prices, much as
it is in the local volatility case, except that we have a
convolution integral of the effective function with the
double exponential tail replacing the direct use of the

calendar spread. This spreading occurs to account for the
distribution of the jump sizes across the real line.

The solution of (7) for the local speed function
a(S, t) requires a prior specification of the local volatility
component o(S, 7). In the special case when this is zero
and we have a pure jump process the convolution of » and
Y is comparable to the use of the calendar spread in the
recovery of local volatility. In both cases one is
essentially retrieving the local quadratic variation as a
measure of the speed.

3. Recovering local speed functions
from option prices

The integrated form of the risk neutral stock price
dynamics of (4) may be written in the form

S(t) = S(0) + /: S(u_)(r —n)du
+ /l S(u_)o(S(u), u)ydW(u)
0

Note that the drift for the stock return is indeed r — 7,
and the martingale terms admit both continuous and
jump components. This decomposition is useful in
evaluating expectations of functions of the stock price,
like a call option payoff. We shall in particular employ a
generalization of It6’s lemma to convex functions known
as the Meyer—Tanaka formula (see, for example, Meyer
(1976), Dellacherie-Meyer (1980) and Yor (1978) for the
specific formulation below). In particular, for the call
option payoff at maturity we have

T
(S(T) — K)* = (S(0) — K)*+ fo Loy dS()
l T
41 f 5 (S0 (S(u), u)S> () du
2 ),
+ Z L=k (K — S(u)™

u<T

+ 1S(u-)<K(S(u) - K)+ (9)

We see, in the case of zero interest rates and dividend

¢ yields, that the payoff to the call option is made up of

intrinsic value and a time value represented by the value
of the last two terms (that is: the second term or the
first integral in this case has zero value as the stock
is a martingale). The second integral denotes the value
at K of the continuous local time L%;a e R, which
is globally defined for every bounded Borel function
£, as [ f(a)L% da = fo f(S(u))d(S), where d(S5¢), =
a2(S(u), u)Sz(u) du, and is here applied formally to the
Dirac measure f(a) = §x(a). The last term which is the
discontinuous component of local time at level K is made
up of just the crossovers whereby one receives S(u) — K
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on crossing the strike into the money while one receives
(K — S(u)) on crossing the strike out of the money.

The next step is to compute expectations on both
sides of (9). For this we introduce ¢g(Z, u) the transition
density that the stock price is ¥ at time u given that at
time 0 it is at S(0). We may write the expectation of (9) in
terms of the call price function and the function ¢(Y, u) as

T poo
eTC(K,T)=(S(0)—K)"+ / / dY ¢(Y,u)Y(r—n)du
0 K

1 T
+5 / q(K,u)o*(K,u)K>du
0

T poo In(K/Y)
i / / dYq(Y,u) / (K — Ye)u(dx,du)
0 JK —00

T rK 00
d v — dx,d
+/0 /(; Yq(Y,u)/ln(K/Y)(Ye K)v(dx,du)
(10)

We now specialize our Lévy system to that of a time
changed Lévy process as described in (3). In this case
we obtain

T poo
eTC(K, T):(S(O)—K)++/ / dY Y q(Y,u)(r —n)du
0o Jk

T
+ %f q(K,u)o*(K,u)K> du
0

+/OT/:odYq(Y,u)a(Y,u)

In(K/Y)
X / (K — Ye“)k(x)dxdu

—00

T oK
+/ / dY ¢(Y,uwa(Y,u)
b
X / (Ye' — K)k(x)dxdu
In(K/Y)
Finally differentiating (10) with respect to T we get

00
reTC+eTCr=(r—n) / q(Y, T)YdY
K

(K, T)K?
S

+ /oodY Yq(Y, T)a( Y, T)
K

q9(K,T)

In(K/Y)
x / (e™E/Y) _ e¥)(dx, du)

K
+/ dY Yq(Y, T)a( Y, T)
0

o¢]
X / (e¥ — ™/ y(dx, du)
In(K/Y)

We now solve for Cz, noting some elementary
properties of the relationship between call prices and

the risk neutral density. In particular we note
00
e"'T/ Yq(Y,T)dY = C — KCx
0
e Tq(K, T) = Ckg.

