
Dominoes and Tetrominoes Tiling for Particular

Domains

Draft. Do not distribute.

D.V. Chudnovsky, G.V. Chudnovsky

October 11, 2014-March 1, 2015

General Definitions

Let Γ be a finite connected (undirected) graph, and let V (Γ) and E(Γ) be,
respectively, the vertices and edges of Γ. A perfect matching on Γ is a set
of edges of Γ such that every vertex is adjacent to exactly one of the edges
in the matching. Of course, to have a perfect matching on Γ the number of
vertices must be even.

If there is no perfect matching on Γ one uses a maximum matching as a
largest in cardinality set of edges having no common vertices.

In the language of statistical mechanics the perfect matching is called
a dimer configuration (dimer covering), and the edges of the matching set
are called dimers. In the case of non-perfect matching the edges of that
matching (say, maximum matching) set are still called dimers, and vertices
that do not belong to any of the edges in a matching set are called monomers.

The existence of a perfect matching, as well as finding a maximummatch-
ing in a graph Γ can be determined in a polynomial time. However, the
problem of finding the number of perfect matching is #P for general graphs
Γ. It is exactly this problem, of finding the number of dimer coverings as
D(Γ) of a graph Γ (or finding its asymptotical properties when Γ approaches
a stable infinite configuration), that is important in many fields, particularly
in statistical mechanics.

Particularly interesting in applications are cases when graphs Γ are build
on subsets of lattices (or similar repeatable structures). One of the most
common cases is the case of graphs on a square lattice (or its dual, if it
more convenient for description). In that case one can think of vertices as
1 × 1 cells on a chessboard which are connected if their share a common
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edge. Considering the white/black coloring of the chessboard one can see
that dimers are always ”dominoes” – 2× 1 or 1× 2 rectangles. In such case
one can reduce the perfect matching to a ”domino” covering problem on a
bipartite graph, since only cells of opposite colors can be matched. In this
case one can talk about the ”domino covering problem”.

In the case of planar lattices and, in fact, in the case of any planar graph
Γ the counting of dimer coverings D(Γ) can be effectively computed using
wonderful techniques developed by physicists in early 1960s. To present
their results we need a bit more definitions.

If A = (aij) is a skew-symmetric matrix, then its determinant, det(A) is
a square of a polynomial in aij which is called a Pfaffian, Pf(A), of A. The
Pfaffian is not-trivial only when the size of the matrix A is even. Since we
are interested in perfect matching (or subgraph resulting from a maximum
matching set), we assume now that the number of vertices of a graph Γ is
even.

FKT Formula and Kasteleyn Ordering of Planar
Graphs

Fisher, Kasteleyn, and Temperley (thus FKT) in a series of papers, pub-
lished in 1961, established an efficient algorithm and combinatorial descrip-
tion of a method of computing the number of dimer coverings for any planar
graph Γ using Pfaffians and special orientations of edges of Γ.

To define the corresponding matrices, let us look at an orientation K of
edges Γ. For simplicity (though it is by no means necessary) assume that Γ
is a simple graph (not more than 1 edges between 2 vertices) with uniform
weights (equal to 1). Then the skew-adjacency matrix AK = (aKij ) is defined
as follows for vertices i, j of Γ:

aKij = 0 if there is no edge connecting i, j

aKij = 1 if edge connecting i, j is oriented according to K

aKij = −1 if edge connecting j, i is oriented according to K.
Kasteleyn proved that for every planar graph Γ there is an orientation

K such that the Pfaffian of AK produces (up to a sign) the number D(Γ) or
dimer coverings, or:

D(Γ) =
√
detAK .

The construction of this K (Kasteleyn) orientation is nearly-linear in the
edge count |E(Γ)| and typically uses the dual graph of Γ (the graph of faces
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Figure 1: 4 X 4 Grid Graph

Figure 2: Holes in a Grid Graph

of Γ). The calculation of D(Γ) following this approach (when the analytic
expression cannot be derived) requires big-num arithmetic since generically
it is a number growing exponentially with the size of |V (Γ)|.

We wrote aK-orientation package inMathematica that includes big-num
evaluation of Pfaffians.

