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Abstract 

We consider a simple single period economy in which agents invest 
so as to maximize expected utility of terminal wealth. We assume 
the existence of three asset classes, namely a riskless asset (the bond), 
a single risky asset (the stock), and European options of all strikes 
(derivatives). By restricting investor beliefs and preferences, we explic
itly solve for the optimal position for each investor in the three asset 
classes. In contrast to previous literature, our analysis is conducted in a 
general equilibrium setting in which positions are determined simulta
neously with asset prices. We find that heterogeneity in preferences or 
beliefs induces investors to hold derivatives individually, even though 
derivatives are not held in aggregate. Under heterogeneous lognormal 
beliefs, we find that the risk-neutral density is not lognormal. We also 
determine who buys and who sells options in general equilibrium and 
we derive some new separation results. 
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1 Introduction 

Optimal Positioning in Derivative
 
Securities
 

It is widely accepted that the positions taken in derivative securities re
flect prices, preferences, and prior beliefs. Thus, it is commonly argued 
that investors who believe that future volatility will exceed current implied 
volatility should buy options, while those who believe otherwise should sell. 
Similarly, market wisdom has it that investors who tend to be more risk 
averse than average should buy options, while only the most aggressive in
vestors should sell them naked. 

It is less clear what position should be taken when beliefs and preferences 
conflict in their recommendation. For example, it is not clear whether a 
conservative investor who believes that volatility will be high should buy 
options or sell them. The resolution of this problem requires a model for 
determining optimal positions in derivative securities. Fortunately, some 
outstanding work has been done in this area, most notably the work of 
Brennan and Solanki[3] and of Leland[9]. This work shows for example 
that the conservative investor who believes volatility should be high should 
sell at-the-money options, but then protect against severe losses by buying 
out-of-the-money puts and calls. 

While these insights resolve much of the confusion surrounding optimal 
positioning, some interesting issues issues remain. For example, since these 
models all assume that asset prices are given, it is not clear that an investor 
always stands ready to take the opposite side of the transaction contem
plated by the decision maker. If all investors simultaneously conclude that 
the time is ripe for selling at-the-money options, then clearly supply will not 
equal demand. Clearly, a general equilibrium framework is needed which re
spects the zero net supply conditions of derivatives markets. 

The purpose of this paper is to study the determinants of optimal po
sitioning in derivative securities in a general equilibrium framework. For 
this purpose, we consider a simple single period economy in which agents 
invest so as to maximize expected utility of terminal wealth. We assume the 
existence of three asset classes, namely a riskless asset (the bond), a single 
risky asset (the stock), and European options of all strikes (derivatives). 
By restricting investor beliefs and preferences, we explicitly solve for the 
optimal position for each investor in the three asset classes. We find that 
heterogeneity in preferences or beliefs induces investors to hold derivatives 
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individually, even though derivatives are not held in aggregate. Under het
erogeneous lognormal beliefs, we find that the combination of universal risk 
aversion and the stock supply condition causes the risk-neutral density to 
display more negative skewness than the lognormal. Under certain assump
tions, we also find that optimal positions decompose into a finite number 
of funds, most of which involve nonlinear payoffs. This observation has 
important implications for optimal security design and for optimal market 
structure. 

The structure of this paper is as follows. The next section describes our 
model and then reviews certain well known results on spanning and on op
timal positioning in a partial equilibrium setting. The third section derives 
general results on optimal positioning in a general equilibrium setting. In 
order to derive closed form results for prices and positions, the next two 
sections restrict preferences to generalized log utility and to negative ex
ponential utility respectively. The final section summarizes the paper and 
suggests avenues for future research. Three appendices contain technical 
results whose inclusion in the body of the paper would distract the reader. 

2 Assumptions and Literature Review 

This section describes our market structure and then reviews certain well 
known results on spanning in complete markets and on optimal positioning 
in derivative securities in a partial equilibrium setting. 

2.1 Market Structure 

Consider a one period model in which investments are made at time 0 with 
all payoffs being received at time 1. There is a riskless asset costing B0 

initially and paying unity at time 1, which we call the bond. There is also a 
single risky asset, costing S0 initially and paying the random amount S at 
time 1, which we call the stock. In addition, we also assume that markets 
exist for out-of-the-money European puts and calls of all strikes. While this 
assumption is not standard, it allows us to examine the question of optimal 
positioning in a complete market without requiring the heavy machinery of 
continuous time mathematics. We note that the assumption of a contin
uum of strikes is essentially the counterpart of the standard assumption of 
continuous trading. Just as the latter assumption is frequently made as a 
reasonable approximation to an environment where investors can trade fre
quently, we take our assumption as a reasonable approximation when there 
are a large but finite number of option strikes (eg. for the S&P500). In each 
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case, the assumption adds analytic tractability without representing a large 
departure from reality. 

2.2 Spanning 

It is well known that our market structure implies the existence of a unique 
risk-neutral density that may be identified from option prices (see Breeden 
and Litzenberger[1]). It is also well known that investors can achieve any 
smooth function of the underlying stock price by taking a static position at 
time 01 . However, the previous literature does not explicitly identify the 
position that must be taken in order to achieve a given payoff. In contrast, 
Appendix 1 proves that any twice continuously differentiable function, f(S), 
of the terminal stock price S, can be replicated by a unique initial position 
of f(S0) − f ′ (S0)S0 unit discount bonds, f ′ (S0) shares, and f ′′ (K)dK out
of-the-money options of all strikes K: 

f(S) = [f(S0) − f ′ (S0)S0] + f ′ (S0)S 
 S0 

 ∞ 

+ f ′′ (K)(K − S)+dK + f ′′ (K)(S − K)+dK. (1) 
0 S0 

The positions in the bond and the stock create a tangent to the payoff at the 
initial stock price. The positions in the out-of-the-money options are used 
to bend the tangent line so as to match the payoff at all price levels2 . In the 
remainder of this paper, we derive optimal payoff functions for investors in 
a general equilibrium context. For brevity, we leave it to the reader to use 
(1) to determine the exact positions in the available assets. 

Since the payoff f(S) is linear in the payoffs from the available assets, the 
same linear relationship must prevail among the initial values. Specifically, 
letting V0[f ] denote the initial value of the arbitrary3 payoff f(·), and letting 
B0, P0(K), and C0(K) denote the initial prices of the bond, put, and call 
respectively, then it follows from (1) and the no arbitrage condition that: 

V0[f ] = [f(S0) − f ′ (S0)S0]B0 + f ′ (S0)S0 
 S0 

 ∞ 

+ f ′′ (K)P0(K)dK + f ′′ (K)C0(K)dK. (2) 
0 S0 

1This observation was first noted in Breeden and Litzenberger[1] and established for
mally in Green and Jarrow[8] and Nachman[10]. 