Solving for C7 we get that

o*(K, T)K>

Cr=-nC~—(—nKCg+ 3 Ckk

00 In(K/Y)
+ / dY YCyya(Y,T) / (KN _ e e(x) dx
K —00

K 00
+ / dY YCyya(Y,T) / (e¥ — ™K/ M)(x) dx.
0 In(K/Y)

(11)

We now recognize the double exponential tail in the
integral terms. In terms of this exponential double tail we
may write the calendar spread value, Cr, as

oX(K, T)K?
Cr=-—nC—(—nKCg+ %CKK

o0 K
+f0 nyYa(Y,T)we(ln(Y>>dY. (12)

When there are no jumps in the process for X and
Y. =0, equation (12) is identical to the equation
employed in inferring local volatilities from market call
prices. In the opposite case, when there is no continuous
martingale component we have the result

Cr+nC+ (r—nKCg

0 Y

It is now useful to rewrite (13) in terms of k = In(K),
y=1In(Y) and c(k, T) = C(e¢*, T"). With this substitution
we may rewrite (12) as

0.2 (ek’ T)
. 3 c

kk

o2 (e, T))
c

cT+nc+(r—n—|— 3

= [ 0. nay (14)
where b(y, T) = e* Cyya(e’, T).
The forward speed function, a(Y,T), may be
identified as
_ b(n(Y),T)

We may identify from the convolution transform (14)
with the exponential double tail the function b(y, T) at
each maturity using data on option prices. Equation (15)
then determines the forward speed function for the local
Lévy model. For specific Lévy measures the convolution
equation (14) may be solved in closed form to yield
explicit solutions for the Markov process from data on
option prices. The next section presents such examples.
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4. Closed form local Lévy models

This section presents an example of an explicit expression
for the local speed function in terms of the derivatives
of the call price function. The result is obtained for a
specific class of driving Lévy processes and generalizes
similar expressions known for local volatility. The
solution method relies on recognizing the inverse of
the convolution operator in our convolution transform
equation.

We associate to a Lévy density its exponential double
tail as defined by (6). We also associate with the expo-
nential double tail, the convolution operator

Ay, f = Ay, (f)
where

A () = f Vel — /() dy.

Some discussion of such operators from an analytic point
of view are found in Hirsch and Lacombe (1999). Our
interest in identifying the forward speed function of the
price process lies in inverting this operator.

It turns out that for certain Lévy measures k, Ay,
is the resolvent operator ¥V, of a certain Lévy process
(Y,,t>0) with Lévy density k, for a given A; more
precisely

Ay, (N)x) = cVi()(x)

= cEx|: / ” e Mf(Y)) dt}.
0

Denote by p;(x — y) the density of Y, under P; then
if (16) holds (see Bertoin (1998), Sato (1999)) we have that

Vv —p) = ¢ /0 die™ pi(x — )
i.e.
Vo) = f T dre M p )
0

= (x), x e R.

(17)

Our interest in this situation comes from the fact that
if (17) holds, then our convolution transform is related
to the resolvent ¥V, by (16) and thanks to the relation-
ship between the infinitesimal generator A4 of (Y,) and its
resolvent (V) we have

A — AV, =1. (18)

We recognize in (18) the inverse of our convolution
transform operator as, in general, an integro-differential

operator.
If we wish to solve
Ay (f) =g
then from (16)
Vilf) = -

and from (18) we deduce that

1
f= ;(/\g — Ag)

that is we have inverted the convolution transform
operator Ay,. An example illustrates the details.

Consider the Lévy measure defined by the asym-
metric negative exponential Lévy measure:

Bexp(Gx) x<0

k(x) = {exp(—Mx) x>0

where G is positive and M is greater than one. Such
a jump component has been studied extensively in a
financial context by Kou (2002) and Kou and Wang
(2003). The double exponential tail of this Lévy measure
is given by

Bexp(—(G + Dz])

2
V) = | exp(~ (' 1))
M? - M

(19)
> 0.