In some interesting case the analytic expression can be explicitly ob-
tained. The case of G(n,m) Grid Graph of a rectangle n × m was a par-
ticular target of FKT study. Since this Grid Graph is a product graph, the
corresponding weight-adjacency matrix has analytic expression of its eigen-
values, resulting in an explicit expression of D(G(n,m)) as a product for
even n:

D(G(n,m)) =
m
∏

j=1

n/2
∏

k=1

(4 cos2
πj

m+ 1
+ 4 cos2

πk

n+ 1
)
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Figure 3: Grid of Large Cells

The limit of n,m → ∞ defines the entropy of the Domino coverage of
rectangles. In particular,

lim
n→∞

logD(G(n, n))

n2
=

G

π
,

where G is Catalan’s constant.
Similar results were obtained for some other planar lattice graphs.
Kasteleyn result cannot be generalized to arbitrary non-planar graphs

(only to those that are Pfaffian), but he stated a result on the representation
of the number of dimer coverings of a graph on a surface of genus g in terms
of 4g Pfaffians. This was used for the study of grids on a torus, important
for statistical mechanics and for the development of the dimer coverage in
the continuous, SLE, limit.

One can derive many interesting corollaries of FKT results. As one
practical example, consider a sample grid of large square cells (super-cells)
inscribed in a circle.

Take now each of these super-cells and subdivide it into an n × n cell
grid.

What follows rather easily from the FKT result is that for any simply
connected figure F of super-cells on the plane, the subdivision of super-cells
into n×n squares results in a simply connected grid subgraph Γ(Fn) whose
dimer coverage number converges asymptotically as follows:

lim
n→∞

logD(Γ(Fn))

|F| · n2
=

G

π
,

(Proof: the fact that it is a lower bound follows directly from the rect-
angular case, applied to an individual super-cell. The fact that it is asymp-
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Figure 4: Subdivision into 4 x 4 cells

totically an upper bound is a consequence of, essentially, the same bound.
If the domino coverings for the figure F is asymptotically large, then com-
pleting the figure F for a full square N ×N of super-cells would contradict
the asymptotic for that square, made of n2 ·N2 smaller cells.)

Using the set F from the Figure 3 (our model set), we get for n =
6, 8, 10, 12, 14 the following values for |D(Γ(Fn))|:

5.61702 ·10396, 2.33667 ·10709, 1.44289 ·101112, 1.30638 ·101605, 1.72217 ·102188

The most general result in this direction belongs to R. Kenyon (2008),
and describes the asymptotic of the number of domino covering of a simply
connected rectilinear domain in the plane, when the size of a grid element
is ǫ for ǫ → ∞. This result provides with necessary logarithmic corrections
to FKT formula, and assumes that a building block of a covered area is a
”Temperleyan polyomino” – roughly a finite (with respect to ǫ) collection of
rectangles of an even size in a given grid.

It is essential to consider the simply connected domains made this way.
A number of examples of simply connected domains that are coverable by a
unique dimer configuration with a more complex boundary can be produced.
These examples are useful because they can be tied together to produce
equivalence between SAT problems and domino/polyomino covering to show
high complexity of these problems.

Kenyon Coverage Theorem. Let U ⊂ R2 be a rectilinear polygon
with V vertices. For sufficiently small ǫ > 0, let Pǫ be a Temperleyan
polyomino in ǫZ2 approximating U in the natural sense (the corners of Pǫ

are converging to the corners of U). Let Aǫ be the area and Perimǫ be the
perimeter of Pǫ. Then the logarithm of the number of domino tiling of Pǫ is
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Figure 5: Single Domino tiling case

c0 ·Aǫ

ǫ2
+

c1 · Perimǫ

ǫ
− π

48
· (c2(ǫ) log

1

ǫ
+ c3(U)) + c4 + o(1)

Here c0 =
G
π ; G is Catalan’s constant as above; c1 =

G
2π + log

√
2−1

4 ; c4 is
independent of U , and the term

c2(ǫ) log
1

ǫ
+ c3(U)

represents the ǫ-normalized Dirichlet energy Eǫ(U) of the limiting av-
erage height function on U . This continuous limit of the ”height” of the
domain is computed in terms of Weierstrass elliptic functions. It can be
computed using the partitioning of the domain into its rectangular parts,
with a formula for the rectangle R of the size α× β of the form:

Eǫ(R) =
24

π
· log 2α

ǫ
− 2

π
· log(1

2
(2π)12η(e−2π α

β )24)

The classical Dedekind η function used is defined as:

η(q) =
∞
∏

n=1

(1− qn)

Chessboard, Gomory’s Theorem and Hamiltonian
Paths

8 × 8 chessboard can be easily covered fully by non-overlapping dominoes.
The puzzle, traced to Max Black (1946), and popularized by Martin Gardner
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is the following one: if diagonally opposed corners of the chessboard are
removed, will it still be tiled by dominoes?

