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General Prolate Functions.

The story of functions band-limited in space and/or frequency.

For a bounded subset (2 in n-dimensional space, we have a subspace
Rq of Lo(R™) of functions f(x) whose frequency is band-limited to €

f@) = (o2 [ [ et st du

Let Pg be the projection from Lo(R™) to Rg - i.e. Pq is the operator
of band-limiting to ().

”Space-limited” functions and projections.
If M is a subset of R", the operator D), restricts functions to M:

Dy f(z) = f(z) - xm(2),



There is a natural band-limited basis {1} of Rg of eigenfunctions
of the "double projection” operator PoD;:

PoDyipr = Mg - Y.

The ”double projection” operator PqoD s is:

PoDu(f(z)) = / - / Ko@)~ £ dy

with kernel Kq(xr — y) depending on the spectral support €Q:

1 .
KQ(gj—y) — (%)n/Q //Qe_z((x_y)u) du.

This integral equation is very complex as it ties together space and
frequency.



In the incredibly ”lucky accident” in cases of the (2 and M being
balls (intervals for n = 1) the problem turned out to be reducible to a
well studied classical one.

D. Slepian, H. Landau, and H. Pollak (1961-1983).

They called this theory a theory of prolate functions because the
eigenfunctions 1, are actually eigenfunctions of a classical prolate spheroidal
wave equation.



When Q = [-W, W] and M = [-T,T], if we put x = Tz, and
c=W . T, PoD,s is an integral operator:

L sine(z — )

PaDys(th(2)) = / P(u) du.

4 7(z—u)
It commutes with the prolate spheroidal linear differential operator:

d

- d 2 2
_dz(

1 —2%)— — c?2°%

P,
dz

Eigenfunctions ¥ (z) are eigenfunctions of P,:

(1= 2%) - (2) = 22 - Py (2) + (xr — €2°) - i (2) = 0,

Practical problems: ill-conditioning of the integral operator PoD ),
with almost all eigenvalues A\, very close to degenerate - almost all of
them cluster at A =0 and A = 1.

Second eigenvalues Y are very well separated.



General Prolate Functions and Commuting Differen-
tial Operators.

For theoretical and applied development of the theory of space/frequency
limited functions one needs the second, (differential?), well-conditioned,
linear problem that defines the same eigenfunctions.

Slepian, Landau, Pollak generalized prolate functions to n-dimensional
balls, where the original sinc Kq(x — y) kernel

sin (¢ (z —y))
x—y

is replaced by the Bessel-like kernel

JIn(czy)/Ty.



There were various attempts in 60s-80s to extend this commuting
miracle to other cases. The only new found kernel was Airy Ai(x + y).

Morrison in 60s and Grunbaum in 80s:

the cases of commuting differential operators (or sparse matrices in
the discrete cases) are basically reduced to the known ones.

Are there other completely integrable cases?



Szego Problem and Concentrated Polynomials.

In fact, all this business started with Szego’s problem:

Szego. On some hermitian forms associated with two given curves of
the complex plane, 1936; see Szegod’s Collected Works, v II, pp. 666-678.

Let C1,C5 be Jordan curves in the complex plane. What is the
maximum value of

| 1P(2)]?dz
C1
| 1P(2)]2dz
Ca

Mn(Cla Cf2) —

among all polynomials P(z) of degree n?

Then M, (C1,C5) can be interpreted as the energy ratio, and P(z) as
a polynomial having its energy most concentrated in C; at the expense
of its energy in Cb.



A particular case that was treated in great detail is that of the interval
(7 and a circle C5:

Let C1 is an interval (0,1), and C5 is the unit circle. One gets then
the quadratic form:

1 n
T, T
¢ 24+, t")2dt = E pey
/O(afo—i—an + xot” 4+ ...z, t") MV:OM+V+1

and Szego obtain for its smallest characteristic value the asymptotics

A, & 215/4,3/2,1/2. (21/2 _ 1)471—1—4.



This matrix is the Hilbert matrix. Since its largest eigenvalue is very
close to m, this matrix is notoriously ill-conditioned. For example, for
n = 100, the smallest eigenvalue of Hilbert matrix is

1.71 - 10192

While the inverse of Hilbert matrix is analytically known, no analytic
properties of its eigenfunction/values were known.






Hilbert Matrix and a Commuting Differential Opera-
tor.