2An important special case of (1) is put-call-parity, which arises when f(S) is the payoff 
of an in-the-money call (S − K0)

+ for K0 < S0. In this case f ′ (S0) = 1, while f ′′ (K0) is a 
delta function centered at K0. See Richards and Youn[11] for an accessible introduction 
to generalized functions such as delta functions. 

3We require that the payoff be twice differentiable and that the integrals in (2) not 
diverge. 
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Appendix 2 shows that (2) directly implies that the initial value of an 
arbitrary payoff f(·) can also be expressed as: 

∞ 

V0[f ] = B0 f(K)q(K)dK, (3) 

0 

where the state pricing density B0q(K) may be recovered from option prices 
by the relation: 

 
∂2P0(K) for K ≤ S0;

B0q(K) = ∂K2 
(4) 

∂2C0(K) for K > S0.∂K2 

The result (4) is of course well known from Breeden and Litzenberger [1] 
and is here seen as a simple consequence of the replication strategy (1). 

2.3 Optimal Positioning in Partial Equilibrium 

The optimal positioning problem has been addressed in the partial equilib
rium context by Brennan and Solanki [3] and by Leland[9] among others. 
Following these authors, we suppose that there are n investors in the econ
omy, indexed by i = 1, . . . , n. Each investor is endowed with βi shares, where 
nn  

βi = 1. For an initial stock price of S0, the initial value of the endow
i=1 

ment is the investor’s initial wealth W i 
0 ≡ βiS0. Each investor’s preferences 

are characterized by an increasing concave utility function Ui defined over 
their random terminal wealth Wi. Each investor’s beliefs are characterized 
by a probability density function pi(S), defined on the entire positive half 
line with pi(S) > 0 for S > 0. Each investor is assumed to maximize ex
pected utility 

J∞ U(Wi)pi(S)dS. Since all terminal wealth is consumed, Wi0 
can be replaced by a function f(S) relating terminal wealth to the terminal 
stock price S. The completeness of the market allows investors to maximize 
expected utility by choice of any function f(S) that they can afford: 

∞ 

max Ui[f(S)]pi(S)dS. (5) 
f(·) 

0 

The affordability of the payoff f(·) is captured by requiring that the initial 
value, V0[f ], of the payoff, f(S), must be less than or equal to the investor’s 
initial wealth, W0

i . In our complete market, the initial value of the payoff can 
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be calculated using the risk-neutral density, and thus the budget constraint 
is: 

∞ 

B0 f(S)q(S)dS ≤ W0
i . (6) 

0 

In a partial equilibrium, the prices of the bond, the stock, and the options 
are taken as given. Thus, the risk-neutral density used in (6) can be implied 
from option prices and is in effect specified directly. Following Brennan 
and Solanki [3], consider the Lagrangean for this constrained optimization 
problem (5) and (6), given by: 

∞ ∞
  

L = Ui[fi(S)]pi(S)dS − λi fi(S)B0q(S)dS − W i . (7) 0 

0 0 

 

Differentiating with respect to the payoff function f(·) and setting the re
sult to zero yields the first order condition determining the optimal payoff 
function φi(S): 

pi(S) ′ Ui [φi(S)] = λi. (8) 
B0q(S) 

The optimal payoff can be determined explicitly by solving (8) for φi(S): 

′ 

 
q(S)

 
φi(S) = (Ui )

−1 λiB0 . (9) 
pi(S)

This equation makes it clear that the optimal payoff depends on risk 
aversion and on the deviation of personal beliefs from the risk-neutral den

′ U [φi(S)] 
sity. To quantify this further, let Ti[φi(S)] ≡ − ′′ 

i denote the investor’s U [φi(S)] 
i 

risk tolerance and let Di(S) ≡ ln
( 

pi(S)
) 

measure the deviation of the in-q(S) 
vestor’s beliefs from the market. Taking the logarithmic derivative of both 
sides of the first order condition (8) with respect to the stock price yields 
the decomposition in Leland[9] of an investor’s optimal exposure into the 
product of his preferences and beliefs: 

φi
′ (S) = Ti[φi(S)]Di

′ (S). (10) 

Thus, when one terminal price is compared to an adjacent one, the investor 
increases his payoff at the higher price if his personal density grows faster 
than the risk-neutral density, and decreases it otherwise. However, the lower 
is the risk tolerance, the smaller is the required response of payoffs to devia
tions in growth rates of personal probabilities over risk-neutral probabilities. 
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Equation (10) is an ordinary differential equation (o.d.e.) governing 
the optimal payoff φi(S). Under certain regularity conditions on the risk 
tolerance, this o.d.e. may be solved subject to the budget constraint: 

∞ 

φi(S)B0q(S)dS = W0
i . (11) 

0 

The solution to this problem is given by (9), where the parameter λi is 
obtained by substituting the optimal payoff (9) in (11): 

∞ 
′ q(S)

(Ui )
−1 λiB0 B0q(S)dS = W0

i . (12) 
pi(S) 

0 

Taking prices as given, one can develop fully explicit solutions for optimal 
payoffs for various preference and belief pairings. To illustrate, suppose 
for simplicity that the risk-neutral density is given by a lognormal density 
function: 





1
 

 
ln(S/S0) − (r − σ2/2) 

 2
1
 

q =
 ℓ(r, σ) ≡ √
 −
 ,
 (13)
 exp
 
2 σ
2πσS
   

where r is the continuously compounded riskfree rate and σ is the implied 
volatility. Further suppose that a given investor’s beliefs are also character
ized by a lognormal density function with a different mean µi 

4: 




1
 

 
ln(S/S0) − (µi − σ2/2) 

 2
1
 

ℓ(S;µi, σ) ≡ √ −
 .
 (14)
 pi = exp
 
2 σ
2πσS
   

γi−1 

Finally suppose that this belief is paired with power utility U(Wi) = γi

γ
−
i 

1 W γi , 
so that marginal utility has the form: 

U ′ (Wi) = W
−

γ
1 
i . 

