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1. Introduction

Foreign exchange (FX) rates in target zones have been studied
extensively.¶ Following Krugman (1991), the FX rate confined

∗Corresponding author. Email: zura@quantigic.com
¶For a literature survey, see, e.g. Duarte,Andrade and Duarte (2013).
For a partial list (with some related literature, including on option
pricing), see, e.g. Andersen,Bollerslev,Diebold and Labys (2001),
Anthony and MacDonald (1998), Ayuso and Restoy (1996), Ball
and Roma (1994), Bauer,De Grauwe and Reitz (2009), Beetsma
and Van Der Ploeg (1994), Bekaert and Gray (1998), Bertola and
Caballero (1992), Bertola and Svensson (1993), Black and Scholes
(1973), Bo,Wang andYang (2011), Bo,Li,Ren,Wang andYang (2011),
Campa and Chang (1996), Carr,Ellis and Gupta (1998), Carr and
Jarrow (1990), Carr and Linetsky (2000), Cavaliere (1998), Chinn
(1991), Cornell (2003), Christensen,Lando and Miltersen (1998), De
Jong (1994), De Jong,Drost and Werker (2001), Delgado,Dumas
(1992), Dominquez and Kenen (1992), Driffill and Sola (2006),
Duarte,Andrade and Duarte (2010), Dumas et al. (1995a, 1995b),
Edin and Vredin (1993), Edison,Miller and Williamson (1987), Flood
and Garber (1991), Flood,Rose and Mathieson (1991), Garman and
Kohlhagen (1983), Grabbe (1983), Harrison (1985), Harrison and
Pliska (1981), Honogan (1998), Hull and White (1987), Kempa and
Nelles (1999), Klaster and Knot (2002), Klein and Lewis (1993),
Koedijk,Stork and de Vries (1998), Krugman (1991, 1992), Lai,Fang
and Chang (2008), Larsen and Sørensen (2007), Lin (2008), Lindberg
and Söderlind (1994a, 1994b), Lindberg,Söderlind and Svensson
(1993), Linetsky (2005), Lundbergh and Teräsvirta (2006), Magnier
(1992), McKinnon (1982, 1984), Meese and Rose (1990, 1991),
Merton (1973, 1976), Miller and Weller (1991), Mizrach (1995),
Obstfeld and Rogoff (1995), Rangvid and Sørensen (2001), Rose and
Svensson (1995), Saphores (2005), Serrat (2000), Slominski (1994),

to a band with barriers is modelled as a stochastic process,
where one needs to deal with the boundaries. There are essen-
tially two choices: (i) attainable boundaries, where the process
is allowed to touch a boundary—in this case the boundaries
must be reflecting (see below); and (ii) unattainable bound-
aries, where the process can get infinitesimally close to a bound-
ary without ever touching it—this is achieved by having the
volatility of the process tend to zero (fast enough) as the process
approaches a boundary. The unattainable boundary approach
has been explored to a greater extent, as dealing with reflecting
boundaries can be tricky. However, with unattainable bound-
aries the underlying math typically is rather involved; e.g. the
pricing PDE for simple FX options (European call/put) either
must be solved numerically or involves complicated special
functions. Simply put, analytical tractability is challenging.

In this note we discuss—in what is intended to be a pedagog-
ical fashion—FX option pricing in target zones with attainable
boundaries. The basic idea behind option pricing in the pres-
ence of boundaries is no different than in the case without
boundaries: we must construct a self-financing hedging strat-
egy which replicates the claim at maturity. To do this, we must

Smith,Spencer (1992), Sutherland (1994), Svensson (1991a, 1991b,
1992a, 1992b, 1993, 1994), Taylor and Iannizzotto (2001), Torres
(2000a, 2000b), Tronzano,Psaradakis and Sola (2003), Veestraeten
(2008), Vlaar and Palm (1993), Ward and Glynn (2003), Werner
(1995), Williamson (1985, 1986, 1987a, 1987b, 1989, 2002),
Williamson and Miller (1987), Yu (2007), Zhang (1994), Zhu (1996),
and references therein.

© 2017 Informa UK Limited, trading as Taylor & Francis Group
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construct a discounted FX rate process and find a measure
under which it is a martingale—the risk neutral measure—
which is the requirement that there be no arbitrage. Then the
option price is expressed via a conditional expectation of the
discounted claim under this risk neutral measure, which leads
to a Black–Scholes-like PDE. The key difference is that now,
together with the terminal condition at maturity, we must also
specify boundary conditions.

These boundary conditions must be reflecting, that is, they
must be Neumann boundary conditions. This follows from the
requirement that the identity process be a martingale under the
risk neutral measure: simply put, the risk neutral measure must
be normalized to 1 when summing over all possible outcomes,
and this invariably forces reflecting boundary conditions. Put
another way, if the boundary conditions are not reflecting,
probability ‘leaks’ through the boundaries.

Reflecting boundary conditions imply that the differential
short-rate—the difference between the foreign and domestic
short-rates—cannot be constant; in fact, it cannot even be
deterministic. This is a consequence of the requirements that:
(i) there be no arbitrage; (ii) the FX rate be positive; and (iii) the
attainable boundaries be reflecting. Moreover, the requirement
that the discounted FX rate be a martingale under the risk
neutral measure fixes the differential short rate in terms of
the functional form of the FX rate process as a function of
the underlying Brownian motion together with the (generally,
nondeterministic) drift and the volatility. This has a natural
financial interpretation, to wit, as Uncovered Interest Parity.