The eigenvectors of the Hilbert matrix

Hin] ! ’
n:
t=J3+1/,5 0

can be described using a ”very natural” 4-th order Fuchsian linear dif-
ferential operator:

L#} _ ws.(x_l)z,%Jr
2-3:2-(533—3)-(33—1)-%;4—
- (6 — (n®+2n)(x — 1)% +4a(6z — 7)) - L; +
(—n(n +2) + 4(=2 4 n(n+2))x — 3(—4 + n(n + 2))2?) - 4, +
(C —n(n+2)z) - L5



The equation
LYQ =0

has a polynomial solution Q(x) of degree n when and only when the
vector of coefficients of Q(x) is the eigenvector of H [n]:

Hln|l-v = \-v;
Q(z) = Y 1 vi -zt

The relationship between the commuting eigenvalues - C' (the acces-
sory parameter of the Fuchsian l.d.e.) and A\ (the matrix eigenvalue)
shows the role of Padé approximations.



The Hilbert eigenvalue problem becomes an over-convergence Padé-
approximation problem:

Find a polynomial @, (x) of degree n such that the linear form

l0g (1= )+ Qu() = Paca () = A+ Qu(=)a*" = O(a"2)
at r — oo.

The differential equation formulation replaces an ill-conditioned prob-
lem with the equivalent well-conditioned, and a dense matrix with a
commuting sparse one.



Szego Problem and Arbitrary Unions of Intervals.

Sets C'1, Cy are unions of intervals. In 1977 Slepian and Gilbert tried to
find differential operators commuting with the concentration problem.
They found that there were exactly 2 such cases: C4,(C> are single
intervals and

C5 centrally positioned inside C7,

or C'1,Cy adjacent.

There is no commuting differential operators in the multiple interval
cases neither in Szegd problem, nor in the space/frequency bandlimiting

problem.

Nevertheless these problems can be solved using classical isomon-
odromy deformation using methods we studied 27 years ago.

Start with Padé approximation.



The rational function P,(z)/Q,(z) is a Padé approximation to f(x)
of order n if

Qn(@) - f(z) = Pu(z) = O(z*").

If the order is exactly 2" 1! the Padé approximation is called normal.

Szego problem is equivalent to finding cases of non- normality of Padé
approximation to the general logarithmic function

flx) = sz log (1 — a;x).

for a fixed set {a;}”, of singularities, made from the ends of intervals
comprising C7 and C5.



Namely, when

dq do
G = U (biy, iy ); Co = U (dis, €i5),
i1=1 ig=1

we will associate weight w(.) with the ends of these intervals:
w(b;,) = Lw(c,) = —1Lw(d;,) = N\ w(e,) = —A.

A is an eigenvalue in M, (C7,Cs) problem if and only if the Padé
approximation P, (x)/Q.,(x) of order n to

f(z) = Zw(ai)log(l — a;x),

is non-normal, and then polynomial @, (x) is the most concentrated
polynomial.

This immediately associates with the M,,(C4, Cs) problem a Fuchsian
linear differential equation of the second order satisfied by

Qn(z) and Q,(x) - f(z) — Py(x).



Garnier Isomonodromy Deformation Equations.

The Fuchsian equations for the Szegd problem start with the set {a;}™
of ends of intervals.

We have m regular (logarithmic) singularities. We also have m — 2
apparent singularities {b;}/"? - these are spurious zeros of Q,,(z) outside

of Cl, 02.

—2

— 1 d P2m—a() B
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There are exactly m—2 free (accessory) parameters {c; } in pa,,—4(2):

c; = Resy—y, P2m—4(2)

(@ = ai) [1(z = ;)






The monodromy group depends only on the number m of logarithmic
singularities, and thus the dependence of this equation on position of
singularities {a;} defines isomonodromy deformation equations, known
as Garnier system (Garnier, 1912-1919).

Hamiltonian form of Garnier system:

by  OK;
8CL3 N 8Ck ’
8ck _6KJ
8a3 abk

The Hamiltonians K:




In the case of m = 3 the Garnier system is Painlevé VI.

Isomonodromy deformation systems posses birational Darboux-Schelsinger
transformations. These are explicit nonlinear algebraic transformations

that relate parameters a;, b;, ci for a given n to parameters for n+1 (or
n—1).

Zeros {z;}_; of Qn(z) on the complex plane are governed by Heune-

Stiltjes theory of electrostatic particles minimizing the energy

VIR IE R I
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Generalized Prolate Functions and another Isomon-
odromy Problem.

Expression of generalized prolate functions for sets {2 and M that are
unions of intervals also can be reduced to the Padé approximations and
isomonodromy deformation (Garnier) equations.

The difference in the approximating function:

f(z) = Zwi -log

r — Qa;
r_ L
a;

for a; on the unit circle.
The function f(z) is approximated both at x = 0 and x = oo:
Q) - f(z) = P(x) = Oz~ ); & — o

Q(x) - f(x) = P(z)+ A-Q(x) = O(z"); = —0.
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