Graph Embeddings

D. V. Chudnovsky, G. V. Chudnovsky, T. Morgan
IMAS
NYU Tandon School of Engineering
6 MetroTech Center
Brooklyn, NY 11201

April 21, 2016



Starting With Additive Number Theory

The relevant problem here that seems to be a 1-dimensional problem is known
as the optimal Golomb Ruler. Here we are looking for a given (order) N at
integers xi < --- < xy with a minimal length xy — xi such that all pairwise
differences x; — x; for i > j are distinct.

This problem was considered important in radio frequency sampling and
antenna placement. This problem is very closely related to the problem of
Sidon’s sets (with By or B; notations, whichever is correct).

This problem is not (yet) proved to be NP-complete, but the general belief is
that it is; definitely efforts for determine the optimal length for a given order N
take exponential time in N.

For example, the largest order N for which one can prove the optimality of the
length is N = 27 (for the length of 553). The distributed net run that
established that took almost 5 years. The search for N = 28 is on for the last 2
years.



Integer Linear Programming Formulation

The relationship between this problem and the set of problems we will talk
today.

This problem, just like those bothering us, can be properly reformulated, and
reduced to the solution of Integer Linear Programming (ILP) problems, with
unknowns/equations of a greatly similar two-dimensional form.

The variables here are djj = x; — x;, and the linear problem one needs to solve is

N—-1 j—1
min E dikt1; dij = E dik1,
=1 k=i

with the constraint AllDifferent({dj}).

With a proper introduction of bipartite matching integer variables this problem
reformulates as an ILP Problem in O(N3) variables, very similar to problems we
will introduce below.



Grid Graph Embedding

We consider graphs that are all planar, and are subgraphs of the gird (square
lattice), with the underlying i (Manhattan) distance. The problem here is that
of embedding one such graph (we call it X) into another (we call it G)
bounding the " distortion/dilation” D of the embedding g : X — G:

dist(g(x),g(x)) < D
for all x,x’, dist(x,x") = 1.

In all interesting cases either of two graphs X or G is a full rectangle (typically
a square or a "near square”).

We make a distinction between the "distortion” D and "dilation” § depending
on which metrics is used. The dilation § means that we use the graph distance,
while "distortion” D means that we measure the distance as /. For
simply-connected (convex) sets G these are the same.

Just like in studies of the Dimer/Domino tiling and percolation problems on
square lattices, the main focus here is on the parameterized " rectilinear
domains”.



Rectilinear Discrete Domains

One starts with a connected (not necessarily simply connected) domain D in
the square lattice, and replaces every "dot” with an N x N gird, creating from
"fat dots” a domain D(N) with a cardinality N° - |D.

These and rectangles of arbitrary aspect ratio are typical objects of study.

N=3

Figure: "circular” domain



Computer Applications

Bounded dilation embedding of such graphs (typically to or from a square or
near square) initially became very popular through 1980s-1990s in connection
with two independent sets of acute problems:

A) The Placement Problem. How to create/move complex shapes of
gate/transistor designs in particular area of a bigger VLSI design (core) without
much distortion of the wiring. Here typically the mapping is into a square. This
problem is still of a vital importance, very often needed in PD work.

B) The Mesh of Computers. How to align complex placement and connection
of computers into conventional two-dimensional grids. Particular attention was
devoted to n-cube virtual configurations of computer clusters, with possibly
failing computer nodes, remapped as rectangles in 2D grids.



Mappings Between Rectangles and Squares

It may be counterintuitive (unlike a toothpaste): it is easier (lower dilation) to
map a skinny rectangle (say, a line N x 1) into a square (N x N) than vice
versa.

Map - Dilation 6=1

e000000000000000
Map <- Dilation 6=N

Use local modular transformations (unlike global affine transformation) to
create mappings between rectangles. These transformations are of 3 categories:

stretching, squeezing, folding (but not "shaking” ).
An example of the optimal mapping of the (3 - 10)? square onto the
(9-10) x (10) rectangle.

