Calculations in the Era of Contemporary Computing

D. V. Chudnovsky, G. V. Chudnovsky, T. Morgan
IMAS
NYU Tandon School of Engineering
6 MetroTech Center
Brooklyn, NY 11201

September 26, 2016

Why

How

Hardware Role in Practical Problems

Hardware drives the improvement in solution of large and difficult problems.

Moore's law-holding so far...
Economic vs. technical limitations (around 5 nm feature size?).

Particular areas where combination of massive processing and algorithmic

improvements made a difference:
Linear Algebra (LINPACK LAPACK, 5cal PACK, etc.)

Solution of systems of nonlinear equations, including computer algebra
approach to Groebner basis;

Breakthroughs in Mixed Integer Linear Programming algorithms, allowing for
solution of large systems of linear programming equations and inequalities;

Significant speed-up of various techniques of building neural networks and
other "trainable systems” of data analysis;

For 2D and 3D data segmentation, analysis and recognition, quantization based
on massive convolution processing, derived from increased DSP capabilities,
brings close to reality live video stream interpretation;

Big Problems

Progress in rapid processing of large graphs, expressing layers of relations
between diverse items, including those with dynamic updates.

Big Data Needs Big silicon

In general hard problem come from big data, but to solve NP problems of small
sizes, even by approximation, still requires exponential (in problem size) time —
ameliorated by parallel computing.

Parallelism to the Rescue?

Not everything is "infinitely parallelizable”, even when problem sizes increase.
Famous Amdahl’'s and Gustafson laws state that a non-parallel portion of the
program is a low bound no matter how much one can execute in parallel other
parts of the program.

In the simplest case if you run programs on N processors (even if programs are
"embarrassingly parallel”), and you need to bring to the outside the results
accumulated from these N processors,
then the time needed to do so is bounded from below by:

O(1) - Size - Diameter

where ”Size” is a size of data you output, and ”Diameter” is a Diameter of
the graph of the network connecting your processors.

In the case of the best switching network you get

O(Size - log N)

as a low bound, but more typically for very large N it is:

O(Size - V/N)

Physical Limits to Parallelism

Reason: the physical reality is that the switching network requires large 3D
volume.

Kolmogorov was first who gave the bound on the volume of connections
(" cables and wires") required by network graphs.

For moderate N (many thousands) one can use exotic graphs arising form
Number Theory (Cayley graphs), see (D.V., G.V., M., 1986).

However they are practically difficult to assemble and extremely difficult to
repair. Thus people always use in giant machines modular hierarchical
arrangements that can be build and monitored:

M-dimensional grids, torus, trees, shuffle networks —

as building blocks.

Sorting as a Prototype

Use parallel computations to speed up the solution, not to improve the
utilization (communication cost typically increases).

Sorting example. The average (and worst case) cost of sorting of N items on a
serial device is bounded by

O(N - log N)
with a small constant (depending on a cost of compare).
Parallel hardware speeds up sort tremendously. The theoretical lower bound is

O(log)
and there is a wonderful algorithm that shows that this bound can be met.
Alas, the constant in O() term makes existing theoretical algorithm practically
unfeasible.

Nevertheless if your data are sufficiently random, there are heuristics that
approach this speedup on large parallel machines.

For more complex (and realistic cases) the best practical parallel algorithm
runtime is:

O(log® N)
but with small constant; in practice this one is also good in keeping
communication patterns regular and manageable.

Graphs

A potent abstract device.
An arbitrary set V of objects, called vertices.
Associated with it a set E of "relations” between vertices, called edges:

e={u,v} for (some) u,veV
directed (e = u — v) or undirected.

This is an inner node in our graphs of the moment:

NP-hard Problems and Integer Linear Programming Formulation

Classical NP-hard problem: Traveling Salesman Problem.
This problem, like many other hard combinatorial ones, can be reduced to the
solution of Integer Linear Programming (ILP) equations/inequalities.

We have sites: 0,...,n. Introduce auxiliary 0/1 variables x; j, and integer
variables u;. Here x;; = 1 iff there is a path from a site i to j. Let d;; is the
"distance” from i to j.

The problem is represented as the following integer linear programming
problem. Constraints:

Y xij =1,j=0,...,n
i,i#j
ZX;‘J =1, i=0,...,n
Ji#j
ui—ui+nxi;<n—-1, 1<i#j<n;
Under these constraints minimize:

n n
min E E Ci jXi,j

i=0 i#j;j=0

Complexity and Parallelization

The best provable upper (worst) bound for the (sequential) run time is
O(n*2"); even an algorithm of 0(1.9999") is so far unknown.