Substituting the inverse of this function in (12), solving for λ, and sub
stituting the result, (13), and (14) in (9) implies that the optimal payoff has 
the form: 

W0 
i + B0τi/γi

SγiSiφi(S) = , (15) 
V0[SγiSi ] 

4Note that µi is the log of the expected value of the periodically compounded gross 
return, µi = lnE S , while σ is the standard deviation of the continuously compounded 

S0 
return, σ = Std ln(S/S0). 
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where Si ≡ (µi − r)/σ2 is the investor’s Sharpe ratio and for the lognormal 
γiSi γiSi(r−σ2 /2)+γ2S2σ2/2risk-neutral density, V0[S

γiSi ] = S B0e i i . The optimal0 
ity of this payoff in the continuous-time context is discussed in Cox and 
Huang[5]. Figure 1 shows the effect of varying the expected return on the 
optimal payoff. When µi > r + γiσ

2 (eg. µ = 8.25%, the investor takes 

Optimal Payoff, Equal Vol, gamma=Wo=So=1,r=5%,sigma=15% 
3 

2.5 

2 

1.5 

1 

0.5 

0 

Stock Price 

P
a
y
o
ff
 

mu=8.25% 

mu=7.25% 

mu=6.25% 

mu=5% 

mu=4% 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Figure 1: Optimal Payoff in Partial Equlibrium 

a leveraged position in stock. He also buys puts to protect the downside 
and buys calls to convexify the upside. As expected return is lowered, the 
investor borrows less, buys less stock, and reduces his option purchases. 
When µi = r + γiσ

2, the investor holds only stock. As expected return is 
lowered beyond this point, the investor starts to be long the riskless asset 
and continues to be long the stock. The investor now judiciously sells puts 
and calls. When µi = r, the investor holds only the riskless asset. Finally, 
when µi < r, the investor shorts the stock and buys puts to convexify the 
effect of stock price declines, while buying calls to protect against stock price 
rises. 

While the risk-neutral density can be implied from option prices, it is by 
no means clear that this density should be in the same parametric class 
as the investor’s prior beliefs. It is also not clear whether in equilibrium, 
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3 Optimal Positioning in General Equilibrium 



 

 

 

  

  

someone is always available to take the other side of the investor’s optimal 
derivatives position. For example, we cannot have all investors protecting 
their portfolios with puts as puts are in zero net supply. To address this 
issue, we consider the solution of a general equilibrium model where the risk-
neutral distribution and optimal positions are determined simultaneously. 

Consider an economy in which n investors simultaneously optimize their 
holdings. We require that the equilibrium risk-neutral density appearing in 
(9) and (12) must re-price the bond, the stock, and all options. The bond 
repricing condition is: 

∞ 

B0 1q(S)dS = B0, (16) 

0 

or equivalently, the risk-neutral density q(·) integrates to one. We assume 
that bonds and options are in zero net supply and thus in aggregate, only 
the stock is held: 

n 
φi(S) = S, (17) 

i=1 

which implies that the sum of the exposures is unity: 

n

φ ′ i
i=1 

The above equations imply that the the risk-neutral expected return on the 
stock is the riskless rate. To see this, recall that each investor is endowed 

nn 
with βi shares, where β 1. Since W i

i = 0 βiS0, initial wealths sum to 
i=1 

≡ 
the initial stock price: 

 n  
W i 

0 = S0. 
i=1 

Substituting in the budget constraint (11) and interchanging summation 

(S) = 1. (18) 

and integration implies: 

n∞ 

B0 φi(S)q(S)dS = S0. 
0 i=1 

Finally, substituting in (17) gives the desired result: 

∞ 

B0 Sq(S)dS = S0. (19) 

0 
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3.1 The Risk-Neutral Density in Equilibrium 

In any equilibrium model, only relative prices are determined. Thus, in this 
subsection, we will take S0 as given, and solve for the risk-neutral density 
q(S) and the bond price B0 in terms of S0. In the next subsection, we will 
determine optimal payoffs φ(S) in terms of S0. To obtain an expression 
for the risk-neutral density in general equilibrium, recall the multiplicative 
decomposition (10) of exposures into beliefs and preferences: 

φ ′ i(S) = Ti[φi(S)]D ′ (S) = Ti[φi(S)] 
d 

ln [pi(S)/q(S)] . (20) 
dS 

Summing over i implies: 

n n  
d d 

  
φ ′ i(S) = 

 
Ti[φi(S)] ln pi(S) − ln q(S) = 1, (21) 

dS dS 
i=1 i=1 

from (18). Solving for q(S) gives our first general equilibrium result 
Theorem 1: In a general equilibrium pure exchange economy, the risk-

neutral density satisfies: 

S 
 

S n ′ 
 

1 Ti[φi(Z)] pi(Z) 
q(S) = q(0) exp − dZ exp dZ , (22) 

0 T (Z) 0 T (Z) p (Z)
i=1 i

nn  
where T (S) ≡ Ti[φi(S)] is the total risk tolerance in state S. 

i=1 
Since the optimal payoff φi depends on q, (22) is not an explicit ex

pression for the risk-neutral density. Nonetheless, (22) indicates that the 
equilibrium risk-neutra{l density is thJ }e  product of a factor reflecting total 

 
exp − S risk tolerance i.e. 1

0 dZ and a factor reflecting the personal T (Z) 
beliefs, which we term the market view. The greater the risk tolerance of a 
given investor, the more his probability density gets reflected in the market 
view. 

Corollary 1: In a general equilibrium pure exchange economy with ho
mogeneous beliefs, the risk-neutral density satisfies: 

   S 1 
q(S) = q(0) exp dZ p(S). (23) − 

0 T (Z) 

Corollary 1 is obtained from (22) by setting pi(S) = p(S)∀i. The first factor 
in (23) is a positive declining function of S which changes the mean in the 
market view to the riskless rate, and may add negative skewness. For exam
ple, if p(S) is a normal density and aggregate risk tolerance is constant, then 
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q(S) is also normal but with a shifted mean. However, if p(S) is lognormal 
and risk tolerance is constant, then q(S) is not in the lognormal family, but 
is skewed to the left with the density having a fatter left tail. For linear 
aggregate risk tolerance, similar results hold. If aggregate risk tolerance is 
infinite or equivalently, if there exist individuals with zero risk aversion, then 
q(S) = p(S). It follows that the disparity between the risk-neutral density 
and the density describing homogeneous beliefs is a consequence of universal 
risk aversion and the requirement that the risky stock be held in equilibrium. 

To determine the equilibrium bond price, note that the constant q0 ap
pearing in Theorem 1 and Corollary 1 is determined by the requirement (16) 
that the density integrates to one. Multiplying (22) by S and integrating 
S from 0 to ∞ gives the forward price S0 . Solving this expression for B0B0 

gives the equilibrium bond price. As the result is complicated, we defer the 
statement of this result until we have specialized preferences. 

3.2 The Optimal Payoffs in General Equilibrium 

To obtain the optimal payoffs in our general equilibrium, we substitute (22) 
into (20) to express the optimal exposure in terms of preferences and beliefs: 

Theorem 2: In a general equilibrium pure exchange economy, the opti
mal exposure satisfies: 

nTi[φi(S)] d ln pi(S) Ti[φi(S)] d ln pi(S)
φ ′ i(S) = + Ti[φi(S)] − . (24) 

T (S) dS T (S) dS 
i=1 

The solution to this system of nonlinear ODE’s gives the optimal payoff. 
While one cannot express the solution in general, this expression shows the 
determinants of the optimal exposure in general equilibrium. The first term 
in (24) reflects the investor’s risk tolerance relative to the population total. 
The second term is a composite of the investor’s risk tolerance and the extent 
to which the investor’s beliefs differ from a risk tolerance weighted average 
of the beliefs of other investors in the economy. 