(3+10)x(3+10)->(9+10)x(10)




Boolean Linear Programming Framework

To get the optimal solution of the graph embedding problem with a given
Distortion (D) or a Dilation (4) one formulates it as an Integer Programming
problem, similar to what maximal graph matching problem or
TSP/Hamiltonian Path problem looks like.

To study the 1-1 embedding g = g(x) of the graph X into G one introduces
auxiliary Boolean: 0/1 variables F[g, x] with a meaning that F[g,x] = 1 iff

g =g(x).
Then the basic equations that describing that this is a 1-1 embedding of all X
into G are:
> Flg.x =1 (1)
g€G
for every vertex x € X, and
> Flg,x] <1 (2)

xeX

for every vertex g € G.
One can also use alternative formulation focusing on edges of X, G instead.



Discrepancy/Dilation part

The equations (1), (2) are really just a graph matching problem, solvable in a
polynomial (or often in nearly linear) time. The important part here is the
control of mapping "dilation” D. Various equivalent formulations are possible:

Flg,x] - > Flgx1<o0 (3)
g’ €G,dist(g,g’)<D

for all g, g’ € G, x,x" € X, dist(x,x") = 1, or instead:

Flg.x] +Flg',x'] < 1 (4)
for all g, g’ € G, dist(g,g’) > D, x,x" € X, dist(x,x") = 1.
Here (4) provides more equations than (3), but the system (2),(4) has a huge
advantage. It forms a totally unimodular matrix. The ILP problem for a totally

unimodular matrix is simply reducible to just an LP problem (those can be
solved in a polynomial time).

While (1) spoils the unimodularity (otherwise NP=P), the (2), (4) parts help
with solving rather giant ILP problems.



Small Examples with g = 1 Topology but Computed Dilation |

X11x11->G9x14m5 D=2 X11x11->G9x14m5 D=2
Columns Rows

X11x11->G9x14m5 D=2
Rows

o
e

X12x13->G10x16m4 D=2 X12x13->G10x16m4 D=2 y4213_5G10x16m4 D=2

Columns Rows Rows

i
il




Small Examples with g = 1 Topology but Computed Dilation Il

X7x8->8x8m8 Dilation =4 X7x8->8x8m8 Dilation =4 X7x8->8x8m8 Dilation 6=4
Columns Rows Rows

X7x8->8x8m8 best:D=3  X7x8->8x8m8 best:D=3  X7x8->8x8m8 best:D=3
Columns Rows Rows

X10x10->G8x13m4 D=2 X10x10->G8x13m4 D=2
Columns Rows

[
A

X10x10->G8x13m4 D=2
Rows

4



Lower Bounds for Distortion/Dilation

The simplest low bound for the dilation of the mapping of X into G is the ratio
of the diameters of G and X.

For better bounds one need vertex-isoperimetric inequalities for the rectilinear
domain, particularly for rectangles, determined by Bollobas and Leader as
nested sets.

These inequalities provide the best scan order for rectangles. In the scan order
two points X, ¥ in a square [k]? are ordered as

X <syiff || X [la<Ily [ln

or when
I X h=ly lln and x1 > y1

Such order finds the "smallest” boundary of the set A C [k]> for a given
cardinality | A | just by looking at the first | A | elements of [k]? in the scan
order.



Sketches

To get lower bounds we look at "front propagation” of the scan order in the
source graph X (typically a square) and watch the boundary of its image
expanding in the target G. One can use the vertex isoperimetric order moving
it back to the preimage g~*(G) in X. This shows the extent of a "front
propagation” of g.

When X is a square of a linear size H, and G is a rectangle of (nearly) the
same size but with the height h < H, we can follow a "diagonal” of X with

|| X ||= a with a ~ H. The size of the largest boundary is then (as follows
from the nested scan order) H.

Thus the dilation of the map g : X — G becomes bounded by %

= S

:

The low bound is actually met in the squeezing map.