On the other hand, let us consider V; for (B(u)+
uu,u > 0), Brownian motion with drift u; we shall write
(“)(x) for the resolvent density. We use the well known
fact that (see, e.g. Biane-Yor (1988) for discussions
about the law of (B,,u<Tgp,) ) if Tp, denotes
an exponential variable with parameter 6°/2 inde-
pendent from (B(¢), 7 > 0) then: B(Ty ) has the Laplace
distribution

gexp(—9|x|) dx. (20)
Hence it follows that
. D () = 2 exp(~61).
Equivalently we may write
V(%) = —exp( 6lx]). 1)

We now compute v(g‘f/)z, with the help of the

Cameron—Martin relationship
92 00 ;
—E[ / dre=@/207(B, + /u)]
[ / dre~@+/2ip(p )eﬂBr]

( ) / dre= B[ £(B)e ],

( / f(x)eeMdx,  from (21)

2
(2—1) { / _dxf () e UHIRT 4 fo dx/f(x) e—“—W}

v2:92+M2

M|C

2

<
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It follows that

%exp(—(u —wx) x>0

v(/t) (x) =

02/2 (22)

1
Sexp(—(v+ plxl) x <0

which generalizes (21).
We now start with ¥, defined by equation (19) and
determine ¢, (#*/2), u such that we have

I/’(’(x) = CVEgz)/z)(x)~

We must have

M—-—1=v—pu
G+1=v+pu.
It follows that
l)_G+M
2
_1442H
m= 2

P =v-p=M-14+M-1)G
We must also have

1 B ¢

M2—M G>+G v

or

% _ G+ M
M2 — M 2(M?— M)

Cc =

We have to restrict the parameter B in our Lévy
measure by

G +G

p M2 — M’

For this case we may write the solution for the
forward speed function explicity as

((¢*/2)1 = (1/2)D* — uD)(cr + ne + (r = n)er)

aK,T) = KCar

A particularly instructive case for comparison with the
results for local volatility is when we take r=n=0.
In this case we have

1 6? 1 1
KT) =— (2 Cr -~ K2Crir — (= + 1) KC
a(K,T) KzCKK<2 T35 KKT <2+M> KT)
#Cr  Ckkr ((1/2) + w)Ckr

(23)

o 2K2CKK 2C1(1( KCKK

The formula (23) can be contrasted with results known
for local volatility where we get

2Cr
KZCKK '

(K, T)=

5. The Arithmetic case

We develop in this section the results for recovery of the
forward speed function from data on prices of options
written on the level of a real valued martingale for various
strikes and maturities. To distinguish the development
from the previous section we use different notation and
write the process for the underlying martingale H as

HQ@) = HO)+ /0 ¢(H (u). u) dB(u)
+ fo [ N h(m(dh, du) — a(H (u), u)w(h) dh du)

where w(h) is a Lévy density for a base Lévy process that
is time changed by the integral dependent on the past
of the process H, in accordance with

/t a(H (u), u)du.
0

The volatility coefficient ¢ is a deterministic function
of the level of the martingale and calendar time and B()
is a standard Brownian motion.

We suppose that for real valued strikes, denoted by
L, and for expiration dates, denoted by 7 , there are
options trading at time 0 that payoff at time 7 the value

(H(T)—L)*
with current prices that we denote by w(L, T ).
Following the analysis of section 3 we have
T
(H(T) = 1 = (HO) = D+ [ Lo 10H@W
0

LT E(Lw)
+3 [ a5

+ Z 1H(u_)>L(L - H(“))+

u<T

+ Z 1H(1(-)<L(H(u) - L)+du

u<T

du

Taking expectations, and noting that since H is a
martingale, the second term will be zero, we get in
terms of the transition densities ¢g(H, u) that

1 T
WLT) = (HO = 1 45 [ aLnd (L du
0

T 00
n /0 du fL dH g(H , w)a(H , u)

« / L o

—00

T L
+ /0 du f dH g(H.wa(H.

x / Y+ h— Lyw(h) dh.
-H
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Differentiation with respect to maturity 7" then yields

2(L, T
v =g )T

00 L—H
+ / dHq(H, T)a(H, T) / (L — H — hyw(h)dh
L —00

L 00
+ / dHg(H, T)a(H, T) / (h— (L — H))w(h)dh.
—00 L—-H
Introducing the function v defined here by

/oo(h —zwh)dh z>0

V() =1 .
/ (z—=nhwh)dh z<0O.