For a general graph this is an NP-hard problem (harder than Hamiltonian path).
However, for Euclidian distances, the (1 4 €) approximations are solvable in

. . . 1 . .
polynomial time in n. The dependency on < is exponential, of course.

For symmetric and metric distances there are approximation solutions within a
small constant factor of the optimal.

However, in all practical cases a combination of modern ILP techniques with
additional heuristic gives solutions often within small percentages of the
optimal ones.

Graph Embedding

The problem here is to find an embedding of one graph, X, into another,
(prototype) G, bounding the "dilation” D of the embedding g : X — G:

distc(g(x), g(x)) < D

for all x,x’, distx(x,x") = 1.

In many interesting cases either of two graphs X or G is a subgraph of a Grid
Graph (for example, a full rectangle).

Computer Applications

Bounded dilation embedding of such graphs (typically to or from a square or
near square) initially became very popular because of these acute problems:

A) The Placement Problem. How to create/move complex shapes of
gate/transistor designs in a particular area of a VLSI design without much
distortion of the wiring. Here typically the mapping is into a square. This
problem is still of a vital importance.

B) The Mesh of Computers. How to align complex placement and connection
of computers into conventional two-dimensional grids. Particular attention is

devoted to computer clusters with possibly failing computer nodes, remapped
as rectangles in 2D grids.

More recently:

C) Creation of simplified low-dimensional graphs from high-dimensional data
sets. Usable as a rigorous technique of multidimensional scaling analysis;
sometimes provides insights.

"Simple” mappings

It may be counterintuitive (unlike a toothpaste): it is easier (lower dilation) to
map a skinny rectangle (say, a line N x 1) into a square (N x N) than vice
versa.

Map - Dilation 6=1

e000000000000000
Map <- Dilation 6=N

Of course, finding optimal solution (or even determining if it exists for a fixed
D) in NP-hard (e.g., the finding a Hamiltonian path/tour is equivalent to the
embedding of a line/circle in a graph).

It does not mean, however, that practical problems cannot be efficiently solved
with enough hardware.

Boolean Linear Programming Framework

To get the optimal solution of the graph embedding problem with a given
Dilation (D) one formulates it as an Integer Programming problem, similar to
what maximal graph matching problem or TSP/Hamiltonian Path problem
looks like.

To study the 1-1 embedding g = g(x) of the graph X into G one introduces
auxiliary Boolean: 0/1 variables F[g, x] with a meaning that F[g,x] = 1 iff

g =g(x).
Then the basic equations that describing that this is a 1-1 embedding of all X
into G are:
> Flg.x =1 (1)
gEG
for every vertex x € X, and
> Flg,x] <1 (2)

xeX

for every vertex g € G.

Dilation part

The equations (1), (2) are really just a graph matching problem, solvable in a
polynomial (or often in nearly linear) time. The important part here is the
control of mapping "dilation” D. Various equivalent formulations are possible:

Flg,x] - > Flgx1<o0 (3)
g’ €G,dist(g,g’)<D

forall g, g’ € G, x,x" € X, distx(x,x") = 1, or instead:

Flg.x] +Flg',x'] < 1 (4)
for all g, g’ € G, dist(g,g’) > D, x,x" € X, dist(x,x") = 1.
Here (4) provides more equations than (3), but the system (2),(4) has a huge
advantage. It forms a totally unimodular matrix. The ILP problem for a totally

unimodular matrix is simply reducible to just an LP problem (those can be
solved in a polynomial time).

While (1) spoils the unimodularity (otherwise NP=P), the (2), (4) parts help
with solving rather giant ILP problems.

Complexity

Because the bandwidth problem for grid subgraphs is NP-complete, even
simplest dilation problems (for grid subgraphs) are NP-complete as well.

While the embedding of the minimal dilation is very hard to find, for many
classes of grid subgraphs optimal or nearly optimal dilation embedding are
possible to find using ILP methodology.

This turns out is very important in many chip design problems
(placement/routing) with millions of objects (gates, wires) in 2D areas
(typically at 250 x 250p° areas).

However, not all graph mapping problems are actually that hard.

The graph isomorphism problem — on whether two graphs are actually the same
if one changes the labels of vertices and edges — was determined (less than a
year ago) to be solvable in quasi-polynomial time.