General Domains

This argument allows to get lower bounds for rectilinear domains with
rectangular w x h " protrusions” with w > h, where we are determining the
lower bound of the boundary of a "filled” set A.

T . .
W \
Using the vertex-isoperimetric inequality in the square source X on g~ *(A) we
can see that for a set C C X of the cardinality | C | the smallest boundary is

\/2| C|. Then somewhere at the end of the w X h protrusion, the set of h- w
vertices in G has a boundary of the size vV2hw, and for the height of h we get

the width of the boundary as
vV2w/h

This becomes a low bound on the dilation of the mapping from the square onto
the domain D.



Percolation

Typically G (in X — G) is not a solid domain. In computer grids or a standard
cell design, there are locations that are either:

deliberately left unused (for redundancy or openings in packaging/routing),

or are getting defective over time.

Deliberate destruction of vertices in G can simply render G unconnected.
Instead a realistic scenario is that of " percolation model”. One treats missing
vertices as occurring randomly with a probability p, 0 < p < 0.42 (below the
critical threshold where the connectivity of G is statistically insured). If one
uses p as a probability of a site missing (even if the distribution is not Poisson)
then all lower bounds on the dilation acquire an extra factor of (1 + p).

E.g. protrusions dilation lower bound becomes

\/?-(lﬂ?)

At high percolation rate, in order to reduce the dilation often it makes sense to
remove some of the " protrusions”.



General Upper Bound for Rectilinear Domains

For a given (connected) rectilinear domain D and its N x N "dots” blow-up
domain D(N) one can prove a reasonable upper bound:

Rectilinear Distortion/Dilation Upper Bound. For all sufficiently large N
(N > C(D)), there is an embedding of the "nearly same size square” X(N)
into the domain D(N) with a constant discrepancy.

Here " nearly same size square” X(N) has a linear dimension of

VID|- N —o(N)
for sufficiently large N.

In the opposite direction — embedding of general connected grid graphs into its
nearly ideal square — there is no constant upper bound for a domain with holes,
but there is a constant upper bound of D =5 for arbitrary rectangles.



Known and Still Unknown

Fundamental dilation problems of mappings between rectangles are still open.
There is a difference between embedding rectangles into rectangles with a
larger aspect ratio —

there the lower bound (from isoperimetric inequalities) and upper bounds (from
modular matrices) meet,

and mappings into rectangles with a smaller aspect ratio —
there the best upper bound is still unknown.

The lower bound is 2, but the best upper bound of embedding the h x w
rectangle to a lower aspect ratio rectangle H x W with

h<H<W<w
of nearly the same size (i.e. H- (W —1) < h-w < H- W) is still unknown.

There are no counter-examples for the dilation D = 2, and the best upper
bound is D = 5.



Complexity

Because the bandwidth problem for grid subgraphs is NP-complete, even
simplest distortion/dilation problems are NP-complete as well.

1. The problem of embedding of an n-vertex grid subgraph into its "ideal
square” (i.e. of the linear size of [N]) with the dilation/distortion of at most k
is NP-complete.

Even seemingly simpler problem is very hard, in general.
2. Let G be a subgraph, with n vertices, of a Grid graph G(h, w). The problem

of embedding of G into a Grid h x % with the dilation 1 is NP-complete.

Also, the problem of 1 — 1 embedding of the line onto the grid graph with
dilation 1 (i.e., a problem of finding a Hamiltonian path in such a graph) is
NP-complete.

While the embedding of the minimal dilation is very hard to find, for many
classes of grid subgraphs nearly optimal dilation embeddings are possible to
find using ILP methodology.



Conformal Mappings...

Relations to Koebe(-Andreev-Thurston) coin packing theorem, and its
variation.

However, in the digital /discrete case we can have embedding from
multiply-connected grid domains to squares with bounded dilations.

h
’_%Z
=

The embeddings we need are not actually distance-preserving or
angle-preserving. However one can use the conformal mappings as an initial
approximation to dilation bounded mappings in the ultimate ILP solution
problem (including the multiply-connected cases).
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