In most practical applications the width of the band is nar-
row.† This allows taking a pragmatic approach and picking the
functional form of the FX rate process based on computational
convenience. With a thoughtful choice, the FX option pricing
problem can be solved analytically. In fact, the European call
and put (and related) option prices are expressed via (fast
converging) series of elementary (trigonometric) functions. We
discuss the general approach to solving the pricing PDE and
explicit examples. This includes analytically tractable mod-
els with (non-Ornstein–Uhlenbeck) mean-reversion, which are
also solvable in elementary functions.

The remainder of this note is organized as follows. In sec-
tion 2 we briefly review the general procedure for pricing
FX options, with self-financing replicating strategies briefly
reviewed in appendix 1. In section 3 we discuss pricing FX
options in the presence of attainable reflecting boundaries,
including hedging, European call and put options, explicit mod-
els, etc. with some details relegated to appendices 2 and 3. We
briefly conclude with some remarks in section 4.

2. FX options

Let us assume that the domestic currency (e.g. USD) is freely
traded with no restrictions, whereas the foreign currency (e.g.
HKD) trades inside a target zone. We have a domestic cash
bond Bd

t and a foreign cash bond B f
t . We also have the ex-

change rate St , which, for our purposes here, is the worth
of one unit of the domestic currency in terms of the foreign

†E.g. the USD/HKD spread trades between 7.75 and 7.85, a band
fixed by the Hong Kong Monetary Authority.

currency (e.g. in our USD/HKD example, St is the HKD worth
of 1 USD, whose target zone is 7.75 to 7.85). We will refer
to tradables denominated in the foreign (domestic) currency
as foreign (domestic) tradables. We are interested in pricing
derivatives from a foreign investor’s perspective. The foreign
cash bond B f

t is a foreign tradable; however, Bd
t and St are

not. We can construct another foreign tradable via

S̃t ≡ Bd
t St (1)

(In our USD/HKD example above, this is the HKD value of
the USD cash bond). The discounted process, which must be a
martingale under the risk-neutral measure Q (see appendix 1),
is given by

Zt = (B f
t )

−1 S̃t = B−1
t St (2)

where
Bt ≡ B f

t /Bd
t (3)

The price of a claim YT is given by (see appendix 1)

Ṽt = B f
t E

(
(B f

T )
−1YT

)
Q,F t

(4)

The foreign monetary authority, which confines the foreign
currency to the target zone, (in theory) also adjusts the foreign
interest rates based on the domestic interest rates and the FX
rate. Therefore, we can assume that the domestic cash bond B f

t
is deterministic within the (short enough) time horizons we are
interested in for the purpose of pricing FX derivatives.‡ For
the claim price we then have

Ṽt = Bd
t (B

d
T )

−1Vt (5)

Vt ≡ Bt E

(
B−1

T YT

)
Q,Ft

(6)

Note that Bt defined in (3) is the ratio of the two cash bonds.
We can define the corresponding differential (or ‘effective’)
short-rate process via:

rt ≡ d ln(Bt )

dt
= r f

t − rd
t (7)

where r f
t and rd

t are the foreign and domestic short-rate pro-
cesses:

r f
t ≡ d ln(B f

t )

dt
(8)

rd
t ≡ d ln(Bd

t )

dt
(9)

Note, however, that rt need not be positive. Also, here we are
assuming that rd

t is deterministic; however, r f
t is not, nor is

rt . With this assumption, using (5), we can compute the actual
price Ṽt of the claim YT by computing the would-be ‘price’
Vt of the claim YT with St and Bt playing the roles of the
tradable and the numeraire, respectively (see appendix 1). In
the following, for the sake of notational and terminological
convenience and brevity,§ we refer to Bt as the cash bond, rt

‡More generally, we can assume that any volatility in the domestic
bond Bd

t is uncorrelated with the volatility in the FX rate St and

the volatility in the foreign bond B f
t , or, more precisely, any such

correlation is negligible at relevant time horizons. This would not
alter any of the subsequent discussions or conclusions, so for the sake
of simplicity we will assume that Bd

t is deterministic.
§Alternatively, we can set rd

t to zero, so Bt is the same as the foreign

cash bond B f
t , and restore the (deterministic) rd

t dependence at the
end by multiplying all derivative prices by Bd

t (B
d
T )

−1.
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as the short-rate and Vt as the claim price; also, we refer to the
FX rate St as FXR.¶

3. Pricing with boundaries

3.1. Martingales without boundaries

When we have no boundaries, typically we can construct a non-
trivial martingale Zt other than the identity It . Thus, consider
the transition density† for a Q-Brownian motion Wt (taking
values on the entire real axis, Wt ∈ R), which is the usual
Gaussian distribution:

P(t, z; t ′, z′) = 1√
2π (t ′ − t)

exp

(
−
(
z′ − z

)2
2 (t ′ − t)

)
(10)

The identity It is a martingale under this measure. However,
there also exist other martingales, e.g. Zt = Wt is a martingale,
and so is

Zt ≡ S0 exp
(
σWt − σ 2t/2

)
(11)

where S0 and σ are constant.‡

3.2. Boundaries

When boundaries are present, things are trickier. Thus, let us
consider the process (here Wt is a Q-Brownian motion)

dXt = σ(Xt )dWt + μ(Xt )dt (12)

where σ(x) and μ(x) have no explicit time dependence.§ In
fact, for our purposes here, motivated by analytical tractability
(see footnote ‡), it will suffice to consider constant σ(x) ≡ σ .
However, for now we will keep μ(x) general (but Lipschitz
continuous). We will now introduce barriers¶ for the process
Xt at Xt = x− and Xt = x+ (see, e.g. Freidlin (1985)). Below,
without loss of generality, we will assume x− < x+.