The answer is no. The reason is rather simple: since the chessboard like
any other grid subgraph is bipartite, every domino connects one black with
one white vertices. Thus any dominoes tiled domain has equal number of
white and black vertices. Since opposite sides of the 8× 8 chessboard have
cells of the same color, this mutilated domain cannot be dominoes tiled.

John McCarthy proposed it famously as a hard problem for AI auto-
mated proof system.

There is a very nice positive result here for other ”mutilated chessboards”
known as Gomory’s theorem. R.E. Gomory was the head of IBM Research
for many years and later was the President of Alfred P. Sloan Foundation.

Gomory’s theorem states that if you remove two cells of opposite color
from 8×8 chessboard, then the resulting board (graph) is fully domino tiled.

The method of proof is much more far-reaching: the same is true for any
rectangular domain in the square grid that has even number of cells. For
the rectangles whose sides are both odd the domino tiling is impossible, but
if one removes any corner from such a domain, the theorem still holds.

The proof is very elegant. One takes a Hamiltonian cycle that exists in
such a graph (in fact there are many such cycles). The cycle is broken in
2 places, but each part is even in length – because is start and end are of
opposite color. They are obviously partitioned into dominoes since every
consecutive pair represents axially aligned dominoes.

Hamiltonian paths (not only cycles) in grid graphs produce another im-
pressive feat: for every n ≥ 2 they provide a covering of these graphs with a
maximal number of n-polyominoes possible (essentially the same argument
as above). So for those lucky graphs you get the best triomino, tetromino,
..., octomino, ... coverings. Sadly, this is not really a common occurrence.

In fact, even for grid graphs (finite subgraphs of a square lattice) deter-
mining whether the graph is Hamiltonian is still NP. Only for grid graph
representing simply connected domain (i.e., no holes) Hamiltonian paths can
be identified in polynomial time.

There is a remarkably interesting approach to finding large families of
nonintersecting cycles in planar graphs, even if there are no Hamiltonian
paths. This is based on another set of lattice problems created in solid state
physics – ”double-dimers”. Take two different domino tilings of the same
graph (domain in the square grid). Superimposing them one gets covering
of a graph by sets of two kinds: loops of even length and ”double edges” –
the latter are just cases of same dominoes in both coverings.

To obtain the two ”non-intersecting” domino coverings of the same graph
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Figure 6: 12 × 13 grid graph with 6 holes and the domino tiling from a
Hamiltonian cycle

(domain), one runs the flipping of domino pairs in two ”opposite” directions
– by increasing and by decreasing the height of domino coverings, since
any coverings are ultimately related through the sequence of flips (easy to
prove for simply connected domain and require some graph modifications
otherwise).

We show one example of a Hamiltonian cycle for a particularly interesting
grid graph with holes.

Note that because there is Hamiltonian path through this graph, mak-
ing 2 extra defects with opposite colors creates new domino coverings of a
depopulated graph because each of 2 parts of the path represent a set of
dominoes, covering the newly depopulated graph (each part is even in the
length because it starts and end at sites of different colors).
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Simple Unknowns; a defect

The problem of an odd rectangle (2 ·m+1)× (2 ·n+1) with one (white) cell
removed is the simplest example of an ”unsolved” problem on the monomer-
dimer coverings. Only in a rather trivial case of a ”defect” on the boundary
of the rectangle the explicit ”simple” expression on the number of dimer
coverings in the resulting grid is known (F. Wu; 2007) through a reduction
to Kasteleyn determinant (and Temperley’s correspondence with the number
of spanning trees in the rectangle with a corner missing).

Even in this simplest setup interesting questions arise: If we are allowed
to move the defect, just as we are allowed to flip double dominoes (when they
are next to and parallel to each other), what kind of lattice structure we will
get. It turned out that there are configurations (in particular with a defect
right in the center of an odd rectangle), when there is no equivalence with
a generic single monomer-dimers tiling. In a majority of case though the
equivalence is there, when one combine sliding of a monomer in the direction
of adjacent domino while flipping the dominoes in the dimer coverage.