Corollary 2: In a general equilibrium pure exchange economy with ho
mogeneous beliefs, the optimal exposure satisfies: 

Ti[φi(S)] 
φ ′ i(S) = . (25) 

T (S) 

Corollary 2 is obtained from (24) by setting pi(S) = p(S)∀i. Since the right 
side of (25) is positive, homogeneous beliefs imply that all investors must 
have an increasing payoff. The greater the investor’s risk tolerance relative 
to the total, the greater the exposure of the investor’s position. 
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The results of Cass and Stiglitz[4] imply that investors with homo
geneous beliefs and linear risk tolerances with identical cautiousness (i.e. 
T (W ) = τi + γW ) will not hold derivatives. This raises the question of suf
ficient conditions under which investors will hold derivatives. It also raises 
the question of the shape of the optimal payoff when derivatives are held. 
The next two sections show that under generalized log utility or negative 
exponential utility, heterogeneity in beliefs induces investors to hold deriv
atives. We will derive the optimal payoff in each case. We now address 
whether heterogeneity in preferences can induce demand for derivatives and 
what the form of the optimal payoff looks like. It is difficult to solve for 
the optimal payoff in general. However, the following corollary shows that 
derivatives are held in an economy with two linear risk tolerance (LRT) 
investors with homogeneous beliefs, but opposite cautiousness. 

Corollary 3: In a general equilibrium pure exchange economy with 
homogeneous beliefs, suppose that risk tolerances are given by T1[W1] = 
τ1 + γW1 and T2[W2] = τ2 − γW2. Then, optimal payoffs are given explicitly 
by: 

� 
2S τ S τ2 − τ1

φ1(S) = − + + + k2 
2 2γ 2 2γ 

� 
2S τ S τ2 − τ1

φ2(S) = + − + + k2 , (26) 
2 2γ 2 2γ 

where τ ≡ τ1 + τ2 and k is an arbitrary constant. 
This corollary is proved in Appendix 3. In this simple economy, a three 
fund separation occurs in which each investor holds equal positions in the 
stock and offsetting positions in the bond and the derivative5 . The optimal 
derivative security is the square root of the sum of a positive constant and 
a squared linear position in the stock. Figure 2 graphs the optimal payoffs. 

Although the results of Corollary 3 pertain to only two investors, it is 
worth quoting from Dumas[6]6: 

The two-investor equilibrium is as basic to financial economics 
as is the two-body problem in mechanics. 

In order to obtain explicit solutions for the optimal payoff in an n investor 
economy, we next restrict preferences. In particular, the next section as

5Appendix 3 also shows that if k = 0, then the investors no longer hold derivatives. 
6In a highly original paper, Dumas[6] numerically solves for an equilibrium without 

derivatives in an intertemporal setting with two investors with different utility functions. 

12
 



P
a
y
o
ff
 

investor 1 (gamma=1) 

stock 

investor 2 (gamma=−1) 

0 5 10 15 20 25 30 
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Figure 2: Optimal Payoff Under Homogeneous Beliefs and Opposite Cau
tiousness. 

sumes generalized logarithmic utility7 , Ui(W ) = ln(τi+W ), while the follow(
−W 

)
ing section considers negative exponential utility Ui(W ) = −τi exp τi 

. 

In both cases, we examine the cross-section of investor beliefs and prefer
ences in order to explain the positions held. 

4 Generalized Logarithmic Utility 

If each investor’s utility function has the form: 

Ui(W ) = ln(τi + W ), 

then marginal utility is: 
1′ Ui(W ) = , (27) 

τi + W

and risk tolerance is linear with unitary cautiousness: 

′ Ui(W )
Ti[Wi] ≡ − = τi + Wi. (28) 

′′ Ui (W ) 
7See Rubinstein[13] for further motivation for the use of this preference structure. 
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Substituting the inverse of the marginal utility function function (27) in 
(12), solving for λ, and substituting in (9) implies8 that generalized log 
utility investors prefer a payoff of the form: 

Ri pi(S)
φi(S) = −τi + 0 , (29) 

B0 q(S)

where: 
R0 

i ≡ W0 
i + B0τi ≥ 0 (30) 

is defined as the risk capital of investor i. Note that the greater is τi, the 
greater is the risk tolerance Ti[Wi] = τi + Wi and the greater is the risk 
capital R0

i . Summing (29) over investors and invoking the market clearing 
condition (17) gives: 

n Ri 
0 pi(S)

S = −τ + , (31) 
B0 q(S)

i=1
 

n
 
where τ ≡ n 

τi. Solving (31) for the risk-neutral density gives: 
i=1 

n Ri 
0 pi(S) 

q(S) = . (32) 
B0 S + τ 

i=1 

In order that q(S) be nonnegative for all nonnegative S, we require τ ≥ 0, 
i.e. that the aggregate floor −τ cannot be positive. Thus, positive floors on 
the part of some must be compensated for by negative floors on the part of 
others. The greater is the risk capital Ri of an investor, the more impact 0 
his beliefs have on the risk-neutral density. 

To obtain equilibrium bond prices, integrate (32) over S from 0 to ∞, 
impose (16) and (30), and solve for B0: 

J ∞ S nn 
0pi(S)dS 0 S+τ i=1 W
i 

B0 = 
S 

. 
1 −

J ∞ nn 
i=1 τ

ipi(S)dS 0 S+τ 

We summarize our first results under generalized logarithmic utility in the 
following theorem: 

Theorem 3: In a general equilibrium pure exchange economy with gen
eralized log utility, the risk-neutral density and bond price are given by: 

n Ri pi(S) 
q(S) = 0 , τ ≥ 0 

B0 S + τ
i=1 

8The solutions can also be obtained by substituting (28) in the o.d.e. (10) and solving 
this linear o.d.e. subject to (11). 
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J ∞ S nn W i 
0 i=1 0pi(S)dS 

B0 =	 J S+τ .
1 − ∞ S nn 

0 τ ipi(S)dS S+τ i=1 

Substituting (32) in (29) gives the optimal payoff: 
Theorem 4: In a general equilibrium pure exchange economy with gen

eralized log utility, the optimal payoff is given by: 

Ri i 
0pi(S)τ R0pi(S)S 

φi(S) = −τi + + . (33) nn nn 
i=1 R0

i pi(S) i=1 R0
i pi(S) 

Thus, each investor first establishes a floor at −τi and then invests all remain
ing wealth in two customized derivative funds. The holdings in the riskless 
fund and the first customized derivative sum to zero across investors, while 
the holdings in the second customized derivative sum to the stock price. 
The higher is τi, the higher is the investor’s risk tolerance and risk capital, 
and the larger is his position in each customized derivative. Note that each 
customized derivative is a limited liability claim. The first customized deriv
ative is also bounded above by the absolute value of the aggregate floor τ , 
while the second customized derivative is bounded above by the stock price. 
If the two customized payoffs are made available to investors, then no one 
holds the stock directly, although holdings must sum to the stock. 