We need to construct the measure Q under which the process
Zt in (A5) is a martingale. For our purposes here it will suffice
to assume that‖ (i) the short-rate rt = r(Xt , t) and (ii) YT =
Y (XT ). Let us define the pricing function

v(x, t, T ) ≡ Bt E

(
B−1

T YT

)
Q,Xt =x

(13)

where Xt is defined via (12) (with constant σ ). Note that Vt in
(A4) is given by Vt = v(Xt , t, T ). Since Et is a Q-martingale,

¶FX has an analog in equities. Consider a stock with a continuous
dividend rate δt . Then the risk-free interest rate is analogous to the
domestic short-rate, the dividend rate δt is analogous to the foreign
short-rate, and the stock is analogous to the foreign currency (so the
stock price is analogous to the worth of one unit of the foreign currency
in terms of the domestic currency).
†I.e. the probability density of starting from Wt = z and ending at
Wt ′ = z′, where t ′ > t .
‡In the log-normal Black–Scholes model the discounted process
B−1

t St is given by (11).
§We consider time-homogeneous dynamics so the problem is
analytically tractable (see below).
¶With the view, e.g. to have a function St = f (Xt ) with attainable
barriers at S± = f (x±). Also, note that, unless μ(x) ≡ 0, this is not
the same as having time-independent barriers for Wt .
‖I.e. (i) rt is a local function of Xt and t , and (ii) YT is independent
of the history FT .

we have the following PDE for v(x, t, T )

∂tv(x, t, T )+ μ(x)∂xv(x, t, T )

+ σ 2

2
∂2

x v(x, t, T )− r(x, t)v(x, t, T ) = 0 (14)

subject to the terminal condition v(x, T, T ) = Y (x). Also,
rt ≡ d ln(Bt )/dt .

Consider a Q-martingale of the form Mt = w(Xt , t), where
w(x, t) is a deterministic function. We have the following PDE:

∂tw(x, t, T )+μ(x)∂xw(x, t, T )+σ
2

2
∂2

xw(x, t, T ) = 0 (15)

We must specify boundary conditions for w(x, t) at x = x±.
For the identity It to be a martingale under Q, we must have
reflecting (Neumann) boundary conditions††

∂xw(x±, t) = 0 (16)

The same boundary conditions must be imposed on the pricing
function v(x, t, T ):

∂xv(x±, t, T ) = 0 (17)

Then the claim Y (x) must satisfy the same boundary condi-
tions:

∂x Y (x±) = 0 (18)

which are consistent with the claim Y (x) ≡ 1 for a zero-coupon
T -bond.

We can now show that rt cannot be deterministic. First, note
that we wish our FXR process St to stay within a band with
attainable boundaries S±. This can be achieved by having St =
f (Xt ), where f (x) is a bounded monotonic‡‡ function on
[x−, x+] such that f (x±) = S±. In this regard, St cannot have
any explicit t dependence,§§ i.e. St depends on t only via Xt .
Second, since the discounted FXR process Zt = B−1

t St is
a Q-martingale, the function f (x) satisfies the same PDE as
v(x, t, T ). It then follows that r(x, t) = r(x), so the short-rate
rt cannot have any explicit t dependence either. We thus have
the following ordinary differential equation for f (x):

μ(x) f ′(x)+ σ 2

2
f ′′(x)− r(x) f (x) = 0 (19)

subject to the boundary conditions

f ′(x±) = 0 (20)

where f ′(x) ≡ ∂x f (x). We must also have f (x) > 0; there-
fore, r(x) cannot be constant.¶¶ So, we can choose f (x) > 0
satisfying (20) and view (19) as fixing r(x):

r(x) = μ(x)
f ′(x)
f (x)

+ σ 2

2

f ′′(x)
f (x)

(21)

This relation has a natural financial interpretation in the FX
context (see below).