There is another popular version of the same problem, originated from a
”15-puzzle”, when one is trying the sliding approach with a domino covering
to move the monomer, but without the flips of the dominoes. Only recently
(Ruelle et al. 2008) the probability that the monomer is jammed – at 57

4 −
10
√
2 = 0.1078 . . . , and a probability that a monomer can make only one

move (by 2 grid positions) – at 72817
√
2−102977
32 = 0.0559 . . . were computed.

In general, for arbitrary defect locations next to nothing is known in
the monomers-dimers problem; even precise conjectures. The only glimpse
of the information is based on old Fisher problem about the ”interaction”
between pairs of monomers based on the free energy computations for the
partition function with these ”defects”. Fisher conjectures, largely unproved
yet, describe the ”interactions” in terms of the electrostatic force between
the monomer pairs. In the conformal limit rare cases of these conjectures
were proved – for diagonal pairs on diamond shaped domains.

Fisher Conjectures on Monomer (Defect) Interac-
tion

It seems that physicists in early 60s knew Gomory theorem, but not its
proof. At about the same time as FKT papers were published, Fisher and
Stephenson tried to understand what will happen in the monmer-dimer case,
when there are (individual) defects – monomers, but the rest of the domain
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is still domino tiled.
Using the FKT approach and extensive matrix computations they put

forward in 1963 a conjecture that in a large grid graph G(n,m) (with even
n ·m) the removal of two sites of opposite color, say (0, 0) and (p, q) (with
p+ q = 1 mod 2), leads to a light decrease in the number of dimer covering
of the subgraph Gm = G(n,m) \ {(0, 0), (p, q)} – D(Gm), asymptotically as:

D(Gm) ∼ c
√

d((p, q), (0, 0))
· D(G(m,n))

for a constant c.
Numerically this conjecture is true for a variety of domains and lattices.

It is proved only in one case – for (p, q) = (d, d − 1) (the diagonal case) by
Hartwig (1966). The constant c in that case is

√
e

2
7

12A6
,

where A is the Gla1sher constant, as in:

ζ(−1) =
1

12
− lnA.

After decades of numerical experiments, Fisher conjecture was gener-
alized in many cases to a general set of monomers of different colors (in-
terpreted as opposite charges) involving the electrostatic potential of their
interaction as a correction factor to the number of domino coverings of do-
main with fixed monomers (defects). This set of conjectures assumes that
the remaining sub-domain if fully domino tileable and deals only with generic
cases.

The only cases that were dealt with analytically so far are of particular
configurations of monomers that are collinear on the diagonal of the domain,
or are well-separated on the domain’s boundary (Ciucu, 2007-2014).

The original Fisher conjecture of two monomers of opposite color is still
wide open.

Many defects – Percolation Problems

The first percolation problem that was encountered in physics is now known
as a phase transition. P. Curie discovered that iron exposed to a magnetic
field retained its magnetism below a ”critical temperature” Tc and lost it
at the temperature above Tc. Ising model in two dimensions turned this
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into a classical ”solvable” model, and lead to generalizations that we know
now under the general percolation name, well-defined by Flory (1941) and
Broadbent and Hammersley (1954-1957).

The simplest percolation model is the ”bond/site percolation” problem.
In that model you have a porous material, and water flows to one side of it.
Will the water reach the ”other side” of it? Model the porous material as
a lattice of vertices, called sites, connected by edges of that lattices, called
bonds. The bonds are open for the water with a probability p or closed with
a probability 1− p. In the bond percolation problem one wants to know for
what p the water will flow from one side to another, assuming a ”random”
nature of connections and large size of the material block.

In practical applications this problem arises in many fields: resistance
(disordered electrical) networks, ferromagnetism (as in Ising model), epi-
demology, ecology, etc. This problem was briefly studied in early 80s in
connection with defects on chips. It re-appeared in a set of problems that
we are studying now in an interesting conjunction with a problem of poly-
omino tiling of two-dimensional domains on a square grid.

The most remarkable feature of the general percolaton problem that,
assuming a ”random” nature of the bond/site defects and a large size of a
domain, there is always a ”critical” p = pc such that the behavior is different
for p < pc and p > pc. Assuming an infinite size of the domain (for any
lattice) Kolmogorov’s 0-1 theorem for tail events implies that the probability
of having an infinite fully connected cluster (so the water will always flow
from one side to another) for any given p is either 0 of 1. Combined with a
monotonicity arguments this probability can be shown to be an increasing
function of p. Thus there is a critical p, pc, below which the probability of
infinite cluster is always 0, and above is always 1.