4.1	 Generalized Logarithmic Utility and Homogeneous Be

liefs 

Under generalized log utility, derivatives are not held if beliefs are homoge
neous: 

Corollary 4: In a general equilibrium pure exchange economy with ho
mogeneous beliefs and generalized log utility, the optimal payoff is given by: 

Ri Ri 
0τ 0S 

φi(S) = −τi + + .	 (34) nn nn 
i=1 R0 

i
i=1 R0 

i 

To create this payoff, each investor holds the riskless asset and a long position 
in the stock. The higher is τi or W0

i, the higher is the investor’s risk tolerance 
and risk capital, and the larger is the position in stock. Thus, for generalized 
log utility investors with homogeneous beliefs, differences in risk tolerance 
do not induce demand for derivatives, but instead only affect the division 
between the riskless asset and the stock9 . 

9This is a special case of the Cass and Stiglitz[4] result that two fund monetary sep
aration is a consequence of homogeneous beliefs and linear risk tolerance with identical 
cuatiousness. 
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4.2	 Generalized Logarithmic Utility and Derivative Fund The

orems 

Under certain conditions, the customized derivatives optimal for a given 
investor can be decomposed into a linear combination of payoffs of universal 
interest. Under heterogeneous beliefs, an m fund separation arises if each 
investor’s density can be represented as: 

m 

pi(S) = p(S) cikfk(S), i = 1, . . . , n, (35) 
k=1 

where p(S) is the unknown true density and {fk(S), k = 1, . . . ,m} is a 
collection of basis functions. In words, each investor’s density differs from 
the true density by a multiplicative error, which can be represented by a 
finite number of basis functions. When (35) holds, we have: 

m 

R0
i pi(S) = p(S) R0

i cikfk(S), and 
k=1 

n m 

R0
i pi(S) = p(S) θkfk(S), 

i=1 k=1 

n 
where θk ≡ n 

R0
i cik. Substituting into (33) determines the optimal payoff: 

i=1 
Corollary 5: In a general equilibrium pure exchange economy with gen

eralized log utility and beliefs satisfying (35), the optimal payoff is given 
by: 

m	 mfk(S)τ	 fk(S)S 
φi(S) = −τi + R0

i cik + R0
i cik . (36) nm nm 

k=1 k=1 θkfk(S) 
k=1 k=1 θkfk(S) 

Thus, each investor’s holdings separate into 2m + 1 funds. The first fund is 
the riskless fund, which is used to establish the floor of −τi. Each investor 
holds R0

i cik units of each of the 2m derivative funds, where the funds have { 
(τ)1−lSlfk(S)	 

}
a payoff of , k = 1, . . . ,m, l = 0, 1 . No one holds the stock nm 

θkfk(S)
k=1 

individually, although the collective holdings sum to the stock. 

4.3	 Lognormal Beliefs and Zero Aggregate Floor 

Under further restrictions on preferences and beliefs, we can obtain explicit 
formulas for the risk-neutral density, for the bond price, and for the optimal 
payoffs in equilibrium. We assume that each generalized log utility investor 
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has lognormal beliefs, ℓ(µi, vi), with heterogeneous means µi and volatilities 
vi. Substituting (14) in (32) and setting the aggregate floor of −τ to zero 
gives a risk-neutral density of: 

n Ri ℓ(S;µi, vi) 
q(S) = 0 . (37) 

i=1 
B0 S 

Multiplying (37) by SB0 and integrating over S implies that capital at risk 
aggregates to the initial stock price: 

n 

Ri = S0, (38) 0 
i=1 

from10 (19). Completing the square in the lognormal in (37) implies that 
the risk-neutral density can also be written as: 

2 
i 

n Ri −µi+ve0 
i 
2 , vi).q(S) = ℓ(S;µi − (39)
 v
 

i=1 
B0 S0 

Integrating over S and invoking (16) gives the bond pricing equation:
 

n Ri 
0 −µi+vB0 = e 

2 
i . (40) 

i=1 
S0 

Thus, from (38), the bond price is a risk-capital weighted average of each
 
investor’s expectation of S

S . 
0 Recalling that the risk-capital R0 

i ≡ W0 
i +B0τi 

depends on the bond price, substitution gives an explicit expression:
 

n
2 
i

−µi+vn 
βie

B0 = i=1 . (41) n
2τi −µi+v1 − n 

e i 
S0

i=1 

This expression simplifies if we further assume that τi = 0 ∀i: 

n 
2 
i . (42) −µi+vB0 = βie 

i=1 

Thus, each investor’s expectation of SS 
0 is now weighted by their initial stock
 

endowment. We summarize these results in the following theorem: 

10From (32), (38) holds for any density when τ = 0. 
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Theorem 5: In a general equilibrium pure exchange economy with gen
eralized log utility, lognormal beliefs, the risk-neutral density and bond price 
are explicitly given by: 

2n Ri e−µi+vi 

q(S) = 0 ℓ(S;µi − vi 
2 , vi) (43) 

i=1 
B0 S0 

n Ri 
20 −µi+vB0 = e i . (44) 

i=1 
S0 

Theorem 5 indicates that the risk-neutral density is not lognormal, even 
though each investor has lognormal beliefs. However, under homogeneous 
beliefs, the risk-neutral density is lognormal: 

Corollary 6: In a general equilibrium pure exchange economy with gen
eralized log utility, aggregate floor of zero, and homogeneous lognormal be
liefs, the risk-neutral density is: 

q(S) = ℓ(S;µ − v 2 , v). (45) 

The requirement (19) that the stock’s risk-neutral expected return be the 
riskfree rate implies that µ−v2 = r, so that the Black Scholes formula holds 
for options, as shown in Rubinstein[12]. However, no one holds any options 
in this economy, as shown in (34). 

Returning to the case of heterogeneous lognormal beliefs, substituting 
(14) in (33) determines the optimal payoff in our present setting: 

Theorem 6: In a general equilibrium pure exchange economy with gen
eralized log utility, aggregate floor of zero, and lognormal beliefs, the optimal 
payoff is explicitly given by: 

R0
i ℓ(S;µi, vi)S 

φi(S) = −τi + , (46) nn
i=1 R0

i ℓ(S;µi, νi)

Figure 3 shows the optimal payoffs for a two investor economy when the 
investors have the same initial wealths, the same floor of zero, and agree 
on the mean. Investor 1 believes volatility is 10%, while investor 2 thinks 
it is 20%. The optimal payoff for investor 1 resembles a bell shaped curve, 
consistent with his low volatility view and his floor of zero. The optimal 
payoff of investor 2 accomodates the payoff of investor 1 and the requirement 
that payoffs sum to the stock price. 