††Thus, Dirichlet or Robin boundary conditions would be
inconsistent with It being a martingale. See appendix 2 for the
transition density and martingales for Robin boundary conditions.
‡‡Monotonicity is assumed so we can price claims (see below).
§§Otherwise, barring any contrived time dependence, St generically
will break the band.
¶¶For constant rt > 0 (rt < 0) we would have minima (maxima) at
x = x− and x = x+ with a maximum (minimum) located between
x− and x+, which is not possible for f (x) > 0 on [x−, x+].
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3.3. Pricing PDE

We can now tackle the pricing PDE (14). Let

g(x) ≡ ln( f (x)) (22)

u(x, t, T ) ≡ exp

(
1

σ 2

∫ x

x−
dy μ(y)

)
v(x, t, T ) (23)

Then, taking into account (21), we have:

∂t u(x, t, T )+ σ 2

2

[
∂2

x u(x, t, T )− U (x)u(x, t, T )
]

= 0

(24)
where the ‘potential’ U (x) is given by

U (x) ≡ h2(x)+ h′(x) (25)

h(x) ≡ g′(x)+ μ(x)

σ 2
(26)

subject to the boundary and terminal conditions (note that
g′(x±) = 0 due to (20))

∂x u(x±, t, T ) = h(x±)u(x±, t, T ) (27)

u(x, T, T ) = exp

(
1

σ 2

∫ x

x−
dy μ(y)

)
Y (x) (28)

We have standard separation of variables and the solution is
given by†

u(x, t, T ) =
∞∑

n=0

cn ψn(x) e−En(T −t) (29)

where ψn(x) form a complete orthonormal set of solutions to
the static Schrödinger equation (δnn′ is the Kronecker delta)

−σ
2

2

[
ψ ′′

n (x)− U (x)ψn(x)
] = Enψn(x) (30)∫ x+

x−
dx ψn(x) ψn′(x) = δnn′ (31)

subject to the boundary conditions‡

ψ ′
n(x±) = h(x±)ψn(x±) (32)

As above, ψ ′
n(x) ≡ ∂xψn(x).

The coefficients cn in (29) are fixed using the terminal con-
dition (28) and (31):

cn =
∫ x+

x−
dx ′ exp

(
1

σ 2

∫ x ′

x−
dy μ(y)

)
ψn
(
x ′) Y (x ′) (33)

The spectrum En is nonnegative. For the eigenfunction (a0 is
fixed via (31))

ψ0(x) ≡ a0 exp

(∫ x

x−
dy h(y)

)
(34)

a0 ≡
[∫ x+

x−
dx ′ e

2
∫ x ′

x− dy h(y)
]− 1

2

(35)

we have E0 = 0. The other eigenvalues E1 < E2 < · · · are
all positive.§

†We assume that U (x) is bounded on [x−, x+], so the spectrum En
is bounded from below.
‡Notice that − 2

σ 2 (En − En′)
∫ x+

x− dx ψn(x) ψn′(x) =∫ x+
x− dx[∂2

xψn(x) ψn′(x) − (n ↔ n′)] = [∂xψn(x) ψn′(x) − (n ↔
n′)]|x+

x− = 0 by virtue of (32), hence (31) for n 
= n′ as En 
= En′ .
§Indeed, from (31) with n > 0 and n′ = 0 and the fact thatψ0(x) > 0,
it follows thatψn(x)must flip sign on [x−, x+], i.e.ψn(x) has at least

Putting everything together, we get the following formula
for the pricing function:

v(x, t, T ) = f (x)

[
c̃0 + 1

ψ0(x)

∞∑
n=1

c̃n ψn(x) e−En(T −t)

]
(36)

c̃n ≡
∫ x+

x−
dx ′ ψ0

(
x ′)ψn

(
x ′) Y (x ′)

f (x ′)
, n ≥ 0 (37)

When Y (x) = f (x), i.e. YT = ST , we have c̃0 = 1 and
c̃n>0 = 0, so v(x, t, T ) = f (x), as it should be since this is
simply the pricing function for a forward.

3.4. Hedging

Above we imposed the boundary conditions (20) on the FXR
process. This implies that the local FXR volatility vanishes
at the boundaries. However, unlike the case of unattainable
boundaries, here the boundaries are attainable: the FXR pro-
cess touches a boundary and is reflected back into the band.
Furthermore, note that in any finite period, St can touch a
boundary multiple (unbounded number of) times.

Even though the local FXR volatility vanishes at the bound-
aries, the hedging strategy is well defined. The number of the
St units held by the hedging strategy¶

φt = ∂Vt

∂St
= ∂xv(x, t, T )

f ′(x)
(38)

Since we have (17), so long as f ′′(x±) are finite, φt is finite at
the boundaries:

φt |x=x± = ∂2
x v(x±, t, T )

f ′′(x±)
(39)

Consequently, the cash bond holding ψt is also well defined at
the boundaries.

3.5. Call and put

Consider claims of the form Y c
T (k) = (ST − k)+ = max(ST −

k, 0) (European call option with maturity T and strike k) and
Y p

T (k) = (k − ST )
+ = max(k − ST , 0) (European put option

with maturity T and strike k). We have

Y c
T (k)− Y p

T (k) = Y f
T (k) (40)

where Y f
T (k) = ST −k is the claim for a forward with maturity

T and ‘strike’ k. We have the usual put-call parity: V c
t (k, T )−

V p
t (k, T ) = V f

t (k, T ). The forward price

V f
t (k, T ) = St − k P(t, T ) (41)

one node. However, if any En < 0, then ψn∗>0(x) corresponding to
En∗ ≡ min(En) < 0 would have to have at least one node, which is
not possible.
¶The actual hedge (recall that we are operating from the foreign
investor’s perspective) consists of holding φt units of the domestic
cash bond, andψt units of the foreign cash bond (which is the foreign
investor’s numeraire). As mentioned above, if we set the domestic
short-rate to zero, St (the worth of 1 unit of the domestic cash bond
in the foreign currency) becomes a foreign tradable.
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where P(t, T ) ≡ vbond (̂xt , t, T ) is a zero-coupon T -bond
price (with Y bond

T = 1), and the call price

V c
t (k, T ) = St

[
c̃0 + 1

ψ0(̂xt )

∞∑
n=1

c̃n ψn (̂xt ) e−En(T −t)

]
(42)

c̃n ≡
∫ x+

x∗
dx ′ ψ0

(
x ′)ψn

(
x ′) [1 − k

f (x ′)

]
, n ≥ 0

(43)

where† f (x∗) ≡ k, f (̂xt ) ≡ St (S− < S+, S± ≡ f (x±)). For
the binary option Y b

T = θ(ST − k) and V b
t (k, T ) =

−∂V c
t (k, T )/∂k (θ(y) is the Heaviside step-function).