The determination of the critical probability for different lattices and
different models of ”defects” is a subject of intensive and hard work in
solid state physics, statistical mechanics, integrable systems and conformal
analysis. Much of the rigorous progress was made in the last 30 years, but
is confined only to special two-dimensional lattices. The most famous is
Kesten (1982) theorem that pc = 1/2 for a two-dimensional square lattice
and a bond percolation problem.

However, already in 1936 (Sir) Rudolph Peierls showed how to get simple
analytical lower and upper bounds on pc. We sill use this argument for the
site (not bond) percolation, where there is no analytic result even for the
two-dimensional square lattice, let alone in the high-dimensional case.

The non-percolation case. In the case of Cartesian grid in d-dimensional
lattice, the number of paths of length n starting at the origin (or any site)
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is at most (3d − 1)n. Thus a probability of having n distinct sites open
simultaneously is smaller than p for some p, 0 < p < (3d − 1)−1. Thus the
expected number of open paths starting at the origin (at most (p ·(3d−1))n)
tends to 0 as n → ∞. Then there is no percolation (or an infinite path).

The percolation case. The number of contours surrounding the origin in
Zd is bounded by (n · (3d − 2))n−1. The probability to have n distinct sites
simultaneously closed is smaller than pn some p, 0 < p < (3d − 2)−1 and
large n. The number of closed circuits around the origin then is finite since

∑

n≥1

n(3d − 2)n−1pn < ∞

and there will be a path to infinity.
In two dimensions for square lattice and other special lattices (Potts,

Bethe) the most exciting developments in the last 12 years was the progress
in study of critical behavior at p asymptotically close to pc and the conformal
invariance found there (the ”SLE” models). Among the results are the
following:

There is no infinite Light (open) or Dark (closed) infinite clusters at the
critical point pc.

The probability that there is a path from the origin to a distance r
decreases polynomially as rα for a constant α

The shape of the large cluster is conformally invariant.
Sadly, nothing like that is useful in our case when coming too close to

pc would be disastrous.

Percolation Rates

The best consistent current estimate of the ”critical p site percolation rate”
for a square lattice with uniform distribution of defects is pS = 0.5927460.
If the probability p of site occupancy is p < pS , there will be no ”infinite”
cluster among the occupied sites in the infinite square lattice.

However, in many practical cases the percolation problem arising in cases
of non-uniform distribution of defects in the lattice domain. In our case
of nearly ”circular” domains there is clearly a non-Poisson Point Process
responsible for random defects. The main feature of defect distribution
here, as in many other examples studying for the last 30 years is the radial
dependency of defects, where defects crowds towards the edge of the disk
(with the defect probability at 1.0 and beyond the rim).
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To easily parameterize the distribution shape that depends only on a
radial distance in the ”circular” domain we use the following curve:

Lc(r) = eu·(1−|r|c)

for normalized radius of the circular domain: 0 ≤ r ≤ 1 and a constant
u = u(c) normalizing the distribution for 0 < c.

The main differences in the choices of this Lc Distributions for c varying
from 0 to ∞, are that at c → ∞ the distribution converges to a uniform, and
at small c the distribution strongly hugs the edges of the ”circular domain”.

This is how the distribution looks like for various c.
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Figure 7: Radial Lc Distribution for c = 1, 2, 8, 32 for various p levels,
0 < p < 1

We present a series of images showing the percolation maps for relatively
low probabilities p of bad sites in the previously defined ”circular domain”
for different c in Lc distribution of defects.
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Figure 8: Percolation Map for a Probability of Bad Site p = 0.1 for Lc

Distribution with c = 1, 4, 16
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Figure 9: Percolation Map for a Probability of Bad Site p = 0.2 for Lc

Distribution with c = 1, 4, 16

16



Light Clusters and Domino Tilings in them.

In the case of uniform percolation, where the large cluster will be gone by
the time the probability p of a site defect will be close to 0.4, we need to
know not only the expected size of the connected ”good sites” cluster in the
case of a finite domain, but more importantly we need to know the largest
connected domino-tiled cluster in that big cluster.

The finite, but relatively large, case is crucial for us. We use the same
approach as for the domino tiling of a general rectangle: take a particular
shape and scale the square sites to the number of sites become large. Just
as before, we take a polygonal, nearly circular, domain and scale each of the
big squares in this domain to very small sites (to be precise made of 28× 28
sub-grids). This bring us to 69776 total sites before defects of broken sites
are introduced.