we may write that

[o¢]
- VLTL (L, T)+ / dZ v a(Z, TYW(L — Z).
—0Q
The function ¢ is now seen to be just the double tail of
the Lévy measure as defined in (5).
For the case where there are no jumps we get the well
known result of local volatility models that
2
LTy ==L
VLL
Our interest is in the opposite case when ¢=0 and ¢
is the double tail of a Lévy process. In this case we obtain
the convolution transform equation

Vr = foo dZz vzza(Z, T)'(ﬁ'(L — Z)

—00

24)

that is to be solved for a.
We develop in particular the solution for the case of
a symmetric, double exponential Lévy density

w(h) = 0exp(—0|hl|)
for which the relevant v function is

1
¥(2) = gexp(—6lz))

that we recognize as the resolvent density of Brownian
motion given by (21). It follows that the solution for « is

1 1
a(L’T)ZE )\VT_EVLLT .

(25)

where A = 6%/2.

6. Numerical procedures

For more general Lévy processes in either the geometric
or arithmetic case the basic convolution transform

equations (14) and (24) may be solved numerically.
Here we develop the procedures illustratively for the
variance gamma Lévy process introduced in Madan et a/
(1998), and Carr et al (2002). The Lévy measure for this
process is defined as kpg(x)dx where

exp(—Mx)
X

exp(=Glx|)
|x]

>0
kyg(x) =

and the Lévy process is one of infinite activity that
accomodates a negative skewness by taking G > M and
calibrates well option prices across all strikes, at any fixed
maturity.

In the geometric case, we denote the double
exponential tail of the VG Lévy measure by ¥gpe(2),
and for the arithmetic case we denote the double tail
by ¥4rG(z). On computation we obtain the following
expressions for the requisite double tails.

e—ll ~ e—u
/ du —¢° —du z>0
M-1)z U Mz U
Yere(z) = u —u
- € [§]
e"“'/ —du—/ du z<0
Glz| U (G+D)z| U
and
—M:z 00—
e e
- Z/ —du z>0
Mz U
Yarg(z) = Gl
e~ |z| e U
—|z| du z <.
G Glz| u

The basic equation to be solved is of the form

o0
| w= 30 = e (264)
—0o0
where the function g(x) is obtained from the data on
option prices. We define the Fourier transforms of £, g by

00

7® =/ Oy, 5@ =/ ¢g(x) dx.

—c0 —o0

If the function v(z) has a Fourier transform, 1://\
then from the relationship of Fourier transforms to
convolutions we have from equation (26a) that

Zo 88
/6= U(E)

and we may obtain_f(y) using the inverse Fourier
transform applied to f(£).

The transform of g(¢) is numerically constructed
from the calibration of market prices. However, in
many cases of interest we may analytically obtain (&)
the Fourier transform of the double exponential tail.
We present here the result for the CGMY model studied
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in Carr et al (2002), that generalizes the variance gamma.
In this case we obtain on integration that

—Gl‘c\

wo=[ e [ @ty o
+/0 eié'”fx (e""—ex)Cx]T dx

(M —(1+i&) =M
—(1+ &) (M -1 —MY)
+HG+ 1+ i)' -G
—(1+i)((G+ 1) —aGY)

The final result follows by applying integration by parts
twice to the integrals on the two sides.

_ (=Y
- E(1+ 7€)

7. Conclusion

This paper defines the class of local Lévy processes as
one dimensional Markov processes that are obtained by
time changing a prespecified Lévy process. In practice
one would choose the Lévy process with respect to its
ability to explain short maturity call option prices across
the strike domain. The specific time change is inhomo-
geneous and is given as the integral of a deterministic
function of the price level and calendar time, called the
local speed function. It is shown how this local speed
function may be recovered from information on the prices
of traded options of all strikes and maturities. In this
regard, the paper generalizes the local volatility models to
permit local dynamics that are capable of independently
calibrating market skews. This reduces the burden on
the volatility function in calibrating the model to data,
and it is expected that such a move will produce more
reasonable forward return distributions for the risk
neutral asset returns.

For a variety of elementary cases, closed forms for
the local speed function are presented in both the case
of the exponential and arithmetic Lévy processes. For
practical implementation, Fourier methods, already
known to be highly successful in calibrating models to
option data are extended here to the recovery of the
local speed function from information on market implied
volatilities across the maturity and strike dimensions.
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