3.6. FX rate process

In most practical applications the band is narrow, so we can
choose the FXR process based on computational convenience.
Note that ψ1(x) has one node x1 on [x−, x+]: ψ1(x1) = 0.
In the cases where ψ1(x)/ψ0(x) is a monotonic function on
[x−, x+], we can choose the FXR process as follows (note that
f ′(x±) = 0):

f (x) = Smid

[
1 + γ

ψ1(x)

ψ0(x)

]−1

(44)

Here Smid ≡ f (x1). Without loss of generality we can assume
ψ1(x−) > 0 andψ1(x+) < 0, so we have S− < S+ for γ > 0.
Since the band is narrow, γ � 1.

For the FXR process (44) the zero-coupon T -bond price
P(t, T ), for which Y (x) ≡ 1, simplifies. For this claim c̃0 =
1/Smid, c̃1 = γ /Smid and c̃n>0 = 0, so we have

P(t, T ) = St

Smid
+
[

1 − St

Smid

]
e−E1(T −t) (45)

Note that P(t, T ) can be greater than 1 as the short-rate r(x)
need not be positive (recall that r(x) is the differential short-
rate). More on this below.

3.7. Explicit models

We have two functions: g(x) and μ(x). If we set μ(x) = 0
(or some other constant), Xt is a Brownian motion (with a con-
stant drift). Then U (x) is not that simple, albeit still tractable.
Alternatively, we can take g(x) and μ(x) such that U (x) = 0.

3.7.1. Vanishing drift. Let μ(x) ≡ 0. Also, let x− = 0,
x+ = L . Then we can take (note that this choice differs from
(44))

g(x) = γ

[
3

x2

L2
− 2

x3

L3

]
+ ln(S−) (46)

where γ > 0, so that S+ = S− exp(γ ). We have a quartic
potential

U (x) = 6γ

L2

[
1 − 2

x

L
+ 6γ

(
x

L
− x2

L2

)2]
(47)

†This is where the monotonicity of f (x) is important.

which is well studied using perturbation theory. However,
since γ � 1, we have simplifications. Recall that E0 = 0
irrespective of γ . Also,ψ0(x) = a0 f (x)/ f (0) ≈ a0 ≈ 1/

√
L .

In the zeroth approximation, i.e. in the limit γ → 0 where
U (x) → 0, we have E (0)n = π2n2σ 2/2L2 (see below). For the
n > 0 levels the corrections due to nonzero γ are controlled
by the ratio

σ 2U (x)

2E (0)n

= 6γ

π2n2

[
1 − 2

x

L
+ 6γ

(
x

L
− x2

L2

)2]
(48)

which is small for γ � 1. We can therefore set U (x) ≈ 0. If
we wish to account for the leading O(γ ) corrections, we can
drop the nonlinear term in (47), which gives a linear potential

U (x) ≈ 6γ

L2

[
1 − 2

x

L

]
(49)

for which the solutions to the Schrödinger equation (30) are
expressed in terms of the Airy functions Ai(x) and Bi(x).
Alternatively, we can use the WKB approximation.

3.7.2. Vanishing potential. We can set the potential U (x) to
zero without any approximations at the ‘expense’ (see below)
of having nonvanishing μ(x):

μ(x) = −σ 2g′(x) (50)

Then, setting x− = 0 and x+ = L , irrespective of g(x), we
have ψ0(x) = 1/

√
L (E0 = 0), and for n > 0

ψn(x) =
√

2

L
cos

(πnx

L

)
(51)

En = π2n2σ 2

2L2
(52)

The call price simplifies to

V c
t (k, T ) = St

[
c̃0 + √

L
∞∑

n=1

c̃n ψn (̂xt ) e−En(T −t)

]
(53)

c̃n = 1√
L

∫ L

x∗
dx ′ ψn

(
x ′) [1 − k

f (x ′)

]
, n ≥ 0

(54)

where f (x∗) ≡ k, f (̂xt ) ≡ St . Since ψ1(x) is monotonic on
[0, L], it is convenient to take f (x) of the form (44):

f (x) = Smid

[
1 + √

2γ cos
(πx

L

)]−1
(55)

We then have (S− ≤ k ≤ S+, S± = Smid/(1 ∓ √
2γ ))

c̃0 =
√

2γ k

π Smid
[(π − φ∗) cos(φ∗)+ sin(φ∗)] (56)

c̃1 = − γ k

π Smid
[π − φ∗ + sin(φ∗) cos(φ∗)] (57)

c̃n>1 = γ k

π Smid

[
sin((n + 1)φ∗)

n + 1
+ sin((n − 1)φ∗)

n − 1

−2 cos(φ∗) sin(nφ∗)
n

]
(58)