Assuming that investors all agree on volatility, then the optimal payoff 
simplifies: 
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Optimal Payoff, tau1=tau2=0,beta1=beta2=0.5,S0=1,mu=.1
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Figure 3: Optimal Payoffs When Means Agree. 

Corollary 7: In a general equilibrium pure exchange economy with gen
eralized log utility, aggregate floor of zero, and lognormal beliefs with equal 
volatility v, the optimal payoff is explicitly given by: 

R̂i 
0(S/S0)

piS 
φi(S) = −τi + , (47) nn R̂i 

0(S/S0)pi 
i=1 

where R̂0 
i ≡ R0

i epi(µi−v)/2 and pi ≡ v
µ
2 
i . 

Thus, the optimal customized payoff when means differ is a power of the 
stock price divided by a sum of powers. Figure 4 shows the optimal payoffs 
for a two investor economy when the investors have the same initial wealths, 
the same floor of zero, and agree on the volatility. Investor 1 believes the 
expected return is 10%, while investor 2 thinks it is 0%. Both payoffs would 
be synthesized using long positions in the stock. However, the more bullish 
investor 1 borrows at the riskfree rate and buys options while the less bullish 
investor 2 lends at the riskfree rate and sells options. Thus, in contrast to 
the case with homogeneous beliefs, options are used in the optimal portfolio, 
even if investors agree on volatility. 

To obtain a separation result for the n investors case with equal volatility, 
let us further suppose that the n investors select their means from among 
m < n possible values µ1, · · · µm. In particular, if investor i believes that the 
mean is µj, where µj is one of the m possible values, then his optimal payoff 
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5 Negative Exponential Utility 

Optimal Payoff, tau1=tau2=0,beta1=beta2=0.5,S0=1,sig=.2
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Figure 4: Optimal Payoffs When Volatilities Agree. 

is: 
�jR (S/S j

0)
p S 

φi(S) = −τi + 0 . nm  �Rk
 (S/S0)pk 

0
k=1 

In aggregate, the n investors hold m risky funds, although each investor only 
has non-zero holdings in one risky fund. 

To summarize the results of this section, investors with generalized log 
utility do not hold derivatives if beliefs are homogeneous, while derivatives 
are held when beliefs differ. When investors have lognormal beliefs, the risk-
neutral distribution is not lognormal. The conclusion that derivatives serve 
a useful economic role under heterogeneous beliefs holds even when investors 
agree on the volatility. The next section shows that these conclusions also 
hold for negative exponential utility. 

Consider an n person economy in which all investors have negative expo
nential utility: 

W 
Ui(W ) = −τi exp − ,∀i. 

τi 
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It follows that all investors have constant risk tolerances: 

′ Ui [φi(S)] 
Ti[φ(S)] ≡ − = τi ∀i. 

′′ Ui [φi(S)] 

Thus, from (24), each investor has an optimal exposure of the form: 

nτi d ln pi(S) τi d ln pi(S)
φ ′ i(S) = + τi − , (48) 

τ dS τ dS 
i=1 

n 
where now τ ≡
 n τi is the total risk tolerance. Integration gives the optimal 

i=1 
payoff in terms of bonds, stocks, and derivatives: 

Theorem 7: In a general equilibrium pure exchange economy with neg
ative exponential utility, the optimal payoff has the form: 

τi
φi(S) = κi + S + τidi(S), (49) 

τ 

where di(S) ≡ ln pi(S) − 
n n τi 

τ ln pi(S). 
i=1 

The constant of integration κi in (49) is determined by substituting (49) 
in the budget constraint (11). 

W i τi 
0 − S0 − τiV0[di]

κi = τ . 
B0 

In this economy, each investor’s stock and derivatives position does not 
depend on his initial wealth. Thus, the bond position is used to finance 
the positions in stocks and derivatives. The magnitude of this position 
in stock and derivatives depends on their risk tolerance. The greater the 
risk tolerance, the greater the exposure to stocks and derivatives. Each 
investor’s stock position does not depend on his beliefs. In contrast, each 
investor’s derivatives position depends mainly on the extent to which his 
beliefs differ from those in the market. Thus, the open interest in derivatives 
markets is primarily a reflection of the heterogeneity of beliefs. If investors 
have homogeneous beliefs but differing risk aversion, then they do not hold 
derivatives11 . Differences in risk aversion under homogeneous beliefs affect 
only the division between the riskless asset and the stock. 

11This is again a consequence of the Cass and Stiglitz[4] result that two fund monetary 
separation holds when investors have homogeneous beliefs and linear risk tolerance with 
identical cautiousness. 
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To obtain separation results under constant risk tolerance and heteroge
neous beliefs, note from (14) that the log of the lognormal density is a linear 
combination of the log price relative and its square. Suppose more generally 
that the log of each personal density can be written as a linear combination 
of basis functions: 

m 

ln pi(S) = cikfk(S). (50) 
k=1 

Then (49) implies that the optimal payoff separates into m + 2 funds: 
Corollary 8: In a general equilibrium pure exchange economy with nega

tive exponential utility and beliefs satisfying (50), the optimal payoff is given 
by: 

m n
  

τi τi
φi(S) = κi + S + τi cik − cik fk(S) . (51) 

τ τ 
k=1 i=1 

In this m fund separation, the m derivative funds are the m basis functions 
which make up the log of the density. The optimal holding in the k−th fund 

n 
is τi cik − n τi cik . Thus, if investors agree on the coefficient of ln p on τ 

i=1 
the j − th basis function i.e. cij = cj , then that fund is not held by anyone. 

Under constant risk tolerance, the risk-neutral density given in (22) sim
plifies: 

Theorem 8: In a general equilibrium pure exchange economy with neg
ative exponential utility, the risk neutral density is given by: 

n

q(S) = κ exp(−S/τ)
I

[pi(S)] 
τ

τ
i 

, (52) 
i=1 

The constant κ in Theorem 8 is a normalizing constant given by the re
quirement that q integrates to 1. Thus, the market view is a risk-tolerance 
weighted geometric average of the individual densities. Given a specification 
of probability beliefs and an array of risk tolerances, it is straightforward to 
use (52) to value an option or any other derivative. 