The dependence of the size of the clusters and the domino coverings can
be determined so far in 2015 only experimentally, with good low and upper
bounds provided by extensive Monte-Carlo testing.

The provable bounds for domains of arbitrary sizes are quite off the ex-
perimentally determined by numerical testing. In most cases nobody knows
yet what tools to use, though one would expect the help of Lowener equa-
tions and Brownian curves appearing in both percolation and spanning trees
study. Another promising approach that started to emerge in the last couple
of years is based on the fact that Hirota and discrete Painleve equations on
a lattice seem to describe the tiling phenomena. A real problem is that the
tiling with holes break a simple nature of possible solutions requiring use of
high dimensional Abelian varieties.

So let us focus on the numerical experiments for now. If all site defects
are random, as in the original definition of the percolation problem, we get
the following results for the expected sizes of the:

Largest Light (open) connected site cluster
Largest Dark (closed) connected site cluster
Largest size of dominoes on the domain (not necessarily connected)
Largest size of connected domino-tiled cluster in the Light Cluster.
It is the last size that is most important in practical applications.
One can see clearly the effect of the collapse of the Light cluster and the

rise of the Dark cluster despite the finiteness of the domain (the number
of Monte-Carlo tests here is about 1.2 million). What Monte-Carlo experi-
ments also show is a relatively simple formula for the Expected size of the
Dimer in the Light Cluster in terms of the total number of the elements in
the domain (in the case of uniform distribution of defects):
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Figure 10: Uniform Percolation till critical pc: ; Dimensions are in fractions
of the Domain cardinality

|LightDimer| ∼ (1− p− p2

2
− p4

4
+O(p6)) · |Domain|

where p is a probability of a defect site in a domain of a cardinality
of |Domain| → ∞, with the Dimer in the connected Light Cluster in that
domain of cardinality |LightDimer| and

p < 0.35.

It is not known whether this numerical result can be actually proved,
even as a weaker statement:

|LightDimer| < (1− p−O(p2)) · |Domain|, p = o(1), |Domain| → ∞

The best we can prove so far is that the upper bound for a small p is of
the order of 1− 3

4 ·p of the domain’s cardinality for polygonal scaled domain.

Main Conjecture on Defects

Current techniques are insufficient to make further rigorous progress in the
proof of the expected sizes of dimers in the presence of monomers (defects),
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but the conjectured story (supported so far only by numerical evidence) is
very interesting.

Monomer-Dimer Conjecture. For any large rectilinear (Temper-
leyan) polygon U on a square grid, and for n sufficiently small compared
to the number of sites in U , and for any n white and n black monomers
(defects) in a generic position in U , the remaining subgraph of U is domino
tiled.

For n = 1 one can get this from Gomory theorem. Generally speaking
there seems to be no approach to the proof of this conjecture, as well as its
natural generalization along Fisher’s conjecture lines.

However, in the cases of n = 2 and n = 3 the exceptional configurations
where dimer covering promised by the Monomer-Dimer Conjecture fails can
be explicitly determined for even size rectangular domains. These excep-
tional configurations are in corners of the domain for n = 2 and at edges for
n = 3.

Some slight modification of the conjecture with random n defects, and
extra n monomers to create domino tiling, can be proved for large recti-
linear domains. The method still uses creation of Hamiltonian paths in the
subgraphs, and thus can be used for arbitrary polyomino shapes (see below).

The proof of the full conjecture would justify Monte-Carlo experiments
showing the dimers indeed can cover almost all Light Cluster in the set of
percolation problems with the site failure rate p not too far from the critical
one.

Relief from Percolation Limit in Non-Poisson Per-
colation

The critical defect rate of p ∼ 0.41 is relieved somewhat when one has clus-
tering and/or radial dependence of defects, especially with defects crowding
towards the rim of the domain.

We look at Lc radial distribution of random site defects at c = 4 (some-
what close to at least one practical case). In this case the expected size of
the cluster as percentages of the domain cardinality vs the probability p of
defects look more advantageous (as far the moment of the breakout of the
largest cluster is concerned).

One can see that the collapse of the Light cluster is delayed till about
p = 0.5 in this radial defect distribution. Again, one can see only a slight
loss of the size of the LightDimer (the Dimer in the Light Cluster) all the
way till
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Figure 11: Percolation graphs for Lc distribution for c = 4 till critical point;
Dimensions are in fractions of the Domain cardinality

p < 0.45.