φ∗ ≡ arccos

(
1√
2γ

[
Smid

k
− 1

])
(59)

In practical computations we would truncate the series in (53)
at suitable finite n. Also, note that the T -bond price is given by
(45).
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Here the following remark is in order. As mentioned above,
the local FXR volatility vanishes at the boundaries, which is
due to (20). There is no way around this: boundaries must be
reflecting, and then we must have (20).Asimple way to see this
is that otherwise (18) will not be satisfied for claims such as
call Y c(x) = ( f (x)− k)+ and put Y p(x) = (k − f (x))+, i.e.
we would not be able to hedge such claims. That the local FXR
volatility vanishes at the boundaries in itself is not problematic.
In fact, p(x) ≡ g′(x) = f ′(x)/ f (x) is small compared with
its maximal value pmax on [x−, x+] only in relatively small
regions adjacent to the boundaries. Thus, in the model (55) we
have

p(x) =
√

2γ

1 + √
2γ cos(πx/L)

π sin(πx/L)

L

≈ pmax sin(πx/L) (60)

where pmax ≈ p(L/2) = √
2γπ/L , and we have taken into

account that γ � 1. So, p(L/6) ≈ 0.5 pmax, p(L/10) ≈
0.31 pmax, etc. i.e. due to the nonlinearity of p(x), even at
x = L/10 the local FXR volatility is not too small (compared
with pmax).†

3.7.3. Nonvanishing potential and drift. One ‘shortcom-
ing’ of the model (55) is that, since we have (50), the drift
μ(x) = −σ 2 p(x) is negative away from the boundaries, albeit
it is small (compared with

√
2σ 2π/L) as it is suppressed by

γ � 1. Therefore, in a long run, on average Xt will slowly drift
towards 0. This can be circumvented by considering models
where both the potential U (x) and the drift μ(x) are nonvan-
ishing. Since γ � 1, with the appropriate choice of h(x), to
the leading order μ(x) ≈ σ 2h(x). Alternatively, we can take
the desired drift and treat the terms in the potential stemming
from g′(x) in (26) as small. For our purposes here, the former
approach is more convenient.

Thus, one evident choice is h(x) = α(θ − x)/σ 2, where
θ and α are constant. Then μ(x) ≈ α(θ − x), so Xt (ap-
proximately) follows the mean-reverting Ornstein–Uhlenbeck
(OU) (Uhlenbeck and Ornstein 1930) process, α is the mean-
reversion parameter, and θ is the long-run expected value of
Xt (which we can set to L/2). In this case we have a quadratic
potential and ψn(x) in (30) are expressed via the parabolic
cylinder functions.

However, with an appropriate choice of h(x), we can also
have a solution expressed purely via elementary functions.
Thus, consider

h(x) = −ν tan

(
ν

[
x − L

2

])
(61)

where 0 < ν < π/L is a constant parameter. Then we have
a constant potential U (x) ≡ −ν2. The eigenfunctions ψn(x)
read (n = 0, 1, 2, . . . ):

ψn(x) = an cos

(
λn

[
x − L

2

]
+ πn

2

)
(62)

an =
(

L

2

[
1 + (−1)n

sin(λn L)

λn L

])−1/2

(63)

†In the model (46) we have p(x) = 4pmax(x/L − (x/L)2), where
pmax = p(L/2) = 3γ /2L , so p(x/10) = 0.36 pmax.

whereλn are the positive roots of the following equation (which
follows from (32)):

λn tan ([λn L − πn]/2) = ν tan(νL/2) (64)

The smallest root is λ0 = ν, and λ0 < λ1 < λ2 < · · · (Note
that En = σ 2(λ2

n − ν2)/2.)
The call option price is given by (42) with c̃n defined in

appendix 3. The zero-coupon T -bond price is given by (45).
If ν ∼ π/L (although recall that ν < π/L),‡ then, assuming
γ � 1, the drift μ(x) ≈ −σ 2ν tan(ν(x − L/2)) and we have
positive drift for x < L/2 and negative drift for x > L/2, so
we have a mean-reverting behaviour.§ The g′(x) contribution
into μ(x) via (26) introduces a small asymmetry into μ(x) but
does not alter the qualitative picture.

3.8. Differential rate

The meaning of (21), which stems from the requirement that
there be no arbitrage (i.e. that the discounted process (2) be
a martingale under the risk-neutral measure Q), has a natural
financial interpretation as the Uncovered Interest Parity. To
illustrate this, let us momentarily step away from the target
zone case and consider the case where neither the domestic
nor the foreign currencies are constrained in any way. Then,
if we take a familiar ‘log-normal’ form for the FX rate via
St = exp(Xt ), from (21) we have

rt = r f
t − rd

t = μ(Xt )+ σ 2

2
(65)

Recalling that dXt = σdWt + μ(Xt )dt , (65) is indeed the
Uncovered Interest Parity.¶

In fact, there is a simple formula for the differential short-
rate rt . Using (21), (22), (26), (30), (34) and (44), we have

rt = E1

[
1 − f (Xt )

