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1. Introduction

Foreign exchange (FX) rates in target zones have been studied
extensively. Following Krugman (1991), the FX rate confined

*Corresponding author. Email: zura@quantigic.com

J[For a literature survey, see, e.g. Duarte,Andrade and Duarte (2013).
For a partial list (with some related literature, including on option
pricing), see, e.g. Andersen,Bollerslev,Diebold and Labys (2001),
Anthony and MacDonald (1998), Ayuso and Restoy (1996), Ball
and Roma (1994), Bauer,De Grauwe and Reitz (2009), Beetsma
and Van Der Ploeg (1994), Bekaert and Gray (1998), Bertola and
Caballero (1992), Bertola and Svensson (1993), Black and Scholes
(1973), Bo,Wang and Yang (2011), Bo,Li,Ren,Wang and Yang (2011),
Campa and Chang (1996), Carr,Ellis and Gupta (1998), Carr and
Jarrow (1990), Carr and Linetsky (2000), Cavaliere (1998), Chinn
(1991), Cornell (2003), Christensen,Lando and Miltersen (1998), De
Jong (1994), De Jong,Drost and Werker (2001), Delgado,Dumas
(1992), Dominquez and Kenen (1992), Driffill and Sola (2006),
Duarte,Andrade and Duarte (2010), Dumas et al. (1995a, 1995b),
Edin and Vredin (1993), Edison,Miller and Williamson (1987), Flood
and Garber (1991), Flood,Rose and Mathieson (1991), Garman and
Kohlhagen (1983), Grabbe (1983), Harrison (1985), Harrison and
Pliska (1981), Honogan (1998), Hull and White (1987), Kempa and
Nelles (1999), Klaster and Knot (2002), Klein and Lewis (1993),
Koedijk,Stork and de Vries (1998), Krugman (1991, 1992), Lai,Fang
and Chang (2008), Larsen and Sgrensen (2007), Lin (2008), Lindberg
and Soderlind (1994a, 1994b), Lindberg,Soderlind and Svensson
(1993), Linetsky (2005), Lundbergh and Terdsvirta (2006), Magnier
(1992), McKinnon (1982, 1984), Meese and Rose (1990, 1991),
Merton (1973, 1976), Miller and Weller (1991), Mizrach (1995),
Obstfeld and Rogoff (1995), Rangvid and Sgrensen (2001), Rose and
Svensson (1995), Saphores (2005), Serrat (2000), Slominski (1994),

to a band with barriers is modelled as a stochastic process,
where one needs to deal with the boundaries. There are essen-
tially two choices: (i) attainable boundaries, where the process
is allowed to touch a boundary—in this case the boundaries
must be reflecting (see below); and (ii) unattainable bound-
aries, where the process can get infinitesimally close to a bound-
ary without ever touching it—this is achieved by having the
volatility of the process tend to zero (fast enough) as the process
approaches a boundary. The unattainable boundary approach
has been explored to a greater extent, as dealing with reflecting
boundaries can be tricky. However, with unattainable bound-
aries the underlying math typically is rather involved; e.g. the
pricing PDE for simple FX options (European call/put) either
must be solved numerically or involves complicated special
functions. Simply put, analytical tractability is challenging.
In this note we discuss—in what is intended to be a pedagog-
ical fashion—FX option pricing in target zones with attainable
boundaries. The basic idea behind option pricing in the pres-
ence of boundaries is no different than in the case without
boundaries: we must construct a self-financing hedging strat-
egy which replicates the claim at maturity. To do this, we must

Smith,Spencer (1992), Sutherland (1994), Svensson (1991a, 1991b,
1992a, 1992b, 1993, 1994), Taylor and lannizzotto (2001), Torres
(2000a, 2000b), Tronzano,Psaradakis and Sola (2003), Veestraeten
(2008), Vlaar and Palm (1993), Ward and Glynn (2003), Werner
(1995), Williamson (1985, 1986, 1987a, 1987b, 1989, 2002),
Williamson and Miller (1987), Yu (2007), Zhang (1994), Zhu (1996),
and references therein.

© 2017 Informa UK Limited, trading as Taylor & Francis Group
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construct a discounted FX rate process and find a measure
under which it is a martingale—the risk neutral measure—
which is the requirement that there be no arbitrage. Then the
option price is expressed via a conditional expectation of the
discounted claim under this risk neutral measure, which leads
to a Black—Scholes-like PDE. The key difference is that now,
together with the terminal condition at maturity, we must also
specify boundary conditions.

These boundary conditions must be reflecting, that is, they
must be Neumann boundary conditions. This follows from the
requirement that the identity process be a martingale under the
risk neutral measure: simply put, the risk neutral measure must
be normalized to 1 when summing over all possible outcomes,
and this invariably forces reflecting boundary conditions. Put
another way, if the boundary conditions are not reflecting,
probability ‘leaks’ through the boundaries.