Numerically (for the Lc radial distribution at c = 4) the expected size
of the LightDimer in this range of p has an excellent behavior:

|LightDimer| ∼ (1− p− p2 −O(p4)) · |Domain|.
This behavior is only numerical, but it was computed for other types of

circular domain, and is sufficiently stable to vouch for one leading digit after
the period for the range of p in p < 0.45.

We do not expect this bound to be proved soon (see conjectures on the
domino covering of domains with many monomers) especially because the
non-Poisson Point Process percolation problems are rarely studied so far.
These processes are occurring mostly in the practical applications (partic-
ularly in biology and chemistry), and not in theoretical solid state physics
and statistical mechanics driving the percolation study.

However, we cannot resist the temptation to point out that Potts q-
model and Baxter’s eight vertex models with their elliptic function parame-
terization might are somewhat connected with the non-Poisson defect Point
Processes similar to those we consider.
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Figure 12: 4 × 4 Square Mesh as a Hexagonal Grid with Main Diagonal
connections

Hexagonal Lattice and Bibones

Main constants of energy (entropy) and percolation depend on geometry of
the site connectivity. In the planar case different lattices give rise to different
tiling problems.

In all cases we are considering the underlying lattice is a square lattice
with sites that can be viewed as unit size squares anchored at integer grid
location, with basic mesh (axial) connectivity. Any subgraph of that mesh
graph is a planar graph, making it possible to have a FKT detailed analysis,
and conformal invariance statements for refined sub-meshes.

Allowing arbitrary diagonal connections between square lattice sites cre-
ates a non-planar graph, but allowing the diagonal connections along only
the main (or only along the minor) diagonals, still creates planar graphs.
We chose the main diagonal (from bottom right to upper left) as another
axis of connection on the square grid.

Allowing for such connectivity effectively turns the square lattice (with 6
points of contact) into a hexagonal lattice. It is easy to visualize by turning
the unit squares into regular hexagons.

In terms of tiling (and matching problems) the pairs of primitive objects
used for matching have different names depending on the lattice type. In the
case of the square lattice we have our dominoes. For the triangular lattice
the name of the 2 adjacent cells is a lozenge. For the hexagonal lattice the
name that stuck is that of a bibone (two regular hexagons having a common
edge). We color them according to their orientations: horizontal are Red;
vertical are Blue, and diagonal are Green.

It is harder to study bibone tiling compared to the domino tiling because
three techniques that were important for detailed domino tiling analysis are
missing here:

bipartite structure of the planar graph (white and black fields of the
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Figure 13: 2 way local bibone flips

dominoes);
height function on the dominoes tiling (and a similar height function for

lozenge tiling);
bijection between tilings and spanning trees.
Still, the FKT formalism works, and shows that the number of bibone

tilings for rectangular domains rather expectantly significantly exceeds the
number of dominoes tilings. Instead of per-dimer molecular freedom value
of G

π = 0.291561 for dominoes one gets for bibones the value of 0.428595.
Moreover, nearly linear (in area) algorithm of determining the covering

with bibones of a simply connected domain exists (Kenyon-Remila). It is
based on one important property that bibone coverings share with domino
coverings: local flip connectivity.

In the case of dominoes coverings of a simply connected domain in a
square lattice, a sequence of domino local flips in 2 × 2 arrangement of 2
dominoes can turn any domino tiling into any other.

In the case of the bibone tiling of a simply connected domain in the
hexagonal case, a more complex set of flips does the same thing: turn any
bibone tiling of a simply connected domain with N sites into any other
bibone tiling in at most 5N iterations of flips.

The set of local flips in bibone tiling that allow such local flip connectivity
is rather small:

3 of 2-bibone flips; 2 of 3-bibone flips, and 3 of 4-bibone flips.
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Figure 14: 3 way local bibone flips

Figure 15: 4 way local bibone flips

Polyomino Tilings: Tetrominoes, Octominoes

Polyomino is any axially connected finite subgraph on the square grid; they
are named by their sizes. General problems to determine whether a finite
domain is tileable by a particular set of polyominoes are NP. The dominoes
are exceptions here as well as easy generalizations of them to a× b and b×a
rectangle tilings.

It turned out that we still need the generalizations of domino tilings
with bigger polyominoes. Among them the tetrominoes (of size 4) allow
wonderful theoretical and numerical opportunities. These are most widely
known from the Tetris game of the old.