Smid

]
= E1

[
1 − St

Smid

]
(66)

so rt is positive (negative) at the lower (upper) barrier, which is
a consequence of the requirement that there be no arbitrage.‖

‡In fact, here we assume that ν is not too close to π/L or else the
drift becomes large near the boundaries. In the ν → π/L limit the
boundaries are no longer attainable.
§Near x = L/2 the drift is approximately linear as in the OU process:
μ(x) ≈ σ 2ν2(L/2− x); however, away from the long-run value (i.e.
L/2), the nonlinear effects become important. Unlike the OU case
with reflecting boundaries, the model (61) is solvable via elementary
functions.
¶The σ 2/2 shift is due to the log-normal form of the FX rate. E.g.
if μ(Xt ) ≡ μ = const., the expectation E (ST )Q,Ft = exp((μ +
σ 2/2)(T − t)).
‖If the domestic short-rate is low, rd

t < E1 (S+/Smid − 1),
then the foreign short-rate would become negative for St >

Smid

(
1 + rd

t /E1

)
. Theoretically this would appear to imply

arbitrage. However, in practice the short-rate is not a tradable
instrument and this situation may not be arbitrageable as the tradable
bonds (for the actually available maturities) may still have well-
behaved yields despite the negative underlying short-rate (for a recent
discussion, see, e.g. Kakushadze (2016) and references therein). Also
note that (66) simply follows from rt = f (t, t) and (45), where
f (t, T ) = −∂T ln (P(t, T )) is the forward rate.
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Note that (66) does not explicitly depend on U (x) so long as
we have (44).†

4. Concluding remarks

As we saw above, with a thoughtful choice of the FX rate
process—which choice, from a practical viewpoint, exists be-
cause the band is narrow and said choice does not affect quan-
titative results much—we can solve the FX option pricing
problem in the target zone analytically, in fact, via elementary
functions. This is assuming attainable barriers.‡ For unattain-
able barriers the math typically is more involved. Also, in
practice the exchange rates in target zones frequently attain
the boundaries, so attainable boundaries are also appealing
from this viewpoint. In fact, in some cases the FX options
markets imply a future expectation that the FX rate will break
the band. Models accommodating band breaking are outside
of the scope of this note; however, the fact that the markets
sometimes price band breaks further indicates appealability of
models with attainable boundaries.
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Appendix 1. Self-financing hedging strategies

The following discussion is rather general and applies to a wide class
of underlying tradable instruments. So, suppose we have a tradable
St and a numeraire† Bt . Generally, Bt need not be deterministic.
Consider a claim YT at the maturity time T . We wish to value this
claim at times t < T . To do this, we need to construct a self-financing
hedging strategy which replicates the claim YT . The hedging strategy
amounts to, at any given time t , holding a portfolio (φt , ψt ) consisting
of φt units of St and ψt units of Bt , where φt and ψt are previsible
processes. The value Vt of this portfolio at time t is given by

Vt = φt St + ψt Bt (A1)

The self-financing property means that the change in the value of the
portfolio is solely due the changes in the values of St and Bt , i.e. there
is no cash flowing in or out of the strategy at any time:

dVt = φt dSt + ψt dBt (A2)

Then from (A2) it follows that

dEt = φt dZt (A3)

where

Et ≡ B−1
t Vt (A4)

Zt ≡ B−1
t St (A5)

So, (A3) relates the discounted claim price Et to the discounted
tradable price Zt .

Let us now assume that we can construct a measure Q under which
Zt is a martingale. Then we can construct a self-financing strategy
which replicates the claim YT by setting (Ft is the filtration up to time
t , and E(·) denotes expectation)

Et = E

(
B−1

T YT

)
Q,Ft

(A6)

We then have VT = BT ET = YT . Since both Et and Zt are Q-
martingales, pursuant to the martingale representation theorem φt is
a previsible process. Furthermore, from (A1), (A4) and (A5) we have

ψt = Et − φt Zt (A7)

so ψt is also previsible.

†Usually, the numeraire is chosen to be a cash bond, but it can be any
tradable instrument.

In the applications of the above discussion in the main text, we
assume‡ that a single Q-Brownian motion Wt underlies the dynamics
of St and Bt . We also assume that the identity It ≡ 1 is a Q-martingale,
i.e. E (IT )Q,Ft

= It = 1, so the measure Q is properly normalized
when summed over all final outcomes at time T irrespective of the
history Ft prior to time t < T .

Appendix 2. Transition density

Here we give the transition density for the process (Wt is a P-Brownian
motion)

dXt = σ dWt + μ dt (B1)

where σ and μ are constant, and Xt is allowed to wander between
two boundaries at Xt = x− and Xt = x+. Without loss of generality
we can set x− = 0 and x+ = L .

Let YT ≡ Y (XT ) be a claim, where Y (x) is a continuous function,
and let

w(x, t, T ) ≡ E (Y (XT ))P,Xt =x (B2)

Since Zt ≡ w(Xt , t, T ) is a P-martingale, w(x, t, T ) satisfies the
following PDE

∂tw(x, t, T )+ μ∂xw(x, t, T )+ σ 2

2
∂2

xw(x, t, T ) = 0 (B3)

subject to the terminal condition

w(x, T, T ) = Y (x) (B4)

Also, we must specify the boundary conditions at x = 0 and x = L .
We will impose the Robin boundary conditions:§

∂xw(x±, t, T ) = ρw(x±, t, T ) (B5)

which imply that the claim also satisfies the same boundary
conditions:

∂x Y (x±) = ρY (x±) (B6)

Here ρ is constant. When ρ = 0 we have Neumann boundary condi-
tions (so the boundaries are reflecting), while when ρ → ∞ we have
Dirichlet boundary conditions (so the boundaries are absorbing).