Reflecting boundary conditions imply that the differential
short-rate—the difference between the foreign and domestic
short-rates—cannot be constant; in fact, it cannot even be
deterministic. This is a consequence of the requirements that:
(i) there be no arbitrage; (ii) the FX rate be positive; and (iii) the
attainable boundaries be reflecting. Moreover, the requirement
that the discounted FX rate be a martingale under the risk
neutral measure fixes the differential short rate in terms of
the functional form of the FX rate process as a function of
the underlying Brownian motion together with the (generally,
nondeterministic) drift and the volatility. This has a natural
financial interpretation, to wit, as Uncovered Interest Parity.

In most practical applications the width of the band is nar-
row.T This allows taking a pragmatic approach and picking the
functional form of the FX rate process based on computational
convenience. With a thoughtful choice, the FX option pricing
problem can be solved analytically. In fact, the European call
and put (and related) option prices are expressed via (fast
converging) series of elementary (trigonometric) functions. We
discuss the general approach to solving the pricing PDE and
explicit examples. This includes analytically tractable mod-
els with (non-Ornstein—Uhlenbeck) mean-reversion, which are
also solvable in elementary functions.

The remainder of this note is organized as follows. In sec-
tion 2 we briefly review the general procedure for pricing
FX options, with self-financing replicating strategies briefly
reviewed in appendix 1. In section 3 we discuss pricing FX
options in the presence of attainable reflecting boundaries,
including hedging, European call and put options, explicit mod-
els, etc. with some details relegated to appendices 2 and 3. We
briefly conclude with some remarks in section 4.

2. FX options

Let us assume that the domestic currency (e.g. USD) is freely
traded with no restrictions, whereas the foreign currency (e.g.
HKD) trades inside a target zone. We have a domestic cash
bond B¢ and a foreign cash bond B,f . We also have the ex-
change rate S;, which, for our purposes here, is the worth
of one unit of the domestic currency in terms of the foreign

TE.g. the USD/HKD spread trades between 7.75 and 7.85, a band
fixed by the Hong Kong Monetary Authority.
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currency (e.g. in our USD/HKD example, S; is the HKD worth
of 1 USD, whose target zone is 7.75 to 7.85). We will refer
to tradables denominated in the foreign (domestic) currency
as foreign (domestic) tradables. We are interested in pricing
derivatives from a foreign investor’s perspective. The foreign
cash bond B,f is a foreign tradable; however, Btd and S, are
not. We can construct another foreign tradable via

S, =BIs, (1)

(In our USD/HKD example above, this is the HKD value of
the USD cash bond). The discounted process, which must be a
martingale under the risk-neutral measure Q (see appendix 1),
is given by

z, = B)H7'S, = B's, 2
where
B, = B/ /Bf 3)
The price of a claim Y7 is given by (see appendix 1)
% f fy-1
Vi =8/ E(B)Hrr) 4
t t ( T) T 0.7, ( )

The foreign monetary authority, which confines the foreign
currency to the target zone, (in theory) also adjusts the foreign
interest rates based on the domestic interest rates and the FX
rate. Therefore, we can assume that the domestic cash bond B,f
is deterministic within the (short enough) time horizons we are
interested in for the purpose of pricing FX derivatives.i For
the claim price we then have

V. = BY(BIH) Y, (5)
_ —1
Vi =B E(B; YT)QJ__ (©6)

t
Note that B; defined in (3) is the ratio of the two cash bonds.
We can define the corresponding differential (or ‘effective’)
short-rate process via:

_dinB) _ 4

ry = ” ri —r; (7)
where rtf and rtd are the foreign and domestic short-rate pro-
cesses:

f

f dll‘l(Bt )
= 7 8
Tt dr 3

dIn(BY)

d '

= — 9
ry ar ©)

Note, however, that r; need not be positive. Also, here we are
assuming that r,d is deterministic; however, r,f is not, nor is
r;. With this assumption, using (5), we can compute the actual
price V, of the claim Y7 by computing the would-be ‘price’
V; of the claim Y7 with S; and B, playing the roles of the
tradable and the numeraire, respectively (see appendix 1). In
the following, for the sake of notational and terminological
convenience and brevity,§ we refer to B, as the cash bond, r,

iMore generally, we can assume that any volatility in the domestic
bond B,d is uncorrelated with the volatility in the FX rate S; and
the volatility in the foreign bond B,f , or, more precisely, any such
correlation is negligible at relevant time horizons. This would not
alter any of the subsequent discussions or conclusions, so for the sake
of simplicity we will assume that Btd is deterministic.