Note that under homogeneous beliefs, (52) simplifies: 
Corollary 9: In a general equilibrium pure exchange economy with neg

ative exponential utility and homogeneous beliefs, the risk-neutral density is 
given by: 

q(S) = κ exp(−S/τ)p(S). (53) 

Thus, if p(S) is normal, then q(S) is also normal with the same variance 
and with mean equal to the forward price as shown in Brennan[2]. The 
next subsection assumes that p is lognormal, and shows that q ends up 
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in a different class than p. We also allow for heterogeneity in means and 
volatilities. 

5.1 Zero Cautiousness and Lognormal Beliefs 

When all investors have lognormal beliefs, (14) implies that the log of each 
density is quadratic in x ≡ ln(S/S0) : 

2
1 x µ 2

i v /2
ln ℓ(S;µi, vi) = ( 

√ 
− ln 2πv i 

iS0)
− −− x − . (54) 

2 vi 

To obtain the optimal payoff under lognormal beliefs and constant risk tol
erance of τi, substitute (54) in (49): 

Theorem 9: In a general equilibrium pure exchange economy with neg
ative exponential utility and lognormal beliefs, the optimal payoff is given 

  

by: 

W i 2 
0 − miV0[x] + piV0[x

2/2] − S0τi/τ τi x
φi(S) = + S + mix − pi ,

B0 τ 2 

µi τi µi 1 τi 1where mi ≡ τi 2 −
nn 

2 and pi ≡ τi 2 −
nn 

2 . 
v i=1 τ v v i=1 τ v

i i i i 

Under constant risk tolerance and lognormal beliefs, the optimal payoff 
for each investor involves just two derivatives, one paying the log of the stock 
price and the other paying its square. The log contract is used to speculate 
on the ratio of mean to variance, while the squared log contract is used to 
speculate on variance. If investors agree on the ratio of the mean to the 
variance, then from the definition of mi, they do not hold the log contract. 
Similarly, if investors agree on volatility (i.e. vi = v ∀i), then they do not 
hold the log squared contract. If in addition, investors agree on the mean, 
(i.e. µi = µ ∀i), then no derivatives are held, consistent with (25). 

In order to determine each investor’s position in the riskless fund, the 
two derivative funds must be priced. Substituting (54) in (52) determines 
the equilibrium risk-neutral density: 

κ ′ q(S) = exp(−S/τ)ℓ(S; µ̂, v̂), (55) 

1 nn τi 1where the aggregate precision = is a risk tolerance weighted 
v2 i=1 τ v2 

i� nn 
(τi/v2)µi

average of the individual precisions, and µ̂ = i=1 i is a weighted nn 
(τi/v2 )

i=1 i 

average of the individual means, where the weights are given by the ratio 
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of the risk tolerance to the risk. The constant κ ′ is determined by requiring 
that q integrate to 1: 

∞ 

κ ′ = 1/ exp(−S/τ)ℓ(S; µ̂, v̂)dS . (56) 
0 

Unfortunately, the denominator is the Laplace transform of a lognormal 
density, which must be determined numerically. Once κ ′ is known, the 
values of the two derivatives funds are also obtained by quadrature: 

∞ 

V0[x
j ] = B0 [ln(S/S0)]

jq(S)dS, j = 1, 2. 
0 

To obtain the bond price, multiply (55) by B0S and integrate over S: 

∞ 

B0 Sκ ′ exp(−S/τ)ℓ(S; µ̂, v̂)dS = S0, 
0 

ˆ 2from (19). Substituting Sℓ(S; µ̂, v̂) = S0e
µℓ(µ̂+ v̂ , v̂) gives the bond pricing 

equation: 

∞ 

κ ′ 2B0 = 1/ exp(µ̂ − S/τ)ℓ(S; µ̂ + v̂ , v̂)dS . 
0 

We summarize these results with the following theorem: 
Theorem 10: In a general equilibrium pure exchange economy with 

negative exponential utility and lognormal beliefs, the equilibrium risk-neutral 
density and bond price are given by: 

κ ′ q(S) = exp(−S/τ)ℓ(S; µ̂, v̂) (57) 
∞ 

B0 = 1/ κ ′ exp(µ̂ − S/τ)ℓ(S; µ̂ + v̂ 2 , v̂)dS , (58) 
0 

where κ ′ is given in (56). 
In Theorem 10, we note that q(S) is not a lognormal density even though 

each investor believes that the stock price is lognormally distributed. How
ever, the market view is lognormal since it is a geometric average of the 
lognormal individual views. The negative exponential adds negative skew
ness to this lognormal density12 . As a result, a graph of Black Scholes 
implied volatilities against strike prices will slope down, as is observed in 
equity index option markets. 

12However, if one investor is risk-neutral, say the n-th investor, then aggregate risk 
tolerance is infinite, and q(S) = ℓ(S; µn, vn). 
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6 Summary and Future Research 

Our primary contribution is the explicit delineation of prices and positions 
for investors in a general equilibrium context. Under linear risk tolerance 
with identical cautiousness, the results of Cass and Stiglitz[4] imply that 
homogeneous beliefs induce investors to shun derivatives, even though they 
differ in risk aversion. However, under heterogeneous beliefs or other pref
erence specifications, investors optimally hold derivatives individually, even 
though they are not held in aggregate. In fact, under generalized logarith
mic utility and lognormal beliefs, options are used in the optimal portfolio, 
even if investors agree on volatility. In this case, an m fund separation result 
holds if the n investors select their means from among m < n possible val
ues. This separation result hold even though investors differ in risk aversion 
and thus has important implications for optimal security design. 

Similarly, under negative exponential utility and lognormal beliefs, a 
four fund separation result occurs. In addition to the bond and the stock, 
investors take positions in two other derivatives: one which pays the log of 
the price and the other which pays the square of the log. The log contract 
is primarily used to express views on the mean, whereas the squared log 
contract is a vehicle for trading volatility. If investors use options to create 
the squared log contract, then the discontinuity in slope at the current stock 
price induces relatively large positions in at-the-money options. In a multi
period setup, movement of the stock price would induce large trading volume 
in such options, a phenomena which is universally observed in listed options 
markets. 

Future research should investigate more fully the relationship between 
the implications of heterogeneous beliefs and the consequences of back
ground risk as studied in Franke, Stapleton, and Subrahmanyam [7]. For 
example, it would be interesting to investigate whether higher background 
risk corresponds to a larger effective volatility view held by an investor en
gaged in a buy and hold strategy. Other interesting directions for future 
research would be to extend these results to a multi-period or intertemporal 
setting. In a continuous time economy with continuous trading opportu
nities, jumps of random size would induce the demand for options demon
strated here. In the interests of brevity, an investigation of the properties 
of such an equilibrium is best left for future research. 
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Appendix 1: Proof of Equation 1 

The fundamental theorem of calculus implies that for any fixed F : 

S F 

f(S) = f(F ) + 1S>F f ′ (u)du − 1S<F f ′ (u)du 
F S 
S u 

= f(F ) + 1S>F f ′ (F ) + f ′′ (v)dv du 
F F 

F F 

−1S<F f ′ (F ) − f ′′ (v)dv du. 
S u 

Noting that f ′ (F ) does not depend on u and applying Fubini’s theorem: 

S S F v 

f(S) = f(F )+f ′ (F )(S −F )+1S>F f ′′ (v)dudv +1S<F f ′′ (v)dudv. 