The good news is that the tetromino tilings are not the end of the road.
We can double the size of building blocks once more and go to octominoes.
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Figure 16: 19 Tetrominoes
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Figure 17: 2725 Octominoes
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The reason why the path from dominoes to tetrominoes to octominoes
works is because we look at every step as a matching problems, even though
graphs are no longer planar (but in most cases still Pfaffian).

From Bibones to Tetrominoes

If one looks at an arbitrary tetromino, one can see that T-tetromino cannot
be broken into two kissing dominoes, while all other tetromino can be.

However with bibones on the hex lattice all tetrominoes can be nicely
split into kissing bibones. Moreover, the graph of bibones is a planar graphs.
This allows us to use a full power of FKT techniques, including the counting
the number of possible tetromino tilings.

An important thing here is that the quality of the tetromino tiling de-
pends on the starting bibone graph. This is altered only by the bibone local
flips without changing the covered domain.

The main purpose of the local flips of bibones for us is to build better
tetrominoes, and ultimately octominoes, as a maximal matching of tetromi-
noes graph.

We took one simple random example of a 28 × 28 grid with corners
removed and a (double) hole in the middle. Random bibone coverage does
not produce enough tetrominoes to cover the whole area (one bibone have
to be left open because the number of occupied sites in not divisible by 4).

After the local bibone flips one finally gets the peak (maximum) tetro-
mino coverage.
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Figure 18: Random bibone full coverage; resulting tetrominoes have holes
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Figure 19: After local bibone flips get peak tetrominoes coverage
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Figure 20: The full set of Hex-Tetrominoes

From Bibones to Hex-Tetrominoes to Octominoes

In the hexagonal lattice underlying the bibones one can form size 4 hex-
lattice connected ”hex-tetrominoes”.

The graph of hex-tetrominoes is formed by matching bibones from the
bibone covering of the domain in the hexagonal lattice.

The matching in that graph produces the best octomino tiling of that
domain, sometimes better than the domino tiling.

The next set shows the progression of the domino, tetromino, and finally
octomino coverage on a 28 × 28 grid with corners removed and a (double)
hole in the middle, together with the extra p = 0.1 defects in the remaining
domain.

It shows the progress of turning the maximum domino coverage (with its
5 extra defects) to the maximum tetromino coverage (with 1 more defects),
and finally to the octomino coverage – with less defects than for dominoes
(only 3 extra defects for the whole domain with holes).
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Figure 21: After local bibone flips get peak tetrominoes coverage. 28X28
Grid with corner and extra 10% defects. Sites: 699; Dominoes 347; Tetro-
minoes 173; Octominoes 87
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Flip Animation

See attached animation for the same ”model shape” with 12 × 12 subgrid
(and 6 corner and center monomers inside). It starts with the full Tetromino
coverage deduced from a set of cycles in the graph. Then local flips are used
to improve the quality of the Tetrominoes, making them more confined.

That last feature is rather important in applications.

Any chance for Polyominoes of arbitrary sizes?

Yes, the problem of the tiling of a connected (say, simply connected) domain
in the square grid by arbitrary Polyominoes is NP. It seems so, based on
our initial numerical experiments, that it might not be hopeless after all,
if one allows not a perfect tiling but a ”nearly perfect” coverage with o(1)
area missing.

The main problem becomes a ”flip” problem of shaping the Polyominoes
coverage, by restricting the Polyominoes of a fixed sizeN of particular shape.
The generalized semi-group of ”flips” is rather large and complex for any
N > 3.

Driven by some practical applications we had a look at N = 8 (octomi-
noes), and N = 24, N = 256.

In the next few slides we show the progression from one tiling (driven by
cycles in the grid subgraphs) to tilings by corresponding Polyominoes driven
by minimization of the L2 digital diameter.
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Figure 22: Initial Configuration of Tiling by 24-sized Polyominoes
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Figure 23: Flip Iteration of Tiling by 24-sized Polyominoes
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Figure 24: Flip Iteration of Tiling by 24-sized Polyominoes
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Figure 25: Flip Iteration of Tiling by 24-sized Polyominoes
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Figure 26: Initial Configuration of Tiling by 256-sized Polyominoes

36



Figure 27: Flip Iteration of Tiling by 256-sized Polyominoes
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Figure 28: Flip Iteration of Tiling by 256-sized Polyominoes
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Figure 29: Flip Iteration of Tiling by 256-sized Polyominoes
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Figure 30: Flip Iteration of Tiling by 256-sized Polyominoes
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Figure 31: Flip Iteration of Tiling by 256-sized Polyominoes
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