§Alternatively, we can set rld

to zero, so By is the same as the foreign
cash bond Btf , and restore the (deterministic) r,d dependence at the

end by multiplying all derivative prices by B,d (B#)_l.
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as the short-rate and V; as the claim price; also, we refer to the
FX rate §; as FXR.q

3. Pricing with boundaries

3.1. Martingales without boundaries

When we have no boundaries, typically we can construct anon-
trivial martingale Z, other than the identity I;. Thus, consider
the transition densityt for a Q-Brownian motion W; (taking
values on the entire real axis, W; € R), which is the usual

Gaussian distribution:
(2 -2)°
_ - 10
NI eXp( 2(ﬂ—¢)> (10

The identity I; is a martingale under this measure. However,
there also exist other martingales, e.g. Z; = W; is a martingale,
and so is

P(t,z;t,7) =

Z: = Spexp (aW, —crzt/2> (11)

where Sy and o are constant.f

3.2. Boundaries

When boundaries are present, things are trickier. Thus, let us
consider the process (here W; is a Q-Brownian motion)

dX, = o(X)dW, + n(X,)dt (12)

where o (x) and (x) have no explicit time dependence.§ In
fact, for our purposes here, motivated by analytical tractability
(see footnote 1), it will suffice to consider constant o (x) = o.
However, for now we will keep p(x) general (but Lipschitz
continuous). We will now introduce barriers] for the process
X;at X; = x_and X; = x4 (see, e.g. Freidlin (1985)). Below,
without loss of generality, we will assume x_ < x.

We need to construct the measure Q under which the process
Z; in (A5) is a martingale. For our purposes here it will suffice
to assume that|| (i) the short-rate r;, = r(X,, t) and (ii) Y7 =
Y (X7). Let us define the pricing function

13)

where X, is defined via (12) (with constant ). Note that V; in
(Ad)is givenby V; = v(X;, t, T). Since E; is a Q-martingale,

ve 1, T) = B E (By'vr)

Q. X;=x

JFX has an analog in equities. Consider a stock with a continuous
dividend rate é;. Then the risk-free interest rate is analogous to the
domestic short-rate, the dividend rate §; is analogous to the foreign
short-rate, and the stock is analogous to the foreign currency (so the
stock price is analogous to the worth of one unit of the foreign currency
in terms of the domestic currency).

tL.e. the probability density of starting from W; = z and ending at
Wy =7/, wheret’ > t.

fIn the log-normal Black—Scholes model the discounted process
B, 'S, is given by (11).

§We consider time-homogeneous dynamics so the problem is
analytically tractable (see below).

With the view, e.g. to have a function S; = f(X;) with attainable
barriers at S+ = f(x+). Also, note that, unless p(x) = 0, this is not
the same as having time-independent barriers for W;.

|IL.e. (i) 7 is a local function of X; and #, and (ii) Y7 is independent
of the history Fr.
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we have the following PDE for v(x, ¢, T')
dv(x, 1, T) + u(x)ocv(x, 1, T)
2
+%a§v(x,t, Ty —r(x, v, 1, T) =0  (14)

subject to the terminal condition v(x, T, T) = Y(x). Also,
ry =dIn(B;)/dt.
Consider a Q-martingale of the form M, = w(X,, t), where
w(x, t)isadeterministic function. We have the following PDE:
2
orw(x,t, T)+u(x)orw(x,t, T)—i—%afw(x, t, T) =0 (15)

We must specify boundary conditions for w(x, ¢) at x = x4.
For the identity /; to be a martingale under Q, we must have
reflecting (Neumann) boundary conditionsf

dw(ry, 1) =0 (16)

The same boundary conditions must be imposed on the pricing
function v(x, ¢, T):

dv(s,t,T) =0 (17)

Then the claim Y (x) must satisfy the same boundary condi-
tions:

Y (xy) =0 (18)

which are consistent with the claim Y (x) = 1 for a zero-coupon
T -bond.

We can now show that r, cannot be deterministic. First, note
that we wish our FXR process S; to stay within a band with
attainable boundaries S4. This can be achieved by having S; =
f(X;), where f(x) is a bounded monotonicti function on
[x_, x+] such that f(x+) = S+. In this regard, S; cannot have
any explicit ¢ dependence,§§ i.e. S; depends on ¢ only via X;.
Second, since the discounted FXR process Z; = B, ! S; is
a Q-martingale, the function f(x) satisfies the same PDE as
v(x,t, T). It then follows that r (x, t) = r(x), so the short-rate
r; cannot have any explicit t dependence either. We thus have
the following ordinary differential equation for f(x):

2
HOf @+ S0 —r@ =0 (19)
subject to the boundary conditions
flxe) =0 (20)

where f'(x) = 9, f(x). We must also have f(x) > 0; there-

fore, r (x) cannot be constant.{{ So, we can choose f(x) > 0

satisfying (20) and view (19) as fixing 7 (x):
') o® )

)= T T

This relation has a natural financial interpretation in the FX
context (see below).

21

T1Thus, Dirichlet or Robin boundary conditions would be
inconsistent with /; being a martingale. See appendix 2 for the
transition density and martingales for Robin boundary conditions.
+EMonotonicity is assumed so we can price claims (see below).
§§Otherwise, barring any contrived time dependence, S; generically
will break the band.