F v S S 

Performing the integral over u yields: 

S F 

f(S) = f(F ) + f ′ (F )(S − F ) + 1S>F f ′′ (v)(S − v)dv + 1S<F f ′′ (v)(v − S)dv 

F S 

∞ F 

= f(F ) + f ′ (F )(S − F ) + f ′′ (v)(S − v)+dv + f ′′ (v)(v − S)+dv. (59) 

F 0 

Setting F = S0, the initial stock price, gives Theorem 1. Note that if F = 0, 
the replication involves only bonds, stocks, and calls: 

∞ 

f(S) = f(0) + f ′ (0)S + f ′′ (v)(S − v)+dv, 

0 

provided the terms on the right hand side are all finite. Similarly, for claims 
with lim f(F ) and lim f ′ (F )F both finite, we may also replicate using only 

F↑∞ F↑∞ 

bonds, stocks, and puts: 

∞ 

f(S) = lim f(F ) + lim f ′ (F )(S − F ) + f ′′ (v)(v − S)+dv. 
F↑∞ F↑∞ 

0 
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Appendix 2: Proof of Equations 3 and 4 

Given the existence of options of all strikes, absence of arbitrage and (59) 
imply: 

∞ F 

V0[f ] = [f(F )−f ′ (F )]B0 +f ′ (F )S0 + f ′′ (v)(S−v)+dv+ f ′′ (v)(v−S)+dv. 

F 0 
(60) 

Integrating (2) by parts gives: 

V0[f ] = [f(F ) − f ′ (F )]B0 + f ′ (F )S0f 
′ (K)P (K) |F 

0 
F ∞ 

− f ′ (K)P ′ (K)dK + f ′ (K)C(K) |∞ 
F − f ′ (K)C ′ (K)dK. 

0 F 

Since P (0) = 0 and C(∞) = 0 and C(F ) − P (F ) = S0 − FB0, the second, 
third, and fifth terms cancel. Integrating by parts once again yields: 

F 

V0[f ] = B0f(F ) − f(K)P ′ (K) |F + f(K)P ′′ (K)dK 0 

0 
∞ 

−f(K)C ′ (K) |∞ 
F + f(K)C ′′ (K)dK. 

F 

Noting that C ′ (∞) = P ′ (0) = 0 and P ′ (F ) − C ′ (F ) = B0 by differentiating 
put call parity, we observe that: 

∞ 

V0[f ] = B0 f(K)q(K)dK, 

0 

where q(K) is proportional to the second derivative with respect to strike 
of the option pricing function: 


1 ∂2P (K) for K ≤ F ; 

B0 ∂K2 
q(K) ≡ 

1 ∂2C(K) for K > F.  
B0 ∂K2 

Setting F = S0 gives the desired result. 

29
 



  

Appendix 3: Proof of Theorem 26 

Recall that under homogeneous beliefs, the optimal exposure simplifies to: 

Ti[φi(S)] 
φ ′ i(S) = ,

T (S) 

n 
where T (S) ≡ n 

Ti[φi(S)]. Suppose we have n = 2 investors with linear 
i=1 

risk tolerance: 

τ1 + γ1φ1(S)
φ ′ 1(S) = (61) 

τ + γ1φ1(S) + γ2φ2(S) 

τ2 + γ2φ2(S)
φ ′ 2(S) = , (62) 

τ + γ1φ1(S) + γ2φ2(S)

where τ ≡ τ1+τ2. This is a coupled system of nonlinear o.d.e.’s. Fortunately, 
it can be solved if we assume opposite cautiousness i.e. γ1 = −γ2. Without 
loss of generality, let γ1 = −γ2 = γ ≥ 0. Dividing (61) by (62) implies: 

φ ′ 1(S) τ1 + γφ1(S) 
= . 

φ ′ 2(S) τ2 − γφ2(S) 

Re-arranging gives γ[φ1(S)φ ′ 2(S) + φ2(S)φ ′ 1(S)] − τ2φ1
′ (S) + τ1φ ′ 2(S) = 0. 

Integrating both sides gives γφ1(S)φ2(S) − τ2φ1(S) + τ1φ2(S) = c, 
where c is the constant of integration. Substituting φ1(S) = S−φ2(S) gives 
a quadratic in φ2: 

γ[S − φ2(S)]φ2(S) − τ2[S − φ2(S)] + τ1φ2(S) = c, 

Dividing by 2γ and re-arranging gives: 

  
1 2 S τ τ2S + c 
φ2(S) − + φ2(S) + = 0,

2 2 2γ 2γ 

with solution: 
�   

S τ S τ 2 τ2S + c 
φ2(S) = + − + − . (63) 

2 2γ 2 2γ γ 

Since φ1(S) = S − φ2(S), we have: 

� 
2S τ S τ τ2S + c 

φ1(S) = − + + − . 
2 2γ 2 2γ γ 
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� 

In order that both payoffs be real, we require: 

  
S τ 2 τ2S + c 

+ − ≥ 0. 
2 2γ γ 

( )2 
Completing the square gives S − τ2−τ1 + τ1τ2 c

2 2γ γ2 − ≥ 0.γ 

Thus, a necessary condition for real payoffs is that c ≤ τ1τ2 .γ 
 Choosing c so that this condition holds, define k2 by: 

τ1τ2 
c = − k2γ. 

γ 

Then the optimal payoffs can be written as: 

� 
2S τ S τ2 − τ1

φ1(S) = − + − + k2 
2 2γ 2 2γ 

S τ S τ2 − τ1
2 

φ2(S) = + − − + k2 . 
2 2γ 2 2γ 

Note that if we set k = 0, then the payoffs are linear: 

τ2 τ2
φ1(S) = S − φ2(S) = . 

γ γ 

In any case, the positions sum to the stock as required. Furthermore, since 
T1[φ1(S)] = τ1 + γφ1(S), we have: 

� 
2γS − (τ2 − τ1) γS − (τ2 − τ1)

T1[φ1(S)] = + + γ2k2 ,
2 2 

which is nonnegative. Similarly, since T2[φ2(S)] = τ2 − γφ2(S), we have: 

� 
2γS − (τ2 − τ1) γS − (τ2 − τ1)

T2[φ2(S)] = − + + γ2k2 ,
2 2 

which is also nonnegative. 
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