Cliques and Bicliques

In a bipartite graph bg =< V, E > the set V of vertices is a union of two
non-intersecting groups: L and R, V = LU R, such that all edges in E only
connect vertices in L with vertices in R.

A clique C in a (undirected) graph g is a complete subgraph of g (i.e. every
two vertices in C are connected by an edge).
A maximal clique is not contained in any other clique.

For a bipartite graph bg =< LU R, E > a proper notion is a biclique.

A set B= BLU BR is a biclique in bg iff BL C L, BR C R, and all vertices
u € BL,v € BR are connected by an edge.

Maximal biclique is not contained in any other biclique.

Problems of finding maximal clique of a given size |C| in graphs, and maximal
bicliques B of a given size (> |BL| - |BR|) in bipartite graphs are NP-hard.

The number of maximal cliques and bicliques in interesting graphs (e.g. in
random graphs) is exponential.
Still they can be enumerated by massive parallel computational efforts.

Combinatorial methods (starting from Malgrange, 1962).

Optimization Methods for (bi)Cliques

Motzkin-Straus Lagrangian formulation for a graph g:

/\g(x) = Z Xy * Xy
{u,v}€E(e)
Maximize Ag(x) over all x = (x1,...,x,) €ER", x; > 0,i=1,...,n;
37 xi =1 for x = xm. Then the size of the largest clique in g is

v
1—2-Ag(xm)

Integer Linear Programming formulation of finding (maximal) bicliques in the
bipartite graph bg =< LU R, E > uses the bi-Adjacency 0/1 matrix BA(L, R)
of bg, with

BA(l,r) =1iff {I,r} € E(bg); €L, reR

ILP Formulation and Maximum Bicliques

To determine maximum bicliques in a graph bg with a (possibly weighted)
bi-Adjacency matrix BA(L, R) one can set these rather simple linear constraints
on Boolean (0/1) vectors L(/),/ € L, R(r),r € R:

> L) B(l,r) > |BL|- R(r), r € R,

> R(r)-B(I,r) > |BR|- L(]), | € L,

> L) =|BL],

leL
> R(r)=BR],
rer
Here L(/) = 1 in the Boolean vector L iff / € L is a element of the set BL in the
biclique B = BLU BR (and similarly for R(r)).

Replacing < |BL|,|BR| > in the first two constrains by (1 — ¢€)- < |BL|,|BR| >
provides the conditions for finding so-called e-bicliques (when the suspicion of
noise is high).

Binary/Boolean Matrix Decomposition Problem

Start with Boolean (0/1) matrix B(n, m) that one should think of as a
bi-Adjacency matrix of a bipartite graph bg =< LUR,E >, |L| = n, |R| = m.

Binary decomposition of a matrix B means binary/Boolean product
representation:

B(n,m) = S(n, k) xg T(k, m).

Here xp is Boolean matrix product. In Boolean ring, the multiplication
(among 0,1) is as usual, but the addition is replaced by an Or, i.e. 1+1
Thus one can write elements of the matrix B as:

I
=

B, = Vf-;l(S,,,-/\T,-,,), I=1,...,n;r=1,....m

S is called a "usage matrix", reporting which subjects appear in observations,
and T is called the "basis vector matrix”, describing which attributes appear in
each subject.

Singular Value Decomposition

Compare with the SVD, a backbone of conventional linear and nonlinear
multidimensional analysis, optimal in Ly norm.
In the case of a real matrix B its SVD representation has the form:

B =UxXV

with orthogonal matrices U, V, UT.U=V.VT = I, and a diagonal matrix
with non-negative elements.

This effectively solves the optimal k-rank approximation problem for B, when
one retains k largest singular values in X.
Here rank 1 matrix is just

ib"
with elements {/,j} as a; - bj. Thus real rank k matrix B is represented as:
k
B, = Z(gi)/ - (b))-
i=1

as compared with binary/Boolean matrix representation of k "tiles":

B, = V(@) (B),

Tiles as bicliques

Tiles are just bicliques with

BL={lel:a=1};BR={re R:b =1}

Thus a problem of determining the Boolean rank of a matrix B (for a bipartite
graph bg) becomes a problem of:

finding a minimal number of (maximal) bicliques in the graph bg that cover all
vertices.

Of course, this is also an NP-hard problem, arising from yet another
NP-complete classical " Set Basis Problem”.

Luckily, there is very good heuristics that can select from a complete (or large
enough) set of bicliques a proper subset that gives a good Boolean k-rank
approximate decomposition.