Jj[For constant r; > 0 (r; < 0) we would have minima (maxima) at
x = x— and x = x4 with a maximum (minimum) located between
x— and x4, which is not possible for f(x) > Oon [x_, x4].
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3.3. Pricing PDE
We can now tackle the pricing PDE (14). Let

g(x) =1In(f(x)) (22)
u(x,t,T) =exp (%/ dy M(y)) v(x,t,T) (23)
Then, taking into account (21), we have:
2
dux, 1. T) + % [afu(x, 1, T) — Uou(x, 1, T)] =0
(24)
where the ‘potential’ U (x) is given by
Ux) = h2(x) + 1 (x) (25)
h = g0 + 15 26)

subject to the boundary and terminal conditions (note that
g (x1) = 0 due to (20))

Oxu(xe,t, T)=h(x)u(xy,t,T)

1 X
u(x,T,T)=exp <;/ dy M(y)> Y(x)

27)
(28)

We have standard separation of variables and the solution is
given by
o0
(@, 1,T) =) e Yu(x) e Fr T (29)
n=0
where 1, (x) form a complete orthonormal set of solutions to
the static Schrodinger equation (8, is the Kronecker delta)
2

~Z W@ = U] = B (G0)
Xt
f dx Y (x) Y (X) = Sy (3D
subject to the boundary conditions::
Yy (xx) = h(xe) Y (xs) (32)

As above, ¥ (x) = 3y Y (x).
The coefficients ¢, in (29) are fixed using the terminal con-
dition (28) and (31):

x4 1Y
cn = / dx’exp <0_2/ dy M(y)> Y () Y (&) (33)

The spectrum E,, is nonnegative. For the eigenfunction (ag is

fixed via (31))
X
Yo(x) = agexp </ dy h(y)> (34)
X—
1
Xt x/ 172
ao = [ / dx’ 2 ’“”} (35)
X—
we have Ey = 0. The other eigenvalues E; < Ey < --- are

all positive.§

TWe assume that U (x) is bounded on [x—, x4 ], so the spectrum Ej,
is bounded from below.

#Notice that —%(En — Ep) [Mrdx Ypx) Yp) =
[ Ax[029 (X) Y (¥) — (n <> 1)) = [3x ¥ (X) Y () — (n <>

n)[x" = 0 by virtue of (32), hence (31) for n # n’ as E, # E,y.
§Indeed, from (31) withn > 0 andn’ = 0 and the fact that ¥y (x) > 0,
it follows that v, (x) must flip sign on [x_—, x4 ], i.e. ¥, (x) has at least

Feature

Putting everything together, we get the following formula
for the pricing function:

00,1, T) = f(x) [30 + ﬁ ;z Y (%) eE"(T’):|

(36)

X4 Y(x/)
= dx’ ! ! , >0 (37
= [ 0 () v (7)o 20 BT
When Y(x) = f(x), ie. Y7 = S7, we have ¢g = 1 and
Cn>0 = 0,s0 v(x,t,T) = f(x), as it should be since this is

simply the pricing function for a forward.

3.4. Hedging

Above we imposed the boundary conditions (20) on the FXR
process. This implies that the local FXR volatility vanishes
at the boundaries. However, unlike the case of unattainable
boundaries, here the boundaries are attainable: the FXR pro-
cess touches a boundary and is reflected back into the band.
Furthermore, note that in any finite period, S; can touch a
boundary multiple (unbounded number of) times.

Even though the local FXR volatility vanishes at the bound-
aries, the hedging strategy is well defined. The number of the
S; units held by the hedging strategyq
_ Wt T) (38)

a8, J'(x)

Since we have (17), so long as f”(x) are finite, ¢ is finite at
the boundaries:

t

32v(xx,t,T)
[ (xx)

Consequently, the cash bond holding v, is also well defined at
the boundaries.

(39)

¢l |x:xi -

3.5. Call and put

Consider claims of the form Y7 (k) = (St — k)T = max(St —
k, 0) (European call option with maturity 7 and strike k) and
Yf (k) = (k — S7)* = max(k — S7, 0) (European put option
with maturity 7 and strike k). We have

Yi(k) = YE (k) = Y] (k) (40)

where Y. Tf (k) = St —k is the claim for a forward with maturity
T and ‘strike’ k. We have the usual put-call parity: V,(k, T') —
th (k, T) = V,f (k, T). The forward price

Vv k. T)=5S —k P T) (A1)

one node. However, if any E;, < 0, then ¥, - (x) corresponding to
E,, = min(Ey) < 0 would have to have at least one node, which is
not possible.

JThe actual hedge (recall that we are operating from the foreign
investor’s perspective) consists of holding ¢, units of the domestic
cash bond, and v; units of the foreign cash bond (which is the foreign
investor’s numeraire). As mentioned above, if we set the domestic
short-rate to zero, S; (the worth of 1 unit of the domestic cash bond
in the foreign currency) becomes a foreign tradable.
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where P(t,T) = v™(%,,¢,T) is a zero-coupon T-bond
price (with Y. Tb"“d = 1), and the call price

VEk,T) =5, [604- S ch Y (Xp) e P ”}

2)
I x+d ! ! N1 k 0
= n ey E =

n / o () v (x)[ f(x/)] "
@3)

wheret f(xy) =k, f(x;) = S (S- < S4, S+ = f(x+)). For
the binary option Y? = 60(St — k) and th k,T) =
—0V,(k, T)/dk (6(y) is the Heaviside step-function).

3.6. FX rate process

In most practical applications the band is narrow, so we can
choose the FXR process based on computational convenience.
Note that 11 (x) has one node x; on [x_, x4]: ¥1(x1) = 0.
In the cases where V1 (x)/v¥o(x) is a monotonic function on
[x_, x4 ], we can choose the FXR process as follows (note that

f'(x£) = 0):

-1
Wl(X)} (ad)

Yo(x)
Here Spiq = f (x1). Without loss of generality we can assume
Y1(x—) > 0and ¥ (x4+) < 0,so we have S_ < S; fory > 0.
Since the band is narrow, y < 1.

For the FXR process (44) the zero-coupon T-bond price
P(t, T), for which Y (x) = 1, simplifies. For this claim ¢y =
1/Smid»> €1 = ¥/Smiq and ¢~ = 0, so we have

i :| o E1(T—)
Smid

Note that P(z, T) can be greater than 1 as the short-rate r (x)
need not be positive (recall that r (x) is the differential short-
rate). More on this below.

fx) = mid|:1+y

P, T)= SS ” + |:1 (45)

3.7. Explicit models

We have two functions: g(x) and u(x). If we set u(x) = 0
(or some other constant), X; is a Brownian motion (with a con-
stant drift). Then U (x) is not that simple, albeit still tractable.
Alternatively, we can take g(x) and . (x) such that U (x) = 0.

3.7.1. Vanishing drift. Let u(x) = 0. Also, let x_ = 0,
x4+ = L. Then we can take (note that this choice differs from

(44))

2 3
gx)=y |:3 i 2 F] + In(S-) (46)
where y > 0, so that Sy = S_exp(y). We have a quartic
potential
2\ 2
X X
Ux) = |:1—2 + 6y <L ﬁ) i| 47

1This is where the monotonicity of f(x) is important.
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which is well studied using perturbation theory. However,
since y < 1, we have simplifications. Recall that £y = 0
irrespective of y. Also, Yo (x) = ap f(x)/f(0) ~ ay = 1/v/L.
In the zeroth approx1mat10n i.e. in the limit y — 0 where
U(x) — 0, we have E( ) — 7 21262 /2L? (see below). For the
n > 0 levels the corrections due to nonzero y are controlled

by the ratio
2 2\ 2
o“U(x) 6y X X X
——=——=1-2—=—4+6y|——— 48
2O A Lo\ (48)

which is small for y <« 1. We can therefore set U (x) ~ 0. If
we wish to account for the leading O(y) corrections, we can
drop the nonlinear term in (47), which gives a linear potential

Ux) 6”[1 2"]
)~ ——=[1-2=
L? L

for which the solutions to the Schrodinger equation (30) are
expressed in terms of the Airy functions Ai(x) and Bi(x).
Alternatively, we can use the WKB approximation.

(49)

3.7.2. Vanishing potential. We can set the potential U (x) to
zero without any approximations at the ‘expense’ (see below)
of having nonvanishing 1 (x):

1(x) = —o7g'(x) (50)
Then, setting x_ = 0 and x4 = L, irrespective of g(x), we
have Yo (x) = 1/v/L (Ey = 0), and forn > 0
Yn(x) = \/7 (%) (51)
X — COS| —
" L
2.2 2
= (52)
212

The call price simplifies to

Vi, T) =5, |:50 + VLY T ) e—En”—’)} (53)

n=1

- 1 k
Cp = Tx*dan( )|: m},nzo
(54)

where f(xy) =k, f(x;) = S;. Since v{(x) is monotonic on
[0, L], it is convenient to take f(x) of the form (44):

F(x) = Smid [1 + /2y cos (”L—x)]_ (55)
We then have (S_ < k < Sy, S+ = Smia/(1 F+2y))
k
% = J;Vd [(r — ) cos(¢y) + sin(¢)] (56)
¢l = [t — ¢y + sin(¢py) cos(py)] 57)
ﬂSmld
~ Yk [Sln((n + Dgy)  sin((n — 1))
Cn>1_7TSmid n—+1 n—1
_2c05(9) sm(nqs*)} )
n

b0 = arccos ( fly [Sm‘d 1}) (59)

In practical computations we would truncate the series in (53)
at suitable finite n. Also, note that the 7'-bond price is given by
(45).
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Here the following remark is in order. As mentioned above,
the local FXR volatility vanishes at the boundaries, which is
due to (20). There is no way around this: boundaries must be
reflecting, and then we must have (20). A simple way to see this
is that otherwise (18) will not be satisfied for claims such as
call Y¢(x) = (f(x) — k)T and put Y (x) = (k — f(x))T, ie.
we would not be able to hedge such claims. That the local FXR
volatility vanishes at the boundaries in itself is not problematic.
In fact, p(x) = g'(x) = f'(x)/f (x) is small compared with
its maximal value ppax on [x_, x4] only in relatively small
regions adjacent to the boundaries. Thus, in the model (55) we
have

2y msin(mwx/L)

1 4+ /2y cos(mx/L) L
A Pmax Sin(mwx /L)

px) =
(60)

where pmax ~ p(L/2) = 2y w/L, and we have taken into
account that y <« 1. So, p(L/6) =~ 0.5 pmax, p(L/10) =
0.31 pmax, etc. i.e. due to the nonlinearity of p(x), even at
x = L/10 the local FXR volatility is not too small (compared
with pmax). T

3.7.3. Nonvanishing potential and drift. One ‘shortcom-
ing’ of the model (55) is that, since we have (50), the drift
nix) = —o? p(x) is negative away from the boundaries, albeit
it is small (compared with v/2027/L) as it is suppressed by
y <K 1.Therefore, in along run, on average X; will slowly drift
towards 0. This can be circumvented by considering models
where both the potential U (x) and the drift x(x) are nonvan-
ishing. Since y <« 1, with the appropriate choice of A (x), to
the leading order 1(x) &~ oh(x). Alternatively, we can take
the desired drift and treat the terms in the potential stemming
from g’(x) in (26) as small. For our purposes here, the former
approach is more convenient.

Thus, one evident choice is h(x) = a(6 — x)/crz, where
0 and « are constant. Then pu(x) ~ a(f — x), so X; (ap-
proximately) follows the mean-reverting Ornstein—Uhlenbeck
(OU) (Uhlenbeck and Ornstein 1930) process, « is the mean-
reversion parameter, and 0 is the long-run expected value of
X, (which we can set to L /2). In this case we have a quadratic
potential and ¥, (x) in (30) are expressed via the parabolic
cylinder functions.

However, with an appropriate choice of h(x), we can also
have a solution expressed purely via elementary functions.
Thus, consider

h(x) = t L
(x) = —vtan <v |:x — §j|>

where 0 < v < /L is a constant parameter. Then we have
a constant potential U (x) = —vZ. The eigenfunctions v, (x)
read(n=0,1,2,...):

(61)

L n
llfn(.x) = d, COS ()\.n |:x — Ei| + 7) (62)
(L ,sinG, L) T\ /2
w(Glrrsit]) @

FIn the model (46) we have p(x) = 4pmax(x/L — (x /L)z), where
Pmax = p(L/2) =3y /2L, so p(x/10) = 0.36 pmax-.
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where A, are the positive roots of the following equation (which
follows from (32)):

A tan ([A, L — n]/2) = vtan(vL/2) (64)

The smallest root is Ag = v, and g < A1 < Ay < --- (Note
that E, = 02(A2 — v?)/2.)

The call option price is given by (42) with ¢, defined in
appendix 3. The zero-coupon T'-bond price is given by (45).
If v ~ /L (although recall that v < 7r/L),} then, assuming
y < 1, the drift u(x) ~ —o?vtan(v(x — L/2)) and we have
positive drift for x < L/2 and negative drift for x > L/2, so
we have a mean-reverting behaviour.§ The g’(x) contribution
into w(x) via (26) introduces a small asymmetry into 1 (x) but
does not alter the qualitative picture.

3.8. Differential rate

The meaning of (21), which stems from the requirement that
there be no arbitrage (i.e. that the discounted process (2) be
a martingale under the risk-neutral measure Q), has a natural
financial interpretation as the Uncovered Interest Parity. To
illustrate this, let us momentarily step away from the target
zone case and consider the case where neither the domestic
nor the foreign currencies are constrained in any way. Then,
if we take a familiar ‘log-normal’ form for the FX rate via
S; = exp(X;), from (21) we have
o2
2
Recalling that dX; = odW; 4+ w(X;)dz, (65) is indeed the
Uncovered Interest Parity.q

In fact, there is a simple formula for the differential short-
rate 7. Using (21), (22), (26), (30), (34) and (44), we have

.k [1_f<Xt>]:El [1_ Si ]
S S

mid mid

o=l —rl = pXo) + (65)

(66)

sor; is positive (negative) at the lower (upper) barrier, which is
a consequence of the requirement that there be no arbitrage. ||

$In fact, here we assume that v is not too close to /L or else the
drift becomes large near the boundaries. In the v — /L limit the
boundaries are no longer attainable.