Let the probability density of starting at Xt = x at time t and ending
at Xt ′ = x ′ at time t ′ be P(t, x; t ′, x ′), a.k.a. transition density. Since
the claim Y (XT ) depends only on the final value XT , we have

w(x, t, T ) =
∫ L

0
dx ′ P(t, x; T ; x ′) Y (x ′) (B7)

So, P(t, x; t ′, x ′) is a Green’s function (a.k.a. heat kernel). The tran-
sition density can be computed using the eigenfunction method (see,
e.g. Linetsky (2005)) and is given by:

P(t, x; T, x ′) = 2ρ̃
eρx+(2ρ̃−ρ)x ′

e2Lρ̃ − 1
e−E0(T −t)

+ 2

L
e(ρ̃−ρ)(x ′−x)

∞∑
n=1

e−En(T −t)

qn

×
[
πn cos

(πnx

L

)
+ Lρ̃ sin

(πnx

L

)]
×
[
πn cos

(
πnx ′

L

)
+ Lρ̃ sin

(
πnx ′

L

)]
(B8)

‡Otherwise, the market would be incomplete and we would not be
able to hedge claims.
§Here, more generally, we can impose different Robin boundary
conditions at x = 0 and x = L . For our purposes here it will suffice to
consider (B5). Let us mention that, in the case of different boundary
conditions the spectrum generally has an infinite tower of positive
eigenvalues, and also two additional eigenvalues, at least one of which
is negative. (More precisely, there are non-generic degenerate cases
with only one such additional eigenvalue, which is negative.)
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where

E0 = ρ (ρ − 2ρ̃)
σ 2

2
(B9)

En = E0 + qnσ
2

2L2
(B10)

qn ≡ π2n2 + L2ρ̃2 (B11)

ρ̃ ≡ ρ + μ

σ 2
(B12)

Let us assume ρ 
= 0. Then E0 = 0 if ρ̃ = ρ/2, i.e.

ρ = −2μ

σ 2
(B13)

So, we have

P(t, x; T, x ′) = ρ
exp (ρx)

exp (Lρ)− 1

+ 2

L
exp

(ρ
2

[
x − x ′]) ∞∑

n=1

e−En(T −t)

qn

×
[
πn cos

(πnx

L

)
+ Lρ

2
sin
(πnx

L

)]
×
[
πn cos

(
πnx ′

L

)
+ Lρ

2
sin

(
πnx ′

L

)]
(B14)

where

En = qnσ
2

2L2
(B15)

qn = π2n2 + L2ρ2

4
(B16)

Under the measure (B14), the process

Zt = S0 exp(ρXt ) (B17)

is a martingale; however, the identity process It is not.
On the other hand, when ρ = 0, we have

P(t, x; T, x ′) = 2ρ̃
e2ρ̃x ′

e2Lρ̃ − 1

+ 2

L
eρ̃(x

′−x)
∞∑

n=1

e−En(T −t)

qn

×
[
πn cos

(πnx

L

)
+ Lρ̃ sin

(πnx

L

)]
×
[
πn cos

(
πnx ′

L

)
+ Lρ̃ sin

(
πnx ′

L

)]
(B18)

where ρ̃ = μ/σ 2. Under this measure, the identity It is a martingale;

however, the process Zt = S0 exp(γ Xt ) F(t) with γ 
= 0 is not a
martingale for any function F(t).

Appendix 3. Call option pricing coefficients

The coefficients c̃n for the call option price (42) in the model (61) are
given by:

c̃0 = a2
0
4

(
1 − k

Smid

)
×
[

2(L − x∗)+ sin(νL)− sin(ν[2x∗ − L])
ν

]
− a0a1γ k

2Smid

[
cos([λ1 − ν]L/2)− cos([λ1 − ν][x∗ − L/2])

λ1 − ν

+ (ν → −ν)
]

(C1)

c̃1 = a0a1

2

(
1 − k

Smid

)
×
[

cos([λ1 − ν]L/2)− cos([λ1 − ν][x∗ − L/2])
λ1 − ν

+ (ν → −ν)
]

− a2
1γ k

4Smid

[
2(L − x∗)− sin(λ1L)− sin(λ1[2x∗ − L])

λ1

]
(C2)

c̃n>1

= a0an

2

(
1 − k

Smid

)

×
[ sin

( [λn−ν]L+πn
2

)
− sin

( [λn−ν](2x∗−L)+πn
2

)
λn − ν

+ (ν → −ν)
]

+ a1anγ k

2Smid

[cos
( [λn−λ1]L+πn

2

)
− cos

( [λn−λ1](2x∗−L)+πn
2

)
λn − λ1

− (λ1 → −λ1)

]
(C3)

where an are given by (63), λn are defined via (64), and f (x∗) ≡ k.
These coefficients c̃n reduce to those given by (56), (57) and (58) in
the ν → 0 limit.
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