§Near x = L /2 the drift is approximately linear as in the OU process:
nx) ~ azvz(L /2 — x); however, away from the long-run value (i.e.
L/2), the nonlinear effects become important. Unlike the OU case
with reflecting boundaries, the model (61) is solvable via elementary
functions.

{The o2 /2 shift is due to the log-normal form of the FX rate. E.g.
if u(X;) = p = const,, the expectation E (S7)q, 7, = exp((n +

o?/2)(T ~1)).
|If the domestic short-rate is low, rt‘l < Ey(S4+/Smia — D),
then the foreign short-rate would become negative for S§; >

Smid <1+r,d /El). Theoretically this would appear to imply

arbitrage. However, in practice the short-rate is not a tradable
instrument and this situation may not be arbitrageable as the tradable
bonds (for the actually available maturities) may still have well-
behaved yields despite the negative underlying short-rate (for a recent
discussion, see, e.g. Kakushadze (2016) and references therein). Also
note that (66) simply follows from r; = f(¢,¢) and (45), where
f@,T)=—0rIn(P(t,T)) is the forward rate.
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Note that (66) does not explicitly depend on U (x) so long as
we have (44).F

4. Concluding remarks

As we saw above, with a thoughtful choice of the FX rate
process—which choice, from a practical viewpoint, exists be-
cause the band is narrow and said choice does not affect quan-
titative results much—we can solve the FX option pricing
problem in the target zone analytically, in fact, via elementary
functions. This is assuming attainable barriers.} For unattain-
able barriers the math typically is more involved. Also, in
practice the exchange rates in target zones frequently attain
the boundaries, so attainable boundaries are also appealing
from this viewpoint. In fact, in some cases the FX options
markets imply a future expectation that the FX rate will break
the band. Models accommodating band breaking are outside
of the scope of this note; however, the fact that the markets
sometimes price band breaks further indicates appealability of
models with attainable boundaries.
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Appendix 1. Self-financing hedging strategies

The following discussion is rather general and applies to a wide class
of underlying tradable instruments. So, suppose we have a tradable
S; and a numerairet B;. Generally, B; need not be deterministic.
Consider a claim Y7 at the maturity time 7. We wish to value this
claim at times ¢ < T'. To do this, we need to construct a self-financing
hedging strategy which replicates the claim Y7 . The hedging strategy
amounts to, at any given time ¢, holding a portfolio (¢;, ¥;) consisting
of ¢ units of S; and Y units of By, where ¢; and v, are previsible
processes. The value V; of this portfolio at time 7 is given by

Vi =¢¢St + Yt By

The self-financing property means that the change in the value of the
portfolio is solely due the changes in the values of S; and By, i.e. there
is no cash flowing in or out of the strategy at any time:

(AT)

dVy = ¢1dS; + Y1 dBy (A2)
Then from (A2) it follows that
dE; = ¢,dZ, (A3)
where
E =BV (A4)
Zi=B;'S, (A5)

So, (A3) relates the discounted claim price E; to the discounted
tradable price Z;.

Let us now assume that we can construct a measure Q under which
Z; is a martingale. Then we can construct a self-financing strategy
which replicates the claim Y7 by setting (F; is the filtration up to time
t, and E(-) denotes expectation)

E: = IE(BT_IYT)Q’]__,

We then have Vy = By Er = Y. Since both E; and Z; are Q-
martingales, pursuant to the martingale representation theorem ¢, is
a previsible process. Furthermore, from (A1), (A4) and (A5) we have

Yt = Er — 1 Zy (A7)

(A6)

S0 Y is also previsible.

FUsually, the numeraire is chosen to be a cash bond, but it can be any
tradable instrument.
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In the applications of the above discussion in the main text, we
assumes that a single Q-Brownian motion W; underlies the dynamics
of Sy and B;. We also assume that the identity /; = 1isa Q-martingale,
ie. E(I7)Q,7 = It = 1, so the measure Q is properly normalized
when summed over all final outcomes at time 7' irrespective of the
history F; prior to time t < T.

Appendix 2. Transition density

Here we give the transition density for the process (W; is a P-Brownian
motion)

dX; = o dW; + p dt (B1)

where o and p are constant, and X; is allowed to wander between
two boundaries at X; = x— and X; = x4. Without loss of generality
wecansetx— = 0Oand xy = L.

Let Y7 = Y (X7) be aclaim, where Y (x) is a continuous function,
and let

wx, 1, T) =E X (X7))p x,=x (B2)

Since Z; = w(X;,t, T) is a P-martingale, w(x, 7, T') satisfies the
following PDE

2
orw(x,t,T) + poyw(x,t,T)+ %afw(x,t,T) =0 (B3)
subject to the terminal condition
wx, T,T) =Y(x) (B4)

Also, we must specify the boundary conditions at x = 0 and x = L.
We will impose the Robin boundary conditions:§

Oyw(xt, t, T) = pw(xs, t,T) (B5)

which imply that the claim also satisfies the same boundary
conditions:

0 Y (x£) = pY (xx) (B6)

Here p is constant. When p = 0 we have Neumann boundary condi-
tions (so the boundaries are reflecting), while when p — oo we have
Dirichlet boundary conditions (so the boundaries are absorbing).

Let the probability density of starting at X; = x attime 7 and ending
at X, = x" attime t' be P(t, x; t', x"), ak.a. transition density. Since
the claim Y (X7) depends only on the final value X7, we have

L
woen D) = [T Pas T VG @)
0
So, P(t, x; t', x") is a Green’s function (a.k.a. heat kernel). The tran-
sition density can be computed using the eigenfunction method (see,
e.g. Linetsky (2005)) and is given by:
ePX+20—p)x’
P, x:T,x)=2p —— ¢ Eo(T—D)
( )=2p 207 1
O o~ En(T—1)

2 oy e T
+ i3 e ’12_:1 .
Thx . [Thx
X [nn cos <T) + Lpsin <T)]
Tnx’ . (7mnx'
X |:7'rn cos <T> + Lpsin <T>} (B8)

+Otherwise, the market would be incomplete and we would not be
able to hedge claims.

§Here, more generally, we can impose different Robin boundary
conditions at x = O and x = L. For our purposes here it will suffice to
consider (B5). Let us mention that, in the case of different boundary
conditions the spectrum generally has an infinite tower of positive
eigenvalues, and also two additional eigenvalues, at least one of which
is negative. (More precisely, there are non-generic degenerate cases
with only one such additional eigenvalue, which is negative.)
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where
2
o
Eg=p(p—2p) 5
2
qno
E, =Ep+ 22
dn = 7202 + L2352
~ 0
=p+ —
P=p+—
Let us assume p # 0. Then Eq = 0if p = p/2, i.e.
P )
So, we have
exp (px
P, x; T, x/) =p M
exp (Lp) — 1

2 X o En(T—1)
+Z exp(%[x—x/]) Zei

n=1

TNX Lp . /mnx
X | Tncos (—) + — sin (—)
L 2 L
[ anx’

dn

Lp . wnx’
X | Tn cos + — sin
L 2 L
where

E — Qngz
T oar?

12,2

Gn = 202 4 L~

4
Under the measure (B14), the process
Zy = Sp exp(pXr)

is a martingale; however, the identity process /; is not.
On the other hand, when p = 0, we have
eZﬁx’

. N o
P, x;T,x")=2p T

2, & En(TD)
+ = eP(x —x) -
L ,12::1 dn

Tnx ~ . (TThX

X [nn cos (T) + Lpsin (T)]

X [nn cos (me,> + Lp'sin (ﬂ)]
L L

Feature

(B9)

(B10)

(B11)
(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

where p = u/ 2. Under this measure, the identity /; is a martingale;

however, the process Z; = Sy exp(y X;) F(t) with y # 0 is not a
martingale for any function F(z).

Appendix 3. Call option pricing coefficients

The coefficients ¢, for the call option price (42) in the model (61) are
given by:

2
¢o = 6170 1— k
4 Smid

x [Z(L —x) + sin(vL) - Si‘:}(”[zx* - L])}
_ agaryk [ cos(h = vIL/2) = cos([h — vl = L/2])
28mid —v
+ (V — —U)] (C])

= apai |- k
] 2 Smid

o [COS([M — VIL/2) — cos([A1 — v][xx — L/2])

Al —vV
+ v — —v)}
2 . .
ayyk ML) — A2xx — L
_aqy [2(L_x*)_sm(1 ) — sin(A[2xx ])]
4Smid M
(C2)
gn>l
_ doan <l Kk )
2 Smid
. [Ap—Vv]L+mn . [A—v]Q2xs—L)+mn
sin | —="— ) — sin | HAL—" =1
| (Pemgime) - sin (Pt
An—V
+ - —v):|
[Ap=Ai 1L+ =21 ]2xs—L)+
alanyk[cos( L ”") —cos( L83 ”")
2Smid An = Ap
— (1= —)»1)] (C3)

where a;, are given by (63), A, are defined via (64), and f(xx) = k.
These coefficients ¢, reduce to those given by (56), (57) and (58) in
the v — 0 limit.



	1. Introduction
	2. FX options
	3. Pricing with boundaries
	3.1. Martingales without boundaries
	3.2. Boundaries
	3.3. Pricing PDE
	3.4. Hedging
	3.5. Call and put
	3.6. FX rate process
	3.7. Explicit models
	3.7.1. Vanishing drift
	3.7.2. Vanishing potential
	3.7.3. Nonvanishing potential and drift

	3.8. Differential rate

	4. Concluding remarks
	Acknowledgements
	Disclosure statement
	References
	Appendix 1. Self-financing hedging strategies
	Appendix 2. Transition density
	Appendix 3. Call option pricing